
Optimizing Latency and CPU Load
in Packet Processing Systems

Paul Emmerich1, Daniel Raumer1, Alexander Beifuß2, Lukas Erlacher1,
Florian Wohlfart1, Torsten M. Runge2, Sebastian Gallenmüller1, and Georg Carle1

1Technische Universität München, Department of Computer Science, Network Architectures and Services
Boltzmannstr. 3, 85748 Garching, Germany

{emmericp|raumer|erlacher|wohlfart|gallenmu|carle}@in.tum.de
2Universität Hamburg, Department of Computer Science, Telecommunications and Computer Networks

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
{beifuss|runge}@informatik.uni-hamburg.de

Abstract—High-speed network cards supporting 10 or 40 GbE
(Gigabit Ethernet) are available today. Software frameworks
for high-speed packet reception and transmission were created
to exhaust the performance of these cards. However, these
frameworks are not applicable as general-purpose solution. Thus,
it is necessary to revisit general purpose network IO software
that was designed more than a decade ago. In standard Linux
settings, connectivity between applications and physical networks
happens via the New API (NAPI). This motivated us to inves-
tigate how underlying NIC drivers can be adapted to improve
latency in combination with the Linux NAPI. Based on testbed
measurements, we propose an optimized algorithm for the NIC
driver to dynamically adapt the Interrupt Throttling Rate (ITR).
We implemented the algorithm and evaluated it with latency and
throughput measurements based on the Linux module of Open
vSwitch that operates on top of the NAPI. Our measurements
show that our new ITR algorithm improves the packet latency
without affecting the CPU load as much as other solutions.

Keywords — Linux, packet processing, packet latency, NIC
driver, ITR, NAPI, commodity hardware

I. INTRODUCTION

Specialized networking hardware, such as routers and
switches, are optimized for high-speed packet processing and
meet specified performance guarantees. Nonetheless, commod-
ity hardware can be turned into routers, switches, firewalls,
and other packet processing systems by using software im-
plementations, which makes them both more cost-efficient
and flexible while still being able to scale up to high-speed
traffic [1]–[3]. In commodity networked systems, network
interfaces (NIC) with data rates of 1 GbE and 10 GbE (Gigabit
Ethernet) are ordinary. Even 40 GbE NICs are being introduced
to the market [4]. These high-speed NICs make it necessary
to revisit the packet processing software that was designed
without the presence of these data rates, NIC capabilities, and
CPU architectures.

Software frameworks for high-speed packet reception and
transmission like netmap [5], PF RING DNA [6], and Intel
DPDK [7] were proposed to replace the existing networking
APIs. These frameworks achieve significant performance im-
provements by melting driver, kernel, and even applications
of the packet processing chain. In spite of this, they are only
an alternative for specific scenarios because they achieve the

performance at the expense of breaking with common design
concepts like a standardized and easy to use API. In contrast,
general-purpose networking mechanisms like the New API
(NAPI) [8] in Linux or the Transport Device Interface (TDI) in
Windows are applied in the broad field. However, we observed
that the Linux NAPI does not interact optimally with NIC
drivers like the widely-used ixgbe. As a consequence packets
incur unnecessary latencies inside the packet processing sys-
tem.

In this paper, we propose an optimized algorithm for the
NIC driver to improve the packet latency in combination
with the Linux NAPI. We achieve this through an improved
calculation of the Interrupt Throttling Rate (ITR) by using
packet counters and more suitable time measurements. We
implemented our approach in the NIC driver. Based on that, we
conduct testbed measurements to compare our proposal with
the status quo.

The remainder of the paper is organized as follows.
In Section II, we explain the necessary background regarding
packet processing in Linux. Our methodology for the con-
ducted testbed measurements is described in Section III. We
characterize the status quo performance characteristics of the
Linux NAPI in Section IV. Based on that, we propose an
optimized algorithm for the NIC driver to determine the ITR.
In Section V, we show the benefits of our new ITR algorithm
based on testbed measurement. We discuss in Section VI the
novelty of our contribution in comparison with previous work.
Finally, we summarize our proposals in Section VII.

II. PACKET RECEPTION ON LINUX

Within a pure IRQ-driven (Interrupt Request) system, each
received packet causes an IRQ in order to inform the system
that there is a packet waiting for processing. However, the high
priority of IRQs lead to a trouble with this approach in case
of high traffic load, as the system will go to a state which is
known as receive livelock [9]. When a system enters this state,
it will spend its CPU resources on IRQ handling, whereby the
actual packet processing as well as every other process will
starve. A queue which backlogs packets that are transferred
from the NIC to the main memory on IRQ handling begins
to overflow and received packets are dropped without being

completely processed. In extreme cases the rate of processed
packets drops to zero until the network load relaxes.

In order to solve this problem a new packet reception
mechanism for Linux has been proposed [8], which was
introduced with Linux kernel version 2.5.7 (and back-ported to
2.4.20). Its name is NAPI (new API) and it is a mechanism that
manages the interaction between the NIC driver, the process
scheduler, and the network subsystem. Besides the refinishing
of priority issues regarding different tasks of packet processing
(IRQ handling, packet reception, and packet transmission),
which lead to the receive livelock phenomenon, the NAPI
mitigates unnecessary IRQs. In Addition, the NAPI supports
early hardware packet dropping, aims for better multi-core
capabilities, considers fairness aspects, and constitutes a good
compromise between throughput and latency [8].

Even tough, there are specialized Linux-based applications
that rely on alternative network IO frameworks (i.e. [5]–[7])
in order to achieve better performance only the NAPI fits the
generic requirements of the broad spectrum of applications.
Therefore, the NAPI is an important part of packet processing
systems which has been frequently addressed as part of soft-
ware routers or switches [1], [3], [10]–[12] since its existence.

A. NAPI Workflow

In the first step of packet reception via the NAPI, the
NIC transfers the incoming packet via DMA (Direct Memory
Access) from the respective hardware input queue into a buffer
that is located in the main memory and raises an input queue
specific IRQ. This IRQ causes a CPU core to execute the
registered ISR (Interrupt Service Routine); it is best practice
to statically map IRQs to specific CPU cores [13].

The first action of the ISR – that is defined by a NAPI-
compliant driver – is to disable further IRQs of the handled
type (or more precisely the IRQ line) if the hardware has not
already done this. Then, the ISR enqueues a network device
structure, which refers to the originator of the IRQ (a specific
input queue), into the CPU core specific FIFO (First In First
Out) queue (the poll list). In the end, the ISR raises a soft IRQ
in order to defer the packet reception process from interrupt
context to process context [14].

The soft IRQ Scheduler (Softnet) completes the soft IRQ
and invokes a NAPI-specific function, which serves the entries
that are enqueued in the poll list, in a round-robin like manner.
Each entry points the input queue specific buffer regions
in the main memory where packets are waiting for further
processing steps. Additionally, an entry references a virtual
poll function, which is part of the NAPI-compliant driver.

These poll functions are responsible for fetching the
packets from main memory and push them to the upper layers
of the network protocol stack. For reasons of fairness, a
poll function follows the principal of polling with quota.
This means a poll function should not fetch more packets
than defined by a quota (known as poll size). Thus, a poll
function either returns if all packets were processes or due to
an exceeded quota.

In the first case, the poll function managed to process all
packets and there is no more work to do, so the corresponding

t
IRQ Disabled

Set ITR

Packet Arrival

Timeout
IRQ

· · ·
IRQ Disabled

Set ITR

Packet Arrival

Timeout
IRQ

Fig. 1. Graphical explanation of the ITR

entry is removed from the poll list before the IRQ is re-
enabled. In the second case, the IRQ is not re-enabled since
there are still packets waiting, but the corresponding entry is
moved from the head of the poll list to the tail of the poll list.

The described mechanism makes the NAPI act like pure
IRQ-driven mechanism and generate one IRQ per packet for
low loads. With growing offered load, such a system will reach
100 percent of CPU utilization fast. However, if the system
reaches full utilization, while the offered load still increases, it
does not drop packets. Instead, the system begins to behave like
a poll-driven system and the IRQ rate decreases. Hence, the
CPU share of IRQs lowers continuously with growing offered
load and more packets can be processed. At a specific point
the IRQ rate drops to zero. This happens if packets arrive
as fast as they are processed. In this case the system does
not manage to clean the input queues and the IRQ is not re-
enabled. Therefore, the CPU resources are completely used for
packet processing. If the offered load grows further, packets
get dropped.

Moreover, the NAPI allows for packet drops in hardware if
the system is overwhelmed. This happens when the buffers on
the NIC fill up completely while the, now poll-driven system,
cannot process them further. IRQs are disabled, so the NIC
cannot trigger further IRQs and incoming packets are discarded
by the NIC without affecting the CPU.

In few words, the NAPI is both simple and efficient, a
low loaded system spends the CPU resources to improve the
packet latency while mid and high loaded systems spend the
CPU resources for packet processing in order to maximize the
throughput.

B. The Role of the NIC driver

By default the NAPI reduces the IRQ rate in case of a
fully utilized CPU. Thus, the receiving process rather behaves
like a polling process instead of a pure IRQ-driven process
with a bad IRQ to packet ratio and the maximum throughput
increases at the cost of latency (cf. Section II-A).

However, there are cases where it is desirable to manually
influence the IRQ rate in certain ways. For example, a high
CPU load at low packet rates is undesired. NICs like the inves-
tigated Intel NICs therefore support IC (Interrupt Coalescing)
schemes in order to mitigate the number of IRQs that can be
generated per second [15].

IC techniques are typically based on counters (e.g. packet
counter and/or timeout counters) which are often offloaded
to NICs and which are configured by the NIC driver (pure
software solutions are also conceivable).

An example for such an IC feature is the ITR (Interrupt
Throttling Rate) which is implemented for Intel’s 10 GbE

100k IRQ
s 20k IRQ

s 8k IRQ
s

ρ ≥ 10 MB
s ρ ≥ 20 MB

s

ρ < 20 MB
sρ < 10 MB

s

Fig. 2. ITR state machine

adapters [16]. NICs of this class have IRQ dedicated timeouts.
These timeouts are configured accordingly by the driver (ixgbe)
in the case that the poll function manages to process all
backlogged packets that are associated to an IRQ. Until the
timeout the corresponding IRQ is disabled (independent of
the NAPI). If a packet arrives at the NIC within the timeout
interval, then the IRQ is directly generated on the timeout,
otherwise, the first packet arrival after the timeout will cause
the generation of an IRQ. Figure 1 visualizes two packet
arrivals and their respective IRQ.

Intel’s ITR algorithm has three different modes:

1) Disabled: The ITR is disabled. The IRQ rate is only
influenced by the NAPI. This scheme provides best
latencies, but it consumes a lot of CPU resources for
the ISR.

2) Static: The timeout is configured with a static values
(IRQ rate), which allows for specifying an upper
bound of IRQs per seconds (per input queue) regard-
less of the current traffic situation.

3) Dynamic/Adaptive (default): In the adaptive mode,
the driver adjusts the timeout according to the ob-
served load (throughput). This scheme represents a
trade-off between latency and CPU load.

Statically limiting the IRQ rate is not sufficient as higher
IRQ rates at low packet rates are desired. The Intel ixgbe driver
therefore implements dynamic adaption of the ITR with the
load [16] on which we focus in the following.

The dynamic mode can be explained with the help of a state
machine (cf. Figure 2). The state machine has three states, each
state represents the current configuration of a timeout. The
transitions between the three states are defined by thresholds
which relate to the throughput ρ. A ITR is typically set for
the corresponding entry if it is removed from the poll list (cf.
Section II-A). The IRQ rates and the thresholds cannot be
configured by the end-user — unless they modify the ixgbe
driver code. For a more detailed description of the Linux NAPI
and the ixgbe driver the interested reader is referred to [17].

C. The Trade-off between Latency and CPU Load

IRQ processing is an expensive task as it poses an addi-
tional overhead. Processing an IRQ for each single packet adds
this overhead to the processing cost of each packet. Throttling
the IRQ rate increases the number of packets that are processes
per IRQ. The cost of an IRQ is distributed across multiple
packets and the averaged clock cycles per packet are reduced.
The downside is that low IRQ rates may have negative impact
on the packet latency (especially in case of low to mid packet
rates).

Both, the NAPI as well as the ITR feature, reduce the
IRQ rate but they do it in different ways and with different

goals. The NAPI is greedy for CPU resources and throttles the
IRQ rate only if the available CPU resources are not sufficient
to cope with the offered load. Hence, the NAPI focuses best
packet latencies with respect to the traffic situation.

In contrast to the NAPI, the ITR feature specifies an
upper bound in order to reduce the IRQ rate. However, CPU
resources which are saved by the ITR feature typically cannot
be spent to improve the throughput, as otherwise the NAPI
would have throttled the IRQ rate too — the NAPI cannot be
disabled and the ITR feature works in conjunction with the
NAPI. Therefore, the ITR feature saves IRQs on the expense
of packet latency and the saved CPU resources can either be
used by other processes or for allowing the CPU to go into a
lower power state in order to reduce power consumption.

In summary, this means the NAPI provides low packet
latency at the cost of a high CPU load, while the ITR works
complementary and gives better CPU load at the increase of
the packet latency. Therefore, our objective is to improve the
ITR algorithm in a way, that allows to reduce the CPU load
but still provides low packet latencies. Therefore, our goal is
to optimize the ITR implementation in a way that the ITR
provides an optimal trade-off between the latency and CPU
utilization.

III. TEST SETUP AND METHODOLOGY

Our measurements were conducted on two servers with
Intel X520 NICs that are connected via a direct 10 GbE fiber
link. One server acts as a load generator and packet sink, the
other server is the device under test (DuT).

A. Test Setup

a) Hardware: The DuT runs a 3.3 GHz Intel Xeon E3-
1230 v2 CPU. All features that scale the CPU frequency with
the load (i.e. Intel Turbo-Boost and SpeedStep) were disabled
to avoid measurement artifacts. The NIC is an Intel X520-
T2 dual 10 GbE adapter which is based on the Intel 82599
chip [15].

b) Software: The DuT runs Grml Debian live Linux
with kernel 3.7, ixgbe 3.14.5, and Open vSwitch 2.0.0 as rep-
resentative NAPI-based forwarding application on a 3.3 GHz
Intel Xeon E3-1230 v2 CPU.

The CPU load was measured by reading the CPU’s idle
cycle counter with the tool perf to obtain reliable measure-
ments of CPU load caused by interrupts.1

Open vSwitch was statically configured to forward packets
back to the load generator. We chose Open vSwitch because
we are arguing about improvements at the lowest software
layer, so the overhead of the forwarding application must be
as low as possible. We have experienced in previous work [12]
that Open vSwitch provides fast, stable, and constant-time in-
kernel forwarding and therefore the best choice. Note that a
forwarding application is necessary to send the packets back
to the load generator to measure their latencies accurately.

1Standard tools like top or mpstat are not sufficient for such a CPU load
measurement as the Linux kernel does not account CPU cycles consumed by
hardware interrupts precisely enough by default [12].

c) Load Generator and Sink: We use our software load
generator MoonGen [18] to generate constant bit-rate traffic for
all measurements from a second server. It also measures the
throughput by counting the incoming packets.

The used hardware timestamping technique allows for
latency measurements with sub-microsecond accuracy and
precision [18].

B. Test Methodology

We apply an increasing load of 0.02 Mpps to 2.5 Mpps
(million packets per second) of constant bit-rate traffic on the
DuT for each experiment. All packets are minimally sized as
we have shown in previous work that only the packet rate and
not their size matters for forwarding applications [12]. The
DuT forwards the packets back to the load generator. Each
test runs for at least 60 seconds and at least 60 000 packets
are timestamped for each measurement point.

All tests were restricted to a single CPU core by configur-
ing the NIC with only one queue and pinning its interrupt
to a core. In previous work [12], we have shown that the
maximum throughput scales linearly with the number of CPU
cores. Restricting the DuT to a single core therefore simplifies
our experimental setup without affecting the validity of the
results for multi-core systems.

We define system overload as the point at which the DuT
starts dropping packets.

IV. NAPI PERFORMANCE

To discuss and evaluate optimizations of NAPI based
packet processing, we first give an overview about packet
processing latency with unmodified Linux systems.

A. Quantitative NAPI Performance Characteristic

As mentioned in Section II, there are two different algo-
rithms controlling the IRQ rate: the NAPI and the ITR of the
driver. We disable the ITR in the driver initially to acquire a
baseline performance measurement.

Figure 3 shows the latency, CPU utilization, and IRQ rate
of the DuT under increasing utilization. The CPU utilization
increases linearly with the number of packets per second until
it hits 100%. Latency decreases slightly with the number of
packets at the beginning. This is likely an effect of power-
saving idle states in the CPU. We only disabled frequency
scaling, this does not affect the sleep states from which the
CPU needs to wake up in order to process IRQs.

Once the system hits 100% CPU utilization, the latency
is at its lowest point. Note that increasing the packet rate
further does not cause an overload condition. Instead, the NAPI
adopts and polls more often, this is visible in the decreasing
IRQ rate. This mechanism is completely independent from
the IRQ rate throttling found in drivers. Before the system
becomes overloaded at 2.1 Mpps, the latency increases only
marginally. Overloading the system causes all buffers to be
filled completely causing a sudden jump to a large latency
that is now dominated by the system’s buffer size. The latency
under overload for our DuT is 2300µs and omitted from this,
and the following, graphs to improve the readability.

0

10

20

L
a
te

n
cy

[µ
s]

Median Latency

25th/75th Percentile

0

50

100

C
P

U
U

ti
li

za
ti

on
[%

]

0 0.5 1 1.5 2
0

200

400

Offered Load [Mpps]

In
te

rr
u

p
ts

[k
H

z]

System Overloaded

Fig. 3. Experimental results without IRQ throttling

Offered Load

IR
Q

R
at

e

ITRITR
NAPINAPI

saved IRQssaved IRQs

(A)(A)

(B)(B)

Fig. 4. Schematic view of the IRQ throttling with the original ITR

This experiment shows the best-case for the latency as there
is no throttling. However, this is also the worst-case for CPU
utilization due to the overhead of interrupt processing.

B. Interrupt Throttling in the ixgbe NIC Driver

As mentioned in Section II-B, the ixgbe driver measures
the number of bytes processed between two IRQs and reduces
the IRQ rate as the load increases. Figure 4 illustrates the
idea of saving IRQs with this dynamic adaption. Point (A)
represents the point at which the IRQ rate would peak without
ITR (i.e. about 0.5 Mpps as seen in Figure 3). (B) is the point
at which the system is in pure polling mode. The ITR sets in

0

50

100

150

L
a
te

n
cy

[µ
s]

Median Latency

25th/75th Percentile
Median Latency

0

50

100

C
P

U
U

ti
li

za
ti

on
[%

]

0 0.5 1 1.5 2
0

200

400

Offered Load [Mpps]

In
te

rr
u

p
ts

[k
H

z]
Default Dynamic ITR No ITR

System Overloaded

Fig. 5. Experimental results with default ITR

and reduces the IRQ rate.

Figure 5 shows the latency, CPU utilization, and IRQ
rate of the DuT with this dynamic adaption enabled. For
comparison, the figures include the data from the previous test
setup in Figure 3.

The latency now increases with the packet rate until it
reaches a plateau at about 60µs. It then drops again right
before the system becomes overloaded. This drop at the end
is due to the polling by the NAPI: The system is almost fully
loaded, so the NAPI polling mechanism dominates over the
throttled IRQs.

The CPU load now behaves linearly once the full throttling
takes effect at the fifth data point (20 MByte/s) in Figure 5,
this reduces the IRQ rate significantly. Note that the maximum
achieved throughput remains the same. This demonstrates that
the ITR controls the trade-off between CPU load and latency
but does not affect the maximum throughput. The latency is
by an order of magnitude worse here.

Offered Load

IR
Q

R
at

e

ITRITR
NAPINAPI

saved IRQs
saved IRQs

(A)(A)

(B)(B)

Fig. 6. Schematic view of the IRQ throttling with our improved ITR algorithm

V. IMPROVING THE DYNAMIC ITR

As described in Section II-B, the ixgbe NIC driver in the
current version (3.23.2) offers the choice between dynamic
adaptation based on data rate, a statically configured ITR, or
no ITR at all [16]. We believe that the currently implemented
dynamic ITR algorithm exhibits flaws that can be fixed. There
are three points which can be improved: counting packets
instead of bytes, measuring elapsed time properly, and using
a different mapping between packet rate and ITR.

A. Counting Packets Instead of Bytes

Packet processing performance is usually limited by the
number of packets processed, not by the bytes in contained in
these packets. This is due to the inherent cost of processing a
packet which dominates over the processing on the payload [5],
[12].

Therefore, we use the metric packets per second instead of
bytes per second as basis for the calculation of the ITR.

B. Measuring Elapsed Time

The ixgbe NIC driver uses the ITR to approximate the time
since the last IRQ, i.e. it always assumes that the NIC is firing
interrupts at exactly the specified maximum rate. However,
this assumption is wrong. The NAPI disables IRQs during
processing (cf. Section II-A), so the specified rate may not
be reached. Therefore, the driver estimates the passed time as
too short and the byte rate as too high.

Therefore, we replace this measurement with a proper time
measurement provided by the kernel’s getrawmonotonic
function.

C. Calculating the ITR

ixgbe currently only supports three different throttle rates
in the dynamic adaption algorithm (cf. Section II-B).

We propose to replace this state machine with a continuous
function illustrated in Figure 6.

We used our simulation model of the NAPI and the
driver [17] to quickly test different algorithms. Based on these
simulations, we propose the following formula to calculate the
IRQ rate r:

r = rmax −
ρ · (rmax − rmin)

ρmax

0 0.5 1 1.5 2

0

50

100

150

200

Offered Load [Mpps]

L
o
ad

-L
at

en
cy

P
ro

d
u

ct
[

C
P
k
t
·m

s]
Default ITR Algorithm
Improved ITR Algorithm
Improvement

Fig. 7. Comparison of the Load-Latency Products

where rmax is the maximum desired rate and rmin is
the minimum. We set these values to 100 000 and 8 000,
respectively, as these two values were also used in the original
implementation. ρ is the current packet rate and ρmax the
maximum packet rate before the system becomes overloaded.

ρmax is system-specific (2.1 Mpps here) and may need to
be adopted for optimal performance. This parameter could be
exposed through the configuration interface of ixgbe. Note that
this would be an improvement over the existing algorithm,
which uses the constants 10 and 20 MBytes/s that cannot be
changed (cf. Figure 2).

D. Implementation

Implementing the algorithm requires modifying the func-
tion ixgbe_update_itr in the ixgbe driver. The packet
statistics information that we use to replace the bytes statistics
is already available to the function. We achieve better measure-
ments of the passed time by using the Linux kernel’s function
getrawmonotonic instead of the currently used inaccurate
approximation. Changing the calculation is done by replacing
the state machine with our formula.

Our patch for ixgbe 3.14.5, which was used for this
evaluation, is publicly available at [19]. The latest version of
ixgbe at present is 3.23.2. The ITR algorithm was not updated
between these two versions. Our patch for this later version is
available at [20].

E. Evaluation

Figure 8 compares the latency, CPU load, and IRQ rate of
our improved algorithm with Intel’s default implementation.
Both show the same behavior at low rates below 0.1 Mpps as
there is effectively no throttling. Our algorithm then exhibits
a higher CPU utilization while maintaining a latency that is
almost as low as seen in the first measurement with no ITR in
Section IV-A.

For better comparison we constitute a metric that takes
the trade-off quality between CPU utilization and latency into
account. The load-latency product Pll is defined as follows.

0

50

100

150

L
at

en
cy

[µ
s]

Median Latency

25th/75th Percentile
Median Latency

25th/75th Percentile

0

50

100

C
P

U
U

ti
li

za
ti

o
n

[%
]

0 0.5 1 1.5 2
0

50

100

Offered Load [Mpps]

In
te

rr
u

p
ts

[k
H

z]

Proposed Algorithm Default Algorithm
System Overloaded

Fig. 8. Experimental results with our improved ITR

Pll = cPkt · t

cPkt :=
l · fCPU

r

t is the mean latency and cPkt is the number of CPU cycles
required to process a single packet that is calculated from the
CPU load l, its frequency fCPU , and the packet rate r. The
goal of a dynamic ITR algorithm is to reduce this product Pll

which represents the trade-off between latency and CPU load.
A high number of IRQs leads to a large cPkt due to inherent
costs of IRQ processing and small batch sizes. Larger batch
sizes, however, lead to a large t.

Figure 7 shows the load-latency products of Intel’s al-
gorithm and our algorithm and the difference at an offered
load from 0 to 2.1 Mpps. Our algorithm shows a significant
improvement, especially for medium packet loads. There is
no trade-off decision to be made at low and high loads as

low loads are determined by IRQ-driven packet processing and
high loads by polling.

VI. RELATED WORK

As described in Section II the NAPI allows for switching
between polling and interrupt-driven packet processing. Salim
described the processes in NAPI based packet processing in
2005 [21]. Switching between NAPI polling and interrupt-
triggered packet processing was already addressed before
interrupt throttling in drivers like Intel’s 10 GbE NIC driver
ixgbe was introduced. Dating back to that time, but published
in 2009, Salah and Qahtan addressed the problem of switching
the NAPI to polling mode on the basis of a packet rate based
estimator [22]. This work is different from our approach as
it addresses the problem in the NAPI by switching between
interrupt-driven and poll-driven mode. We believe that the NIC
driver is the right point at which the interrupt rate should be
optimized. Salah and Qahtan did not evaluate their system
behavior under high packet rates (only up to 0.25 Mpps).

In fact related work dates back even more to the past.
Already in 1997, and before the introduction of the NAPI,
Mogul et al. described an optimization that avoids pure
interrupt-driven packet processing [9] as this may lead to re-
ceive live locks (cf. Section II). Later, several implementations
following this idea where published by Maquelin et al. [23],
Dovrolis et al. [24], Chang et al. [25], and Salah and Qahtan
[22]. Getting the information that is necessary for the switch
between polling and more interrupt-driven modes can be based
on different information like packet inter-arrival times [24],
the time a packet remains in the buffer [23], the buffer filling
level [25], or the packet rate [22]. Especially gathering of the
sojourn time a packet incurs in the buffer and the inter-arrival
times entail high additional CPU costs and are, therefore, not
practical.

Unfortunately older works cannot be directly compared due
to significant improvements in hardware (PCIe, DMA, etc.)
and software (e.g. introduction of the NAPI) architectures and
its performance (e.g. the move to 10 Gigabit Ethernet and
multi-core CPUs). These improvements changed the impli-
cations of polling and interrupt triggered packet processing
concerning latency: while interrupt-driven packet processing
was considered as exhibiting the lower latency [9], more
recent work have shown the opposite [26] and a feature called
low latency device polling has become part of the Linux
kernel [27], [28].

However, pure polling approaches come with a significant
overhead at low packet rates as the system needs to inquire
about newly arrived packets instead of being informed about
them by the NIC. This is a concern for the power usage as the
CPU load is too high at low packet rates [29].

VII. SUMMARY

The ixgbe driver already includes an adoption algorithm
for the ITR that provides an optimization of latency of Linux
based packet processing. Although the ixgbe driver already
interacts in an optimized way with the NAPI when compared
to other drivers we have shown in this paper that this algorithm
is still not optimal for the latency.

Adaptation happens in two discrete stages although traf-
fic increases continuously. Based on a detailed analysis, we
developed a linear adaptation of the ITR which uses a traffic
estimator based on the packet rate instead of the byte rate.

Our patch for the ixgbe driver that implements our pro-
posed novel throttling algorithm is available publicly on
GitHub [19], [20]. We invite you to try out our patch and
reproduce the results from this paper to verify our work. We
will also submit this patch to Intel for inclusion into the ixgbe
driver.

ACKNOWLEDGMENTS

This research has been supported by the German Research
Foundation (DFG) as part of the MEMPHIS project. We also
would like to thank our colleagues Prof. Bernd E. Wolfinger,
Dominik Scholz, and Sebastian Gallenmüller.

REFERENCES

[1] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting
Parallelism To Scale Software Routers,” in 22nd ACM Symposium on
Operating Systems Principles (SOSP), October 2009.

[2] R. Bolla and R. Bruschi, “PC-based Software Routers: High Perfor-
mance and Application Service Support,” in ACM SIGCOMM Work-
shop on Programmable Routers for Extensible Services of Tomorrow
(PRESTO), August 2008, pp. 27–32.

[3] T. Meyer, F. Wohlfart, D. Raumer, B. E. Wolfinger, and G. Carle, “Val-
idated Model-Based Performance Prediction of Multi-Core Software
Routers,” Praxis der Informationsverarbeitung und Kommunikation
(PIK), vol. 37, no. 2, pp. 93–107, 2014.

[4] “Intel Ethernet Controller XL710 Datasheet Rev. 2.1.” Intel, December
2014.

[5] L. Rizzo, “netmap: a novel framework for fast packet I/O,” in USENIX
Annual Technical Conference, April 2012.

[6] F. Fusco and L. Deri, “High Speed Network Traffic Analysis with
Commodity Multi-core Systems,” in Internet Measurement Conference,
November 2010, pp. 218–224.

[7] “Data Plane Development Kit: Programmer’s Guide, Revision 6.” Intel
Corporation, 2014.

[8] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond softnet,” in
Proceedings of the 5th annual Linux Showcase & Conference, vol. 5,
2001, pp. 18–18.

[9] J. Mogul, D. Western, J. C. Mogul, and K. K. Ramakrishnan, “Elimi-
nating receive livelock in an interrupt-driven kernel,” ACM Transactions
on Computer Systems, vol. 15, pp. 217–252, 1997.

[10] R. Bolla and R. Bruschi, “Linux Software Router: Data Plane Optimiza-
tion and Performance Evaluation,” Journal of Networks, vol. 2, no. 3,
pp. 6–17, June 2007.

[11] A. Tedesco, G. Ventre, L. Angrisani, and L. Peluso, “Measurement
of processing and queuing delays introduced by a software router
in a single-hop network,” in IEEE Instrumentation and Measurement
Technology Conference 2005, 2005, pp. 1797–1802.

[12] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance
Characteristics of Virtual Switching,” in 2014 IEEE 3rd International
Conference on Cloud Networking (CloudNet), Luxembourg, October
2014.

[13] Intel, “Assigning Interrupts to Processor Cores using an
Intel R© 82575/82576 or 82598/82599 Ethernet Controller,”
http://www.intel.com/content/dam/doc/application-note/
82575-82576-82598-82599-ethernet-controllers-interrupts-appl-note.
pdf, 2009.

[14] M. Wilcox, “I’ll do it later: softirqs, tasklets, bottom halves, task queues,
work queues and timers,” in Proceedings of the 2003 Linux Conference
Australia (LCA 2003), 2003.

[15] “Intel 82599 10 GbE Controller Datasheet Rev. 2.76,” Intel Corporation,
2012, Santa Clara, USA.

[16] Intel, “Intel Server Adapters - Linux ixgbe Base Driver,” http://www.
intel.com/support/network/adapter/pro100/sb/CS-032530.htm, last vis-
ited 2015-01-27.

[17] A. Beifuß, D. Raumer, P. Emmerich, T. M. Runge, F. Wohlfart, B. E.
Wolfinger, and G. Carle, “A Study of Networking Software Induced
Latency,” in 2nd International Conference on Networked Systems (Net-
Sys), March 2015.

[18] P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle, “MoonGen: A
Scriptable High-Speed Packet Generator,” in ArXiv e-prints, Mar. 2015.

[19] L. Erlacher, “Patch for ixgbe-3.14.5,” https://github.com/duk3luk3/
ixgbe-3.14.15/commit/c0a258a3d6fdd50f51e4231c946b13dc665eecf0.

[20] L. Erlacher, “Patch for ixgbe-3.23.2,” https://github.com/duk3luk3/
ixgbe-3.23.2/commit/fcd21e9db103680d77bfd3a016eb3271b44d2a2e.

[21] J. H. Salim, “When NAPI comes to Town,” in UKUUG 2005 Linux
Technical Conference, 2005.

[22] K. Salah and A. Qahtan, “Implementation and experimental perfor-
mance evaluation of a hybrid interrupt-handling scheme.” Computer
Communications, vol. 32, no. 1, pp. 179–188, 2009.

[23] O. Maquelin, G. R. Gao, H. H. J. Humy, K. B. Theobald, and X. Tian,
“Polling watchdog: Combining polling and interrupts for efficient
message handling,” in in Proceedings of the 23rd Annual International

Symposium on Computer Architecture. ACM Press, 1995, pp. 179–188.
[24] C. Dovrolis, B. Thayer, and P. Ramanathan, “Hip: Hybrid interrupt-

polling for the network interface,” SIGOPS Oper. Syst. Rev., vol. 35,
no. 4, pp. 50–60, Oct. 2001.

[25] X. Chang, J. K. Muppala, P. Zou, and X. Li, “A robust device hybrid
scheme to improve system performance in gigabit ethernet networks.”
in LCN. IEEE Computer Society, 2007, pp. 444–454.

[26] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “A Study of
Network Stack Latency for Game Servers,” in 13th Annual Workshop
on Network and Systems Support for Games (NetGames’14), Nagoya,
Japan, Dec. 2014.

[27] J. Brandeburg, “A way towards Lower Latency and Jitter,”
Talk at the Linux Plumbers Conference, Slides available
athttp://www.linuxplumbersconf.org/2012/wp-content/uploads/2012/09/
2012-lpc-Low-Latency-Sockets-slides-brandeburg.pdf, 2012.

[28] J. Corbet, “Low-latency Ethernet device polling,” 2013.
[29] L. Niccolini, G. Iannaccone, S. Ratnasamy, J. Chandrashekar, and

L. Rizzo, “Building a power-proportional software router,” in USENIX
Annual Technical Conference (USENIX ATC 12). Boston, MA:
USENIX, 2012, pp. 89–100.

