Measurement and Simulation of High-Performance
Packet Processing in Software Routers

Torsten Meyer!, Florian Wohlfart?, Daniel Raumer?, Bernd E. Wolfinger! and Georg Carle?

'Universitit Hamburg, Department of Computer Science, Telecommunications and Computer Networks
{meyerlwolfinger} @informatik.uni-hamburg.de
2Technische Universitit Miinchen, Department of Computer Science, Network Architectures and Services
{wohlfartlraumerlcarle } @net.in.tum.de

Abstract—The possibility of using flexible and cost-efficient
commodity hardware instead of expensive custom hardware has
generated wide interest in software routers. Performance mea-
surement and simulation have become important approaches for
identifying bottlenecks of such systems to predict and improve the
performance. We measure the performance of software routers
using current multi-core hardware architectures. We introduce
an innovative node model for intra-node resource contention and
realized a resource management extension for the widely-used
network simulator ns-3 which allows to evaluate and predict the
performance of current and future software router architectures.

Index Terms—measurement, simulation, intra-node model, re-
source contention, model validation, software router

I. INTRODUCTION

The performance of commodity PC hardware has increased
rapidly. Off-the-shelf systems can be used as servers or routers.
For instance all Unix-based systems are capable of basic rout-
ing functionality. Every PC can be transformed into a software
router with the aid of special software or by selecting an
appropriate operating system. Thereby commodity hardware is
cheaper than specialized server solutions and network compo-
nents. Leveraged by high flexibility and low costs of software
developments in comparison with hardware developments,
software solutions are preferred in many scenarios. While this
advantage may be counterbalanced by the higher performance
and lower energy consumption of specialized hardware, the
arguments of higher flexibility and better cost-efficiency still
remain.

Software routers allow rapid deployment of new fea-
tures that require a considerably more expensive and time-
consuming development cycle when implemented by dedi-
cated hardware. In network related developments this shows
at examples like the IETF NETCONF WG or the Open
Networking Foundation, where new concepts (in this case pro-
tocols that enable the configuration of network devices) were
rapidly implemented and tested in software, while hardware
implementations were not available.

Nevertheless the benefits of software routers comes with the
drawback of smaller number of ports and lower throughput
rates. RouteFlow [1] combines the flexibility and routing
functionality of software routers with the forwarding perfor-
mance of hardware OpenFlow switches. Thereby the best of

both worlds can be achieved in one system: a comparatively
cheap routing system with the performance and scalability
of dedicated networking hardware that has the flexibility of
software routers. Researches have shown that the performance
of specialized routing hardware is within the reach of software
routers [2]. For the use of computer systems in high-speed
networks the traffic of 1 Gbps and 10 Gbps networks has to
be managed. Systems have to be able to cope and handle
this traffic without loss of data. Bus systems must guarantee
the required data rates between the hardware components.
Depending on the type of routing tasks, the operating system
(OS) has to do diverse complex treatments per packet.

In order to improve the performance it is necessary to
understand packet processing limitations in PC systems in
detail. Achieved performance gains can indeed be explained
qualitatively on the basis of the hardware architecture and the
processes in the OS, but usually there is a lack of a model
that could explain the results quantitatively or even predict
them. A good model provides a simple way to gain insight
into complex packet processing tasks. This model should be
applicable for manifold simulation scenarios and be scalable
which cannot be provided in real testbeds.

In this paper, we measure and simulate the performance of
software routers based on current multi-core systems. Hence,
we apply our general concept for realistic modeling of resource
contention in resource-constrained nodes. Our modeling ap-
proach is implemented as a resource management module for
the widely used network simulator ns-3. After calibrating and
validating our model based on our real testbed measurements,
we evaluate and predict the performance of current and future
software router architectures.

The remainder of the paper is organized as follows. Sec-
tion II outlines the state of the art in modeling, measuring
and implementation of software routers. Section III shows the
characteristics and the components which are needed to setup a
software router. In Section IV we introduce our general model
for simulation of intra-node resource contention. Section V
describes our testbed which was used for the calibration of our
model. Section VI presents a case study to compare the real
testbed measurements with our simulation results to validate
our modeling approach. Finally, we summarize the paper and
give an outlook in Section VII.

II. RELATED WORK

Scientists aiming for low level optimizations [3]-[5] need
detailed knowledge of the complex system of a software router.
The interactions between the kernel and drivers, but also of
application layer above and the underlying layer of hardware
must be analyzed. In this case, modeling and simulation
techniques [6]-[10] can help to understand the related effects
and performance factors.

Some projects consider surveying software router imple-
mentations as task with the goal of providing hints for future
optimizations [2], [11], [12]. In context of the RouteBricks
project [2], the authors analyzed the performance influences
of multi-core PC systems. They parallelized packet processing
on multi-core CPUs and extended this approach to a cluster of
software routers. PacketShader [3] utilizes the GPU to speed
up packet processing. PF_RING [4] and netmap [5] focus
on the utilization of DMA features in order to avoid copy
operations that are normally needed to get packets to the user
space.

In modeling and simulation of such complex systems several
approaches were proposed. Chertov et al. [6] introduced a
device-independent router model which just considers the
queue size and number of service units inside a router.
Thus the model can be used for different router types by
tuning specific parameters. Bobrek et al. [7] used a hybrid
simulation/analytical approach for modeling shared resource
contention in Programmable Heterogeneous Multiprocessor
(PHM) systems. Besides, Sokolsky [8] followed a formal
approach to model resource constraints in real-time embedded
systems which is easily extensible to include new kinds of
resources and resource constraints. Begin et al. [9] proposed a
high-level approach for modeling an observed system behavior
with little knowledge about the system internal structure or
operation. This is done by adequately selecting the parameters
of a set of queueing systems and queueing networks. Bjorkman
and Gunningberg [10] investigated the effects of locks and
memory contention which are major performance bottlenecks
in multi-processor systems. They also presented a queueing
network model for performance prediction of a shared memory
multi-processor with parallel protocol processing.

Measuring of network devices in general was standardized
by the IETF in RFC 2544 [13]. Bolla and Bruschi [12] applied
RFC 2544 for software router performance. Beside external
measuring via dedicated hardware they refined an internal
view on packet processing in Linux (2.6) via profiling and the
knowledge about hardware architecture at this time. Dobrescu
et al. [11] published a study on the predictability of software
networking equipment.

Beside measuring of software routers in whole or facets,
other projects aim for the implementation of software routers.
These routers are also referred to as open routers (OR) to
clarify the contrast to the relatively inflexible closed source
hardware routers. XORP [14], Quagga [15] and BIRD [16]
are the most well-known ORs. The Vyatta Open-Firmware-
Router [17] is a Debian based Linux distribution equipped with

network applications for routing like Quagga and OpenVPN.
Vyatta’s business model demonstrates the marketability of
software routers as it is based on deployment, support and
training for their software router distribution. Therefore it
includes other stakeholders besides the scientific community.
In contrast the Click Modular Router [18] was used mainly
for scientific research. Other examples for PC-based packet
processing are ServerSwitch [19], as proof of concept for
flexible packet switching in cloud data centers, and Open
vSwitch [20] which is a software switch also used as a
reference implementation of OpenFlow. Open vSwitch has
been ported to multiple hardware platforms and made part
of the Linux kernel.

III. REALIZATION OF A SOFTWARE ROUTER

The IP protocol was designed to provide a best-effort service
to the transport layer in a decentralized and fault-tolerant
way. Due to the decentralization each IP router decides on its
own to which neighbor it has to forward an incoming packet.
Therefore, an IP router must keep a state to track the networks
reachable via its neighbors in a routing table. In summary the
duties of an IP router are twofold: first, it needs to learn its
routing table (either via static rules or a distributed routing
protocol) and second, a router needs to forward the actual
traffic according to its routing table. The parts of a router
concerned with learning and updating the routing table form
the control plane, while the parts of the router dedicated to per-
packet forwarding are referred to as the forwarding plane [21].

The control plane implements various distributed routing
protocols, such as RIP, OSPF, or BGP. Using these protocols
the router either gains a global or local view of the network
topology. From this topology information the control plane
derives the routing table. As the processing of the routing
protocol messages is rather complicated but not time-critical,
the control plane is usually implemented in software, that
is running on general-purpose processors, even in dedicated
hardware routers [21].

On the other hand, the tasks of the forwarding plane are
rather simple but critical in terms of packet throughput and
latency. In addition to the actual forwarding other tasks like
routing table lookups, TTL decrements, fragmentation, and
checksum recalculation also belong to the forwarding plane.
This makes the term forwarding plane misleading. However,
these tasks are simple enough to be implemented using special-
purpose chips (ASICs) in hardware routers [21]. This sec-
tion gives an overview of the routing software and selected
optimizations in software and hardware that are relevant for
software routers.

A. Routing Software

When building a router using commodity hardware, we need
to implement both the control plane and the forwarding plane
in software. As described above, the control plane is generally
implemented in software, mainly because it is not critical for
the performance of the router. Therefore, we focus on the
forwarding plane, which directly affects routing performance.

As mentioned in the related work section there are several
mature software router implementations for UNIX-like plat-
forms, such as Linux, FreeBSD, NetBSD, and Solaris. These
platforms come with full forwarding plane functionality. They
natively support IP forwarding according to the system routing
table. Therefore static routing is supported without additional
software. When distributed routing protocols have to be used
to generate the routing information, extra software is required.
The routing software packages Quagga [15], BIRD [16], and
the eXtensible Open Router Platform (XORP) [14] support
the most common routing protocols, such as RIP, OSPF and
BGP. While Quagga and BIRD only provide control plane
functionality, XORP also allows to change the forwarding
plane implementation of the OS. The forwarding plane im-
plementation of XORP relies on Click, which we will discuss
in the upcoming section.

B. Software-Based Routing Performance Optimizations

The forwarding plane functionality in UNIX-like systems
uses the general-purpose network stack. Due to its general
use it is not explicitly optimized for high-performance packet
forwarding. The Click Modular Router [18] provides a replace-
ment for the OS network stack with its own forwarding plane
implementation. In contrast to the software routers discussed in
the last section, which come as ready-to-use packages, Click
only provides a framework to build software routers. Click
offers modules, which provide simple parts of the routing and
forwarding functionality, like filters, queues, TTL decrement,
or checksum calculation. These modules are connected by a
directed graph. Paths in such a graph represent a connection
on which a packet can travel from one module to another. This
means Click is very flexible and allows to build almost any
kind of packet processing software — such as an IP router.

Building an own Click processing graph is costly, but can
provide a better packet forwarding performance than the pure
OS network stack. Click was optimized for fast and flexible
packet processing, so that it outperforms the Linux network
stack [18]. Additionally, Click graphs can be customized and
tailored to a certain use case allowing it to perform even better.

The Click community contributed modules and extensions,
like the support for netmap [5] or an OpenFlow switch
element [22]. Click elements such as a load generator and
a load sink contributed by the author of [23] show that it is
possible to implement almost any kind of packet processing
using Click.

The standard Linux network stack has received various
optimizations during the last years, too. These optimizations
lead to the New API (NAPI). The new software techniques
combine or offload processing steps, avoid interrupts, and
avoid memory allocations and copy operations. In experiments
we spotted a performance increase of about 7 % from Linux
kernel 2.6.35.9 to kernel 3.2.39 and even roughly 10% to
3.8.2. Given these performance increases it is even more
surprising that older kernel versions are still broadly used. For
example Debian “Squeeze”, which was replaced by “Wheezy”
in May 2013, is still shipped with Linux kernel 2.6.32 released

in 2009. Debian “Wheezy” — the latest stable release — comes
with kernel 3.2, that was released in January 2012.

Up to now packet processing applications achieve high
performance by running in kernel mode and thus being able to
access kernel managed buffers without copying data to user
space. A big drawback of this approach is that applications
in kernel mode can easily crash the system. While interfaces
between driver, OS, and applications have been untouched
for years these borders have been exceeded recently. Zero-
copy packet processing aims to avoid costly copy operations
between DMA accessible buffers, kernel-level buffers, and
user space buffers. Prominent examples are PF_RING [4]
coming from Linux and netmap [5] from FreeBSD, which
was also ported to Linux in 2012. PF_RING modifies drivers
in order to let the network interface directly access a ring
buffer using DMA. Packets in this ring buffer are mapped
into the user space. Conceptional drawbacks result from the
fact that applications have to be adapted to this stack and
from the introduction of a delay from the moment of the
finished DMA copy until the mapping from the ring buffer
to the user space happens. Netmap uses a similar approach
by mapping the DMA accessed space directly into the user
space. A kernel module controls access to the storage used
by the different actors which also enforces modifications in
drivers. So the performance increases came at the cost of
adjusting a stable well known interface and therefore losing
some independence from the underlying hardware. Currently
the described zero-copy techniques come with modified driver
versions of the e1000e, igb, and ixgbe Linux driver for Intel
network interfaces.

C. Hardware-Based Routing Performance Optimizations

A software router is based on commodity server hardware,
which made a steady development during the last years.
Within this development process new hardware features lead
to the development of new software and the other way
round. Optimizations caused by the need for higher inter-
component connection speed triggered the change from bridge
to hub architectures. The current hub architecture is displayed
schematically in Fig. 1. Components were integrated with oth-
ers for sake of communication optimization and the increase
of density. The memory controller is placed on-chip since
Intel’s Core i7 (2008) and AMD’s K8 (2003) architecture.
Therefore it is referred to as integrated memory controller
(IMC). Another trend in hardware architecture is a steady
growing degree of parallelization. Intel CPUs and the I/O Hub
communicate to each other via QuickPath Interconnect (QPI).

On the other side offload mechanisms try to shift workload
from the CPU to the specialized hardware components and
thus discharge the CPU from some of its load. Modern
NICs support mechanisms like the TCP Segmentation Offload
(TSO). TSO outsources TCP segmentation of large user data
blocks from the CPU to the network interface which reduces
the CPU load on the sending side caused by the network proto-
col stack. The same technique also exists on the receiving side.
The NIC automatically reassembles received TCP segments

again. Direct Memory Access (DMA) is in use for some years,
allowing the NIC to access the memory without producing
load for the CPU. New network cards already implement the
next step called Direct Cache Access (DCA). DCA allows for
direct writing into the CPUs cache and therefore avoids several
hundred CPU cycles per packet that would be spent with
waiting for data otherwise. Beside offload techniques, interrupt

)
)

> =
o <> o8
aE> S
2 :
= g
J QPI
= \ / <
— 1/0 HUB N
A PCle
DMA/DCA
NIC

Fig. 1. Intel Hardware Architecture

moderation or interrupt coalescence are further examples for
optimizations. NICs wait for the arrival of more packets, which
are then passed to the operating system in a bundle, before
triggering an expensive interrupt. The Receive Side Scaling
(RSS) technique allows the NIC to enqueue packets according
to their flow affiliation to a certain queue. Each queue is
connected to another core. So packets of a flow are processed
always by the same core. Packets of the same flow are likely
to use the same data for forwarding decisions and to access
the same state information (if a state is required). Therefore
RSS cares for cache locality and allows for better parallelism.

IV. PERFORMANCE EVALUATION WITH SIMULATIONS

In this section, we give an overview of current network
simulators with respect to intra-node resource contention mod-
eling. Based on that, we introduce our unified model for intra-
node resource management in resource-constrained network
nodes. We show the most important implementation aspects of
our resource management extension for ns-3. Further details
regarding our modeling approach for resource management in
resource-constrained nodes were published by us [24].

A. Overview

Simulators are widely used for research and education. The
reason is that deploying a testbed containing real networking
devices and links is often expensive and time consuming. Re-
searchers and designers can use simulators as a cost-effective
approach to design, validate, and analyze their proposed
protocols and algorithms in a controlled and reproducible
manner [25].

Simulators can be classified into closed source and open
source. Closed source simulators are often cost-intensive com-
mercial products which need to be licensed. Open source
simulators have the advantage that the source code is freely

available and everyone can contribute to enhance it. In addi-
tion, open source simulators often reflect recent developments
of new technologies in a faster way than commercial network
simulators. There exist a variety of open source network
simulators such as OMNeT++, ns-2, and ns-3 as well as closed
source network simulators like OPNET [26].

Modern computers are multi-core or multi-processor sys-
tems and therefore parallel processing of protocol software
becomes possible. Recent advances in computer architecture
such as multi-core processors interconnected with high-speed
links (e.g. Intel QPI) [27], integrated memory controllers,
high bandwidth PCle buses for the I/O transfer, and multi-
queue multi-port NICs, allow high-speed parallel processing
in network packet processors [11]. In multi-core systems,
processes running simultaneously on different cores (or even
threads running on the same core) may compete for shared re-
sources (e.g., CPU, cache, memory controller, and buses). This
situation is called resource contention. Resource contention
can significantly degrade the performance in comparison to
a contention-free environment. The effects of resource con-
tention in multi-processor and multi-core systems have been
widely studied in the literature [28]-[30].

To the best of our knowledge, there is no support for
modeling resource contention in network simulators though,
evidently, resource contention must be modeled when realistic
node behavior is required. Current node models of the existing
network simulators typically assume unlimited resources and
sequential packet processing. This limitation becomes prob-
lematic when resource-constrained nodes like software routers
or sensor nodes are used and parallel processing of protocol
software is an issue.

For instance, the network simulator ns-3 only offers a very
simplified model to take into account the intra-node resources
available in a network node. This has motivated us to elaborate
a general concept for a detailed and thus realistic modeling of
resource contention in network nodes.

Ns-3 is an open source discrete event simulator which is im-
plemented in C++ for research and education in the networking
area. It is rebuilt from scratch and is not an extension of ns-2.
The main reasons for the popularity of ns-3 are its modularity,
multi-technology support and the simulation capabilities for
large-scale scenarios. Ns-3 is capable of running simulation
scenarios with more than 20,000 nodes, while ns-2 (version
2.33) is not able to simulate more than 8,000 nodes. Besides,
ns-2 consumes more memory compared to ns-3 in a same
simulation scenario [26]. Furthermore, in ns-3, packets can be
saved to PCAP files, in a real packet format, making it well-
suited for real world integration. For the above reasons, we
select ns-3 for our studies.

B. Theoretical Foundations

According to Fig. 1, the packet processing of the system
internal components like NICs, buses (QPI, PCle) or CPU
cores of the router can be modeled as a tandem queueing
network as depicted in Fig. 2.

Fig. 2. Router Model with Packet Flow from NICq to CPU (solid arrows) and from CPU to NIC; (dashed arrows)

Each system internal component possesses an incoming
queue and a service rate . According to RouteBricks [2],
we assume that the CPU is the bottleneck. Therefore, the
following equation is essential where pc denotes the service
rate of component C.

. HBus
HopU = mMin {MCPU,77MNICO7MNIC17~--} (D

2
We assume that the offered load is a specific sample of traffic
which is applied to a device under test (DUT). Here, the
offered load is characterized by the packet rate A\ with a
constant packet size. The packet rate splits into the accepted
packet rate AT and the dropped packet rate A\~ and therefore
A= AT + A~. Due to our assumption that the CPU cores are
the bottleneck, also AT = min {\, pcpu} holds.

If the router is not overloaded (A < pucpy) then no
packet must be dropped (A~ = 0). Otherwise, if the router
is overloaded (A > pcpy) then packets must be dropped
(A7 > 0). In this case, the accepted packet rate corresponds
to the service rate of the CPU bottleneck (At = pucpy).
This means that we can derive the packet service time x of
the bottleneck, here xcpy = ucﬁ =)\%, based on real
maximum throughput measurements in the testbed.

In this paper, we are interested in the maximum throughput
of a software router. If we assume that the CPU cores are the
bottleneck within the router, we can simplify our router model
as depicted in Fig. 3. It consists of an incoming packet queue
and multiple service units such as the CPU cores C - - - C,,.

Fig. 3. Simplified Router Model with CPU Cores as Bottleneck

In our case, this simple model is sufficient to predict the
maximum throughput. Nevertheless, it is just a throughput

model and not a delay model. Therefore, the packet sojourn
time in the router cannot be analyzed with this model. For
analyzing the total packet sojourn time, the packet delay of
every node internal system like NIC and bus must be added.
The packet delays at most of these components should be close
to their service times because they are not overloaded and we
assume that the CPU is the bottleneck. Evidently, the service
time of the bottleneck is well approximated through the mean
packet inter-departure time at the maximum throughput of the
router.

The sojourn time 7" of a packet in the router is the time
interval between the time tpyx, when the router receives a
packet, and the time t{rx, when the router transmits this
packet. Besides, the sojourn time consists of the waiting time
w and the service time z.

T=trx —tgx =w+=z 2

The waiting time depends on the number of packets in the
queue, their service times and the service strategy. Moreover,
the service time x to process a packet typically follows a linear
behavior in terms of the packet size. Therefore, let us assume
in the following that z depends on a constant part 7, and a
packet size dependent part 7.

c=T.+5-T, 3)

Furthermore, if we assume a stationary state and the offered
load is larger than the maximum throughput of the router then
the mean sojourn time T of a packet can be calculated based on
Little’s law [31]. The mean number of packets N in the router
can be approximated based on the receive packet counter Zp x
and transmit packet counter Zrx at a periodic sequence of
observation times ¢; = 7 - At. If the router is overloaded and
dropped load A\~ occurs then the accepted load AT can be
directly measured as the maximum throughput ﬁp in packets
per second (pps) which brings us to the following equation.

ZTX(i)

N J
Tefem 2

L, (A >0) 4
; B, (AT>0) @

Based on our testbed measurements (cf. Fig. 10),Awe derive the
heuristic relation that the maximum throughput Dy, in Gigabits
per second (Gbps) of our quad-core CPU router also follows

a linear behavior. It is dependent on the number of used CPU
cores k and the packet size S according to Eq. (5) because
packets belonging to the same flow are always mapped by
RSS to the same CPU core.

Dy=(a-k+ap)-S+(b-k+b) ,(1<k<n) (5

We assume that this heuristic exists on a n-core CPU if the
offered load is uniformly split into & CBR flows with constant
packet size S which are served by & CPU cores. The constant
values for a, b, ag and by are derived from our measurements
of the real system, as it is done through the model calibration
(cf. Section VI-B). Besides, the maximum throughput may
also depend on other attributes (e.g. DMA transfer time,
memory latency) which are omitted here to keep the model
as simple as possible. From these values the expected service
time x per packet can be predicted. Besides, the Ethernet
preamble, start of frame delimiter and the interframe gap must
be considered (cf. Section V-C).
1 (S+7B+1B+12B)-88%

= — — _ (6)
D, Dy - 109

This per-packet service time calculation is used in the case
study simulations in Section VI which are based on our
resource management model.

C. Modeling of Intra-Node Resource Management

Our proposed resource management model is subdivided
into three planes (Fig. 4).

o Processing Plane: At the lowest level there is the pro-
cessing plane which is composed of several task units
TU which are connected with each other. Each task
unit possesses specific processing functionalities F' (e.g.
decrease TTL) which require specific resources (e.g.
CPU, memory, bus) and service time.

« Resource Plane: The resource plane consists of several
resource pools (RP; e.g. Resource Pool CPU). Each
resource pool contains resources R of the same resource
type (e.g. CPU, memory or bus). Each resource pool is
administered by exactly one local resource manager.

o Resource Management Plane: Several local resource
managers (LRM; e.g. Local Resource Manager CPU)
are located in the resource management plane. Above
all, exactly one global resource manager (GRM) exists
to coordinate the local resource managers if a task unit
requests several shared resources.

1) Task Unit: A Task Unit (TU) is an entity which encapsu-
lates functionality (e.g. IP processing) with uniform resource
requirements. Incoming packets are waiting in the incoming
queue ;, of a task unit for being processed. At least one
resource is needed to execute the functionality corresponding
to the task unit for this packet. If currently not all of the
required resources are available, the packet waits until the
required resource(s) become(s) available. The service time of
the task unit may depend on the packet-processing workload
which can be characterized by the packet size and the type

/ Global \
_ Resource Manager ~

Local Local Local
Resource Manager 1 Resource Manager 2 Resource Manager N

Resource Plane
Resource Pool 1

Resource Management Plane

Resource Pool 2 Resource Pool N

S TRV RV 'Y

Fig. 4. Resource Model Planes

of packet-processing (e.g. IP routing, IPsec encryption). After
processing the packet, it is enqueued in the task unit’s outgoing
queue (.t to be processed by the next task unit.

A task unit can be subdivided into several task units to
model specific effects in more detail (e.g. bus contention).
This makes our resource management model flexible and
extensible. However, there should be as few task units as
possible to obtain simple models for efficient simulations.

2) Resource Manager: A Resource Manager (RM) is an
entity which coordinates between multiple task units based on
their task unit priority. We distinguish between three levels of
detail in resource management modeling:

e« No Resource Manager: The task unit(s) possess(es)

dedicated resources (e.g. NIC uses its own processor).
In this case, neither the global resource manager nor any
local resource manager is required.

o Local Resource Manager (LRM): If at least two task
units share the same resource, a local resource manager
is required.

o Global Resource Manager (GRM): If several shared
resources of different resource types are needed, the task
unit requests the global resource manager.

3) Interactions between Resource Manager and Task Unit:

The interactions between the resource manager and the task
unit(s) are based on different resource management messages.

¢ ResourceRequest (REQ): The task unit sends this mes-
sage to its resource manager to apply for resources.

e ResourceReply (REP): This message is sent from the
resource manager to the task unit in response to a REQ
to allocate a specific resource (e.g. CPU) to the task unit.

o ResourceRelease (REL): The task unit sends this mes-
sage to the resource manager to give back an allocated
resource.

« ResourceRevoke (REV): This message is sent from the
resource manager to the task unit to withdraw a resource
which is currently occupied by this task unit.

D. Implementation of Intra-Node Resource Management

We implemented our resource management concept pro-
posed in Section IV-C as a Resource Management extension
for the network simulator ns-3. As ns-3 is modularly orga-
nized, the implementation of this extension is not restricted
to any specific scenario. We provide a general framework
for modeling intra-node resources and their contention. This
extension can be used for modeling arbitrary scenarios related
to intra-node resources like CPU cores, memory controllers,
and internal buses.

Resources are modeled as typed entities. For example, in
a given simulation setup a fixed set of resources of a given
type (e.g., CPU, memory) exists. We do not restrict the im-
plementation to specific resources types. Although numerous
types are provided it is possible to extend the set of types to
meet the requirements of new simulation scenarios.

Task units access resources by means of resource requests.
The request of a resource from the resource manager is mod-
eled as an instantaneous event. Therefore, it can be realized
as a method invocation at the corresponding resource manager
object by the task unit object. The same holds for the other
types of resource management messages.

The timing behavior is modeled within the task unit. After
a task unit acquires the resources necessary for serving a
packet, it starts to process the packets in the queue for
incoming packets. For each packet to be processed an event
is registered at the central scheduler. The time instant of that
event coincides with the end of the processing of it.

The resource manager in turn administers the resources
created for a specific simulation scenario. When multiple
task units apply for the same resource, the resource manager
resolves this conflict by assigning the resource to the task
unit with the highest priority. Therefore, we are able to
model resource contention scenarios in ns-3 in a unified way
independent of the considered network.

Our resource management module described so far is in-
dependent of the other ns-3 modules. In order to model
resource contention within computer networks it is desirable
to combine this module with existing modules, e.g. protocol
implementations. In the following we describe the approach
chosen to integrate the general architecture into existing ns-3
modules.

As shown in Fig. 5, existing ns-3 classes like Ipv4d-
L3Protocol are extended by multiple inheritance with
our TaskUnitAdapter class to create an adapter ob-
ject like Tpv4ResourceManagement. This adapter object
references to a TaskUnit object which interacts with a
ResourceManager object.

Such a child class like Ipv4ResourceManagement en-
capsulates the original ns-3 class Ipv4L3Protocol within
the simulation setup. This way, it still uses and provides
the same interfaces (e.g. Receive (), Send ()) as the en-
capsulated, original ns-3 class. When a packet is passed to
an instance of the newly introduced child class it is not
processed directly but put into the queue for incoming packets
of the corresponding task unit. Only after the modeled packet

Ipv4L3Protocol TaskUnitAdapter
Taao {Foao
+IpForward() +FinishProcessing()
+Receive() +GetTaskUnit()
+Send() +SetTaskUnit()
+...0 +...0)

Ipv4ResourceManagement

Fooc

+FinishProcessing()

+IpForward()

+Receive()

+Send()

+...0)

Fig. 5. Class Diagram of the Ipv4ResourceManagement

processing within the task unit, this packet is passed through
the task unit method FinishProcessing () to the method
of the parent class, here ITpv4L3Protocol, which handles
the actual packet processing. Our extended ns-3 stack is

illustrated in Fig. 6.

(m_rxCallback)->Recv()

UdpSocketimpl

(m_rxCallback)->ForwardUp()

Application
::RouteOutput ()
/

Socket::Send (),
.

[
Ipv4RoutingProtgcol

=:Send ()

UdpSocketimpl

UdpL4Protocol

{m_downTarget() callback)

lpvdLSPrctoza

:Send ()

Lookup(
Arplpvdinterfac ArpL3Protocal

end ()

::Receive ()

:LocalDeliver
e e m e
-~ % “(IpvdRoutingProtdcol
Ipv4L3Protocol Ja-=-"" e 4
::Routelnput()

. .
v:Node::ProtocolH:Bndlers

Ipv4ResourceManagement

PN

AN

‘__::7______,

NetDevice

0

‘_.-"’r;\'_receweca\lback
Fig. 6. Send and Receive Path of a Packet with Resource Management

The approach chosen allows for the integration of the
resource management into various existing modules.

The usage of our resource management extension for ns-3
requires ca. 18 % extra computing time compared with the
original ns-3 implementation in a worst case scenario with
64 B packet size, 20 Mpps packet rate and 4 cores. The re-
source management extension for ns-3 is open source software
and publicly available under the GNU GPLv2 license for
research, development, and use [32].

V. PERFORMANCE EVALUATION WITH MEASUREMENTS

In this section we focus on the performance evaluation with
measurements on real systems. First, we set the requirements
for our measurement setup. Second, we present our measure-
ment tools used to generate and measure network traffic.

A. Measurement Setup

The methodology for measuring the performance of a
networking device is covered in RFC 2544 [13]. It gives guide-
lines for measuring standalone networking devices from a
black box point of view. The measured device is referred to as
device under test (DUT). The document covers various perfor-
mance indicators including throughput, latency, packet bursts,
and system recovery time. As described in Section IV-B,
the maximum throughput of a router is the fastest packet
processing rate at which there are still no dropped packets and
thus the number of packets entering and leaving the DUT are
equal. Therefore, we need to carry out multiple measurements
with different frame rates to achieve the maximum throughput.
RFC 2544 also specifies that Ethernet measurements need to
be performed at varying frame lengths of at least 64, 128, 256,
512, 1024, 1280, and 1518 B. For our test case, this means
performing multiple measurements at diverse frame rates and
frame lengths and count the frames entering and leaving the
device under test.

Networking devices are very complex, so there are plenty
of side effects that can influence our measurements. First, we
have to make sure the router knows all information needed
for packet forwarding. Therefore, we populate the router’s
static routing table and ARP table before starting a measure-
ment. Second, we avoid cross-traffic, e.g. by using statically
configured interfaces thus avoiding DHCP messages. Third,
our network interface cards perform several techniques that
influence incoming and outgoing packets (cf. Section III-C).
We disabled Ethernet flow control on all devices, which
influences the transmission of data, especially in overload
situations. Finally, we want to make sure that the router, that
is the DUT, behaves in a deterministic way, so we disabled
advanced CPU features on the router machine. In particular,
we disabled Turbo Boost, which influences the CPU clock
speed but would disrupt results in case of evenly distributed
load. We also deactivated Hyper-Threading, which has no
benefit in our case, as already one thread is able to max out
the capacity of a core.

B. Traffic Generators

Having defined the requirements for our throughput mea-
surements, we need to find test tools that meet these re-
quirements. We need to generate 64 B to 1518 B packets at
a constant rate, that should scale up to the link speed. On
our 10 Gbps hardware, this translates to more than 14 Mpps
at a size of 64 B. Traffic generators like UniLoG [33] focus
on building manifold traffic, i.e. in case of destination and
source IPs, payload, or temporal or size distribution. Other
load generators focus on producing very high numbers of
packets. However, even commonly used traffic generators like

pktgen or Iperf produce a limited amount of packets which
did not saturate our links. Due to the overhead produced by
the OS network stack they are able to produce about 1 Mpps.
A load generator based on Click, which does not rely upon
the Linux network stack allows traffic generation at a rate of
about 4 Mpps. The pfsend packet generator from the PF_RING
DNA software repository (cf. Section III-A), uses a zero copy
technique and is capable of filling our links using 64 B packets.
This pfsend packet generator was used throughout this paper
to produce packets at a constant bit rate (CBR).

C. Measurement

In order to perform the throughput measurement, we need
to count packets entering and leaving the router. Therefore,
we need a measurement tool capable of counting packets at a
rate of more than 14 Mpps. Complex traffic analysis tools that
allow for a detailed traffic analysis and offer manifold traffic
statistics have problems dealing with these rates. If the analysis
tool cannot cope with the offered load, packets get dropped
on the measurement host, which directly influences our results.
None of the tested traffic analysis tools — not even those using
a zero copy technique — could handle that many packets. Our
network interface cards keep traffic statistics, e.g. the number
of received and transmitted packets, in hardware. The interface
driver makes these statistics available via a Linux pseudo file
system. Packet counters can be obtained by accessing these
information'. The number of packets at the sink is obtained
by adding the value of packets dropped by the NIC with the
value of successfully received packets. The packet rate can
be calculated easily from periodical updates of the hardware
statistics.

12B
—

MAC

Ichecksum gap

8B packet size

gl I
IP-PacketJZ

MAC
Fig. 7. Ethernet Frame Structure

me Interframe

Preamble

header

The throughput D; can be calculated based on the packet
rate A and the packet size S. Besides, the Ethernet preamble
(7B), the start of frame delimiter (1 B) and the interframe gap
(12B) must be added to the packet size for each packet.

Bit
Db:(S+7B+1B+1QB)-8fZ-)\ 7

Using Eq. (7) results in a maximum throughput of 14.88 Mpps
that can be theoretically achieved with a 10 Gbps link and 64 B
sized packets. We illustrated the Ethernet structure in Fig. 7.
Neglecting the size of the preamble and the interframe gap is
an error that can distort results. For instance, RouteBricks [2]
claimed a packet rate of 18.96 Mpps at 9.7 Gbps caused by
this calculation error.

lie. rx_missed_errors, rx_packets, and tx_packets, found in

/sys/class/net/dev_name/statistics

VI. CASE STUDY

In this section we evaluate the packet processing perfor-
mance of a modern quad-core software router. On the one
hand, we conduct real measurements in a testbed. On the other
hand, we use simulations with the help of our ns-3 resource
management extension. The case study aims for the validation
of our ns-3 extension. It is verified and validated based on real
testbed measurements.

external measurement point [_]
internal measurement point

Router

eth0 eth1 eth0

Fig. 8. Case Study Scenario with a Resource-Constrained Software Router

A. Scenario

The testbed and simulation scenario consists of a host Load
Generator and a host Sink acting as end systems as well as a
software router Router serving as device under test (Fig. 8).
The load generator and the sink are connected via dedicated
10 Gbps Ethernet links to the router.

The data transmissions are uni-directional CBR traffic of
1, 2, 3, and 4 flows with constant packet sizes of 64, 128,
256, 512, 1024, and 1518 B from the load generator to the
sink. The offered load of the load generator is greater than the
maximal throughput D Router Of the software router under test.
As a result, the maximum throughput achieved is depicted in
dependence on the offered load to the software router.

1) Testbed Measurements: We implemented the software
router using commodity server hardware. The system has been
equipped with 16GiB RAM and one Intel Xeon E3-1230 V2
CPU operating at a clock speed of 3.3 GHz. The schematic
structure of the CPU can be seen in Fig. 1. The Xeon E3-
1230 V2 CPU is based on the Intel Ivy Bridge architecture and
comes with four cores. Via an 8-lane PCle 2.0 interface we
attached a dual-port Intel 10 Gbps X520-SR2 network interface
card (NIC). This high-end NIC comes with many features and
offloading techniques. In our measurements we only make use
of the Receive Side Scaling (RSS) feature.

Based on this hardware setup, our software router is imple-
mented using Linux with IP forwarding enabled. We use the
GRML Linux distribution along with the 3.7 Linux kernel.
The measurement of the Linux IP forwarding performance
was selected due to its high relevance in practice. Aside from
that we used the latest ixgbe driver version (3.14.5) since we
discovered its performance is significantly better than previous
versions.

We use the pfsend load generator to produce artificial CBR
traffic at packet rates that scale up to the link speed of
10 Gbps. As explained above, the produced traffic consists of
1-4 flows with evenly distributed packet rates. These flows
are crafted in a way that they are distributed to distinct cores

by the RSS algorithm. This effectively means we utilize 1-4
cores in the router when producing 1-4 flows. Packet counters
are implemented on the load generator and sink machines,
depicted as the external measuring points in Fig. 8. The results
of the throughput tests are displayed in Fig. 10.

2) Simulation Measurements: Our ns-3 resource manage-
ment extension is applied to the router under test. The corre-
sponding resource model for this case study is illustrated in
Fig. 9. To process packets, the task unit T'U pacret Processing
has to request the resource manager RM ¢, for a resource
core of the CPU. If there are resources available in the resource
pool RPcore then the resource manager RM ¢, allocates a
core resource, e.g. C1, to the task unit T'U packet Processing
which starts to process the arrived packets from the incoming
packet queue ();,. The packet processing of the service unit
Fpacket Processing consumes simulation time corresponding to
the required service time of the current packet (cf. Equation 6
in Section IV-B). Otherwise if there is currently no resource
available, the task unit T'U pgcket Processing and also the
arriving packets in the incoming packet queue @);,, have to wait
until a core resource becomes available which additionally
consumes simulation time.

In this case study, we assume that the cores of the CPU
are the bottleneck. Therefore, only one resource type (namely
the CPU cores) was considered but other resource types and
intra-node effects (e.g. NIC Tx/Rx queues, cache misses) can
be modeled to set up complex case studies which are hard
to resolve analytically. Besides, the load generator and sink
have no resource constraints, but the software router (DUT)
possesses a limited number of four cores. The service time
of a packet in the router depends on its packet size and the
number of flows in the router (cf. Equation 6 in Section IV-B).
The service time parametrization of the router to process a
packet is derived from real testbed measurements as described
in Section VI-B.

Resource Management Plane

Resource Plane

Core

©OO®

Processing Plane

Q TUProcessing
I .
Ariving Depariing
Packets Packets

Fig. 9. Resource-Constrained Router Model

B. Calibration of Software Router Simulation Model

Model calibration is the process of setting the well-defined
parameters of the simulation model with respect to a specific
real system. The determination of the model parameters is
based on measurement results of the modeled system.

However, there are measurement points which are not
applicable for the model calibration because the CPU cores
are not the bottleneck. This is the case, when applying data
transmissions at a high level of offered load between the
load generator and the sink. Here, the 10 Gbps Ethernet link
becomes bottleneck instead of the CPU cores (cf. italic values
in Table II).

In this case study, we just used the four measurement
points for the calibration of the router simulation model. These
calibration points are depicted as encircled points in Fig. 10(a)
as well as listed in Table I(a). All other results thereafter can be
predicted with the help of simulations based on the calibrated
router model.

TABLE 1
MEASURED MAXIMUM THROUGHPUT (Djneqs) FOR VARYING NUMBER OF
FLOWS (F') AND PACKET SIZES (S) USED FOR CALIBRATION OF THE
MODEL PARAMETERS (a, ag, b, bg)

(a) Measurement Points (b) Router Model Parameters

[F [S[B] | Dmeas [Gbps]] a 0.01135
1 64 1.17460 ao 0.00258
T 512 741568 b 0.21766
T 6 4.00731 bo 0.06536
T 128 7.07863

Based on these measurement values and according to our
service time calculation of the router model (cf. Equation 6
in Section IV-B) the calibration parameters a, b, ag, and b
of the router model can be derived. The values obtained are
depicted in Table I(b).

C. Validation of Software Router Simulation Model

As mentioned in Section VI-B, the router model used by us
has been calibrated by means of real testbed measurements of
a router based on a modern quad-core processor. In this section
we now want to investigate whether our maximum throughput
predictions do really represent sufficiently valid predictions of
the real system behavior. For this purpose we want to compare
our throughput predictions (given in Gbps and Mpps) with the
measured values of throughput for different packet sizes.

Fig. 10(a) and 10(b) illustrate the maximum throughput
predicted by our simulation model for a quad-core processor
system and, for comparison purpose, the throughput values
actually measured in our testbed. The x-axis shows the packet
size in Byte and uses logarithmic scaling to basis 2. The y-axis
represents the measured and simulated maximum throughput
of the router in Mpps, and respectively in Gbps. The chart
shows that the maximum throughput is not significantly de-
pendent on the packet size because the routing table lookup
overhead is equal for small and large packet sizes. However,
the maximum throughput of a multi-core software router

strongly depends on the number of flows because several flows
can be distributed to multiple cores for parallel processing.
We can observe that the simulation results coincide with the
measured values. In Table II we show the measured maximum
throughput lﬁmwm the simulated maximum throughput lA)S,a,,L,
and the relative error Err in percentage where Err =
%' The confidence bounds were omitted because
the simulation results based on CBR traffic (cf. Section VI-A)
do not show large variance. The mean deviation is ca. 0.25 %
which indicates that our ns-3 extension is precise enough to
produce realistic simulation results which is part of a success-
ful model validation process. For the maximum throughput
determination only the bold values of Table II are applicable
because otherwise the 10 Gbps link is the bottleneck.

TABLEIl
_RELATIVE ERROR (E77T) OF MEASURED (Dmeqs) AND SIMULATED
(Dsim) MAXIMUM THROUGHPUT FOR VARYING NUMBER OF FLOWS (F’)
AND PACKET SIZES (.S)

[F [SB] [Dmeas IMpps] | Dsim Mpps] | Err [%] |
1 64 1.74792 1.74826 0.02
1 128 1.74541 1.74521 -0.01
1 256 1.74673 1.74521 -0.09
1 512 1.74241 1.74521 0.16
1 1024 1.18925 1.17926 -0.84
1 1518 0.79452 0.79746 0.37
2 64 3.17066 3.15458 -0.51
2 128 3.17262 3.16457 -0.25
2 256 3.16973 3.16457 -0.16
2 512 2.31526 2.33646 0.92
2 1024 1.19051 1.17926 -0.94
2 1518 0.78805 0.79746 1.19
3 64 4.48952 4.56622 1.71
3 128 4.50537 4.58717 1.82
3 256 4.48519 4.58717 2.27
3 512 2.33687 2.33646 -0.02
3 1024 1.18302 1.17926 -0.32
3 1518 0.80526 0.79746 -0.97
4 64 5.96327 5.98803 0.42
4 128 5.97857 5.98803 0.16
4 256 4.45911 4.58717 2.87
4 512 2.33979 2.33646 -0.14
4 1024 1.18407 1.17926 -0.41
4 1518 0.80664 0.79746 -1.14

Although, we assumed a heuristic relation in the calibration
of our resource management model for a quad-core router,
(cf. Section IV-B), the validation experiments described here
demonstrate that already simulation models which have been
elaborated without much expenditure can lead to very realistic
performance predictions if at least an adequate modeling of
resource contention is carried out. The realistic calibration and
parameterization of the resource management model however
is highly important in the current scenario of this case study in
order to be able to achieve a satisfying level of model validity.

D. Prediction Based on Software Router Simulation Model

By applying our calibrated and validated router model, it
is possible to forecast the maximum throughput performance
of future software routers. As the trend to larger number of
CPU cores can be expected to continue instead of significantly

T T
1 flow, simulated =t
1 flow, measured

2 flows, simulated =--%

2 flows, measured &

3 flows, simulated

3 flows, measured =*

4 flows, simulated =+

4 flows, measured =
calibration point

Maximum Throughput [Mpps]

64 128 256 512
Packet Size [B]

1024 1518

(a) Maximum Throughput in Mpps

o'

o

)

<

2 of

=

2

2 o

= K

= Ks

é LY

g 1 flow, simulated =——+—
§ A 1 flow, measured

2 flows, simulated == -%--
2 flows, measured & .
3 flows, simulated
3 flows, measured =*
4 flows, simulated -
4I flows, measured [

64 128 256 512 1024 1518
Packet Size [B]

(b) Maximum Throughput in Gbps

Fig. 10. Simulation Results for the Maximum Throughput of the Modeled Resource-Constrained Software Router in Comparison to Real Testbed Measurements

2 flows, simulated
.. 3 flowsgsimulated, :
4 flows, simulated
5 flows, simulated

oE"

= ST 6 flowsgsimulated .- .
) 7 flows, simulated
E 8 8 flows, simulated -
3
o
=
Ef
Z 6 I o & c] a I
=
=
g Wrrrrrnnnnriannn T~ S WMeeorosaanniannsns Weeereanns
£ 4} -
5
=
2k -
0 1 1 1 1
64 128 256 512 1024 1518

Packet Size [B]

(a) Maximum Throughput in Mpps

100 T T T
1 flow, simulated =——+—
2 flows, simulated
3 flows, simulated --
4 flows, simulated &
80 5 flows, simulated

6 flows, simulated --
7 flows, simulated --
8 flows, simulated =

Peo

60

40

Maximum Throughput [Gbps]

20

1518

Packet Size [B]

(b) Maximum Throughput in Gbps

Fig. 11. Simulation Prediction of the Maximum Throughput of a Modeled Resource-Constrained Software Router with 8 Cores and 100 Gbps Network Links

higher CPU clock frequencies, we assume that the CPU cores
remain the bottleneck. This implies that intra-node systems
like buses and caches challenge the growing number of cores.

We keep the simulation scenario as used in Section VI-A.
We model a software router based on a 8-core processor
architecture which has to process 100 Gbps. A link speed of
100 Gbps may be supported by future NICs, but can already
be implemented today using multiple 10 Gbps interfaces.

Fig. 11(a) and 11(b) illustrate the predicted maximum
throughput by our simulation model in dependence of number
of flows and packet sizes. The x-axis shows the packet size
in Byte and uses logarithmic scaling to basis 2. The y-axis
represents the simulated maximum throughput of the router in
Mpps, and respectively in Gbps. This forecast shows that such
a software router creates a bottleneck for 1 respectively 5 flows
with packet sizes of 1518 B where this software router reaches
its maximum throughput at 21.44 respectively 91.82 Gbps.

VII. SUMMARY AND FUTURE WORK

In this paper, we measured and simulated the performance
of software routers based on current multi-core architectures.
For identifying bottlenecks or to predict the performance of
such systems, the node models for resource-constrained nodes
(e.g. software routers, sensor nodes, smartphones) currently
used in simulators such as ns-3 are by far too simplistic.
Therefore, we introduced a new approach for modeling the
resource contention in resource-constrained nodes at different
levels of detail. Based on that, we successfully extended
ns-3 for intra-node resource management. We calibrated and
validated this model in a case study. We measured the software
router performance on off-the-shelf multi-core hardware for
comparison. We also described the challenges we had to
address when performing measurements at high packet rates
and our solutions to these problems. The case study showed
that we are able to predict performance behavior of the tested

software router in a realistic manner even in the case when
parallel processing with multi-core processors is applied. Our
comparisons with real system measurements substantiate our
claim of being able now to observe a pleasingly realistic model
behavior. We used the model to predict how the trend of
a growing number of CPU cores will affect the ability of
software routers to deal with higher loads — regardless if it
is due to the growing speed of single network links or a
growing number of NICs within a software router. Our results
also revealed that in certain scenarios software routers have
free resources, which could be used for more advanced packet
processing, such as encryption.

Our plans for the future comprise to refine our resource-
constrained software router model in terms of the relevant
details. Therefore, we will need to carry out more fine grained
measurements, modeling, and simulation. The measurement
and simulation of the packet sojourn time will be one of
the next steps to analyze the latency behaviour of a software
router. In addition to our existing black-box measurements, we
want to look into the routing software using code inspection
and profiling. We hope to be able to identify the performance-
limiting factors and bottlenecks of existing software routers as
well as to predict effects caused by changes and optimizations
in the router software.

ACKNOWLEDGMENTS

This research has been supported by the Deutsche For-
schungsgemeinschaft (DFG; German Research Foundation)
as part of the MEMPHIS project (GZ: WO 722/6-1). We
also would like to acknowledge the valuable contributions
through numerous in-depth discussions from our colleagues
Dr. Klaus-Dieter Heidtmann, Andrey Kolesnikov, Alexander
Beifu, Lothar Braun, and Thomas Schultz.

REFERENCES

[1] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A. Corréa,
S. Cunha de Lucena, and R. Raszuk, “Revisiting Routing Control
Platforms with the Eyes and Muscles of Software-Defined Networking,”
in 1st Workshop on Hot Topics in Software Defined Networks (HotSDN),
August 2012.

[2] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting
Parallelism To Scale Software Routers,” in 22nd ACM Symposium on
Operating Systems Principles (SOSP), October 2009.

[3] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-
Accelerated Software Router,” ACM SIGCOMM Computer Communi-
cation Review, vol. 41, no. 4, August 2011.

[4] F. Fusco and L. Deri, “High Speed Network Traffic Analysis with
Commodity Multi-core Systems,” in Internet Measurement Conference,
November 2010, pp. 218-224.

[5] L. Rizzo, “Netmap: A Novel Framework for Fast Packet I/O,” in
USENIX Annual Technical Conference, April 2012.

[6] R. Chertov, S. Fahmy, and N. Shroff, “A Device-Independent Router
Model,” in 27th IEEE Conference on Computer Communications (IN-
FOCOM), April 2008, pp. 1642-1650.

[71 A. Bobrek, J. Pieper, J. Nelson, J. Paul, and D. Thomas, “Modeling
Shared Resource Contention Using a Hybrid Simulation/Analytical
Approach,” in Design, Automation and Test in Europe Conference, vol. 2,
February 2004, pp. 1144-1149.

[8] O. Sokolsky, “Resource Modeling for Embedded Systems Design,” in
2nd IEEE Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems, May 2004, pp. 99-103.

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

(30]

[31]
(32]

[33]

T. Begin, A. Brandwajn, B. Baynat, B. E. Wolfinger, and S. Fdida,
“High-level Approach to Modeling of Observed System Behavior,”
Perform. Eval., vol. 67, no. 5, pp. 386—405, May 2010.

M. Bjorkman and P. Gunningberg, “Performance Modeling of Multi-
processor Implementations of Protocols,” IEEE/ACM Transactions on
Networking, vol. 6, no. 3, pp. 262-273, June 1998.

M. Dobrescu, K. Argyraki, and S. Ratnasamy, “Toward Predictable
Performance in Software Packet-Processing Platforms,” in 9th USENIX
Conference on Networked Systems Design and Implementation (NSDI),
April 2012.

R. Bolla and R. Bruschi, “Linux Software Router: Data Plane Optimiza-
tion and Performance Evaluation,” Journal of Networks, vol. 2, no. 3,
pp. 617, June 2007.

S. Bradner and J. McQuaid, “Benchmarking Methodology for Network
Interconnect Devices,” RFC 2544 (Informational), Internet Engineering
Task Force, March 1999.

M. Handley, O. Hodson, and E. Kohler, “XORP: An Open Platform
for Network Research,” in ACM SIGCOMM Computer Communication
Review, vol. 33, no. 1, January 2003.

“Quagga Routing Suite,” http://www.nongnu.org/quagga/, (2013-05-15).
“BIRD Internet Routing Daemon,” http://bird.network.cz/, (2013-05-15).
“Vyatta,” http://www.vyatta.org/, (2013-05-15).

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The Click Modular Router,” ACM Transactions on Computer Systems
(TOCS), vol. 18, no. 3, pp. 263-297, August 2000.

G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y. Xiong, R. Gao,
and Y. Zhang, “ServerSwitch: A Programmable and High Performance
Platform for Data Center Networks,” in 8th USENIX Conference on
Networked Systems Design and Implementation, April 2011.

“Open vSwitch,” http://openvswitch.org/, (2013-05-15).

H. Khosravi and T. Anderson, “Requirements for Separation of IP Con-
trol and Forwarding,” RFC 3654 (Informational), Internet Engineering
Task Force, November 2003.

Y. Mundada, R. Sherwood, and N. Feamster, “An OpenFlow Switch
Element for Click,” in Symposium on Click Modular Router, November
2009.

E. Kohler, “Click for Measurement,” UCLA Computer Science Depart-
ment, Tech. Rep., February 2006.

T. Meyer, B. E. Wolfinger, S. Heckmiiller, and A. Abdollahpouri,
“Extensible and Realistic Modeling of Resource Contention in Resource-
Constrained Nodes,” in International Symposium on Performance Eval-
uation of Computer and Telecommunication Systems (SPECTS), July
2013.

J. Pan and R. Jian, “A Survey of Network Simulation Tools: Current
Status and Future Developments,” Washington University in St. Louis,
Tech. Rep., November 2008.

E. Weingirtner, H. vom Lehn, and K. Wehrle, “A Performance Compar-
ison of Recent Network Simulators,” in IEEE International Conference
on Communications (ICC), June 2009, pp. 1-5.

B. Mutnury, F. Paglia, J. Mobley, G. Singh, and R. Bellomio, “QuickPath
Interconnect (QPI) Design and Analysis in High Speed Servers,” in 19th
IEEE Conference on Electrical Performance of Electronic Packaging
and Systems (EPEPS), October 2010, pp. 265-268.

C. Xu, X. Chen, R. P. Dick, and Z. M. Mao, “Cache Contention
and Application Performance Prediction for Multi-core Systems,” in
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), March 2010, pp. 76-86.

S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing Shared
Resource Contention in Multicore Processors via Scheduling,” in 15th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), New York, USA, March
2010, pp. 129-142.

R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. Gavali, D. Jes-
persen, K. Taylor, and R. Biswas, “Performance Impact of Resource
Contention in Multicore Systems,” in [EEE International Symposium
on Parallel Distributed Processing (IPDPS), April 2010, pp. 1-12.

J. D. Little, “A Proof for the Queuing Formula: L= AW,” Operations
research, vol. 9, no. 3, pp. 383-387, May 1961.

“MEMPHIS Project,” http://www.informatik.uni-hamburg.de/memphis,
(2013-05-15).

A. Kolesnikov, “UniLoG: A Unified Load Generation Tool,” in Measure-
ment, Modelling, and Evaluation of Computing Systems and Depend-
ability and Fault Tolerance, ser. Lecture Notes in Computer Science,
J. Schmitt, Ed., March 2012, vol. 7201, pp. 253-257.

