
Network security and all iLabs
Modern cryptography for communications security

part 1

Benjamin Hof
hof@in.tum.de

Lehrstuhl für Netzarchitekturen und Netzdienste
Fakultät für Informatik

Technische Universität München

Cryptography – 16ws

1 / 34

Outline

Cryptography

Symmetric setting

2 / 34

Outline

Cryptography

Symmetric setting

3 / 34

Scope

Focus on:
I modern cryptography
I methods used in communications security

Based on: Introduction to modern cryptography, Katz and Lindell,
2nd edition, 2015.

4 / 34

Communication

by Melissa Elliott

https://twitter.com/0xabad1dea/status/400676797874208768

5 / 34

What we are concerned with

Alice Bob“Let’s meet up at 9!”

BfV

Roens/Wikipedia. CC-by-sa 2.0

Eve

“Let’s meet up at 9!”

passive attack: eavesdropping
We want to provide confidentiality!

Mallory

“This will not be on the exam!”

active attack: message modification or forgery
We want to provide message authentication!

6 / 34

What we are concerned with

Alice Bob“Let’s meet up at 9!”

BfV

Roens/Wikipedia. CC-by-sa 2.0

Eve

“Let’s meet up at 9!”

passive attack: eavesdropping
We want to provide confidentiality!

Mallory

“This will not be on the exam!”

active attack: message modification or forgery
We want to provide message authentication!

6 / 34

What we are concerned with

Alice Bob

“Let’s meet up at 9!”

BfV

Roens/Wikipedia. CC-by-sa 2.0

Eve

“Let’s meet up at 9!”

passive attack: eavesdropping
We want to provide confidentiality!

Mallory

“This will not be on the exam!”

active attack: message modification or forgery
We want to provide message authentication!

6 / 34

What we are concerned with

Alice Bob

“Let’s meet up at 9!”

BfV

Roens/Wikipedia. CC-by-sa 2.0

Eve

“Let’s meet up at 9!”

passive attack: eavesdropping
We want to provide confidentiality!

Mallory

“This will not be on the exam!”

active attack: message modification or forgery
We want to provide message authentication!

6 / 34

Limitations

I cryptography is typically bypassed, not broken
I not applied correctly
I not implemented correctly
I subverted

No protection of information about the communication.
I existence
I time
I extent
I partners

7 / 34

Kerckhoffs’ principle

Security should only depend on secrecy of the key, not the
secrecy of the system.

I key easier to keep secret
I change
I compatibility

No security by obscurity.
I scrutiny
I standards
I reverse engineering

8 / 34

Another principle as a side note

The system should be usable easily.
I Kerckhoffs actually postulated 6 principles
I this one got somewhat forgotten
I considered uncontroversial by Kerckhoffs
I starting to be rediscovered in design of secure applications and

libraries

Example
Signal, NaCl

9 / 34

What should secure encryption guarantee?

It should be impossible for the attacker to

I recover the key.
I recover the entire plaintext from the ciphertext.
I recover any character of the plaintext from the ciphertext.

Regardless of any information an attacker already has, a ciphertext
should leak no additional information about the underlying plaintext.

10 / 34

What should secure encryption guarantee?

It should be impossible for the attacker to
I recover the key.
I recover the entire plaintext from the ciphertext.
I recover any character of the plaintext from the ciphertext.

Regardless of any information an attacker already has, a ciphertext
should leak no additional information about the underlying plaintext.

10 / 34

What should secure encryption guarantee?

It should be impossible for the attacker to
I recover the key.
I recover the entire plaintext from the ciphertext.
I recover any character of the plaintext from the ciphertext.

Regardless of any information an attacker already has, a ciphertext
should leak no additional information about the underlying plaintext.

10 / 34

Modern cryptography

relies on
I formal definitions
I precisely defined assumptions
I mathematical proofs

Reductionist security arguments, the proofs, require to formulate
assumptions explicitly.

11 / 34

A definition of security

A scheme is secure, if any probabilistic polynomial time adversary
succeeds in breaking the scheme with at most negligible probability.

Negligible
For every polynomial p and for all sufficiently large values of n:

f (n) <
1

p(n)

e.g., f (n) = 1
2n

Church-Turing Hypothesis
We believe polynomial time models all computers.

12 / 34

Our goals

symmetric (secret-key)

I confidentiality
I authenticity

(as in: message integrity)

asymmetric (public-key)

I confidentiality
I authenticity
I key exchange

Something providing confidentiality generally makes no statement
whatsoever about authenticity.

13 / 34

Motivation

What does a perfectly encrypted message look like?

14 / 34

Uniform distribution

P : U → [0, 1]

∑
x∈U

P(x) = 1

∀x ∈ U : P(x) = 1
|U|

15 / 34

Randomness

I required to do any cryptography at all
I somewhat difficult to get in a computer (deterministic!)
I required to be cryptographically secure: indistiguishable from

truly random
I not provided in programming languages

Example
used to generate keys or other information unkown to any other
parties

16 / 34

Collecting unpredictable bits

I physical phenomena
I time between emission of particles during radioactive decay
I thermal noise from a semiconductor diode or resistor

I software-based
I elapsed time between keystrokes or mouse movement
I packet interarrival times

I attacker must not be able to guess/influence the collected
values

1. collect pool of high-entropy data
2. process into sequence of nearly independent and unbiased bits

17 / 34

Pseudo-random generator

G : {0, 1}s → {0, 1}n, n� s

18 / 34

Outline

Cryptography

Symmetric setting

19 / 34

Symmetric encryption scheme

1. k ← Gen(1n), security parameter 1n

2. c ← Enck(m), m ∈ {0, 1}∗

3. m := Deck(c)

I provide confidentiality
I definition of security: chosen-plaintext attack (CPA)

Cryptography uses theoretical attack games to analyze and
formalize security.

C: challenger, ← means non-deterministic,
A: adversary := means deterministic

20 / 34

The eavesdropping experiment

C A

k ← Gen(1n) input 1n

b ← {0, 1}
c ← Enck(mb)

output b′

m0, m1

c

I A succeeds, iff b = b′

21 / 34

The eavesdropping experiment

C A

k ← Gen(1n) input 1n

b ← {0, 1}
c ← Enck(mb)

output b′

m0, m1

c

I A succeeds, iff b = b′

21 / 34

Discussion of the eavesdropping experiment

I |m0| = |m1|
I probabilistic polynomial time algorithms

I success probability should be 0.5 + negligible
I if so, Enc has indistinguishable encryptions in the presence of

an eavesdropper

22 / 34

Pseudorandom permutation

F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

I Fk(x) and F−1
k (y) efficiently computable

I Fk be indistinguishable from uniform permutation
I adversary may have access to F−1

We can assume that all inputs and the output have the same length.

23 / 34

A block cipher

Example
I fixed key length and block length
I chop m into 128 bit blocks

m k

AES

c

128 bit

Does this function survive the eavesdropping experiment?

24 / 34

Chosen-plaintext attack
C A

k ← Gen(1n) input 1n

c ← Enck(m)

...
...

b ← {0, 1}

m

c

m0, m1

Enck (mb)

C (cont’d) A

c ← Enck(m)

...
...

m

c

output bit b′

25 / 34

Chosen-plaintext attack
C A

k ← Gen(1n) input 1n

c ← Enck(m)

...
...

b ← {0, 1}

m

c

m0, m1

Enck (mb)

C (cont’d) A

c ← Enck(m)

...
...

m

c

output bit b′

25 / 34

Chosen-plaintext attack
C A

k ← Gen(1n) input 1n

c ← Enck(m)

...
...

b ← {0, 1}

m

c

m0, m1

Enck (mb)

C (cont’d) A

c ← Enck(m)

...
...

m

c

output bit b′

25 / 34

Chosen-plaintext attack
C A

k ← Gen(1n) input 1n

c ← Enck(m)

...
...

b ← {0, 1}

m

c

m0, m1

Enck (mb)

C (cont’d) A

c ← Enck(m)

...
...

m

c

output bit b′

25 / 34

Chosen-plaintext attack
C A

k ← Gen(1n) input 1n

c ← Enck(m)

...
...

b ← {0, 1}

m

c

m0, m1

Enck (mb)

C (cont’d) A

c ← Enck(m)

...
...

m

c

output bit b′

25 / 34

Discussion of CPA

I Enc is secure under chosen-plaintext attack
I again, messages must have same length
I multiple-use key
I non-deterministic (e. g. random initialization vector) or state
I block cipher requires operation mode, e. g.: counter (CTR),

output-feedback (OFB), . . .

26 / 34

Example constructions: counter mode
Example

I randomised AES counter mode (AES-CTR$)
I choose nonce r ← {0, 1}128, key k ← {0, 1}128

I great if you have dedicated circuits for AES, else vulnerable to
timing attacks

r AES k

m0 ⊕

c0

r + 1 AES k

m1 ⊕

c1 · · ·

complete ciphertext c := (r , c0, c1, · · ·)
27 / 34

Example constructions: stream ciphers

Example
A modern stream cipher, fast in software:

96 bit nonce 128 bit key32 bit initial counter

ChaCha

⊕plaintext

ciphertext

keystream

28 / 34

Message authentication code (MAC)

1. k ← Gen(1n), security parameter 1n

2. t ← Mack(m), m ∈ {0, 1}∗

3. b := Vrfyk(m, t)

b = 1 means valid, b = 0 invalid

I transmit 〈m, t〉
I tag t is a short authenticator
I message authenticity ⇔ integrity
I detect tampering
I no protection against replay
I “existentially unforgeable”
I security definition: adaptive chosen-message attack

29 / 34

Adaptive chosen-message attack

C A

k ← Gen(1n)

input 1n

t ← Mack(m)

...
...

output 〈m′, t ′〉

m

〈m, t〉

I let Q be the set of all queries m
I A succeeds, iff Vrfyk(m′, t ′) = 1 and m′ /∈ Q

30 / 34

Used in practice

Example
I HMAC based on hash functions
I CMAC based on cipher block chaining mode (CBC)
I authenticated encryption modes

31 / 34

Example: side-channel attack

How does tag verification work and how to implement tag
comparison correctly?

32 / 34

Recap: secret-key cryptography

I attacker power: probabilistic polynomial time
I confidentiality defined as IND-CPA:

encryption, e. g. AES-CTR$
I message authentication defined as existentially unforgeable

under adaptive chosen-message attack:
message authentication codes, e. g. HMAC-SHA2

I authenticated encryption modes

33 / 34

Combining confidentiality and authentication

I encrypt-then-authenticate is generally secure:
c ← Enck1(m), t ← Mack2(c)
transmit: 〈c, t〉

I authenticated encryption is also a good choice:
e. g. offset codebook (OCB), Galois counter mode (GCM)
c, t ← AEADenc

k (ad , m)
m := AEADdec

k (ad , c, t) or verification failure

34 / 34

	Cryptography
	Symmetric setting

