Network Security (NetSec)

IN2101 - WS 16/17

Prof. Dr.-Ing. Georg Carle

Cornelius Diekmann

Version: November 28, 2016

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Chapter 7: Cryptographic Hash Functions and MACs Add-on

Motivation

Repetition: Cryptographic Hash Functions
Definition
Applications
Common Cryptographic Hash Functions

Repetition: Message Authentication Codes (MAC)
Definition
Application
Attack Against an Insecure MAC
Common MAC Functions

Literature

Motivation

Repetition: Cryptographic Hash Functions

Repetition: Message Authentication Codes (MAC)

Literature

Motivation

- Common practice in data communications: error detection code, to identify random errors introduced during transmission
- Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

Motivation

- Common practice in data communications: error detection code, to identify random errors introduced during transmission
- Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)
- Underlying idea of these codes: add redundancy to a message for being able to detect, or even correct transmission errors

Motivation

- Common practice in data communications: error detection code, to identify random errors introduced during transmission
- Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)
- Underlying idea of these codes: add redundancy to a message for being able to detect, or even correct transmission errors
- The error detection/correction code of choice and its parameters: trade-off between
- Computational overhead
- Increase of message length
- Probability/characteristics of errors on the transmission medium

Motivation

- Essential security goal: Data integrity
- We received message m. Has m been modified by an attacker?

Motivation

- Essential security goal: Data integrity
- We received message m. Has m been modified by an attacker?
- It is a different (and much harder!) problem to determine if m has been modified on purpose!

Motivation

- Essential security goal: Data integrity
- We received message m. Has m been modified by an attacker?
- It is a different (and much harder!) problem to determine if m has been modified on purpose!
- Consequently, we need to add a code that fulfills some additional properties which should make it computationally infeasible for an attacker to tamper with messages

Motivation

- Essential security goal: Data integrity
- We received message m. Has m been modified by an attacker?
- It is a different (and much harder!) problem to determine if m has been modified on purpose!
- Consequently, we need to add a code that fulfills some additional properties which should make it computationally infeasible for an attacker to tamper with messages
- Outline:

1. Repetition of Cryptographic Hash Functions
2. Repetition of Message Authentication Codes

Motivation

Repetition: Cryptographic Hash Functions

Definition

Applications

Common Cryptographic Hash Functions

Repetition: Message Authentication Codes (MAC)

Literature

Disclaimer

- Definition of Hash functions and MACs: Chapter 6 Modern Cryptography is authoritative.
- Repetition: A function h is called a hash function if:
- Repetition: A function h is called a hash function if:
- Compression: h maps an input x of arbitrary length to an output $h(x)$ of fixed length n : h: $\{0,1\}^{*} \rightarrow\{0,1\}^{n}$
- Ease of computation: Given h and x it is easy to compute $h(x)$
- Repetition: A function h is called a hash function if:
- Compression: h maps an input x of arbitrary length to an output $h(x)$ of fixed length n : h: $\{0,1\}^{*} \rightarrow\{0,1\}^{n}$
- Ease of computation: Given h and x it is easy to compute $h(x)$
- Repetition: A function h is called a one-way function if
- h is a hash function
- for all pre-specified outputs y, it is computationally infeasible to find an x with $h(x)=y$
- Repetition: A function h is called a hash function if:
- Compression: h maps an input x of arbitrary length to an output $h(x)$ of fixed length n : h: $\{0,1\}^{*} \rightarrow\{0,1\}^{n}$
- Ease of computation: Given h and x it is easy to compute $h(x)$
- Repetition: A function h is called a one-way function if
- h is a hash function
- for all pre-specified outputs y , it is computationally infeasible to find an x with $h(x)=y$
- Example: given a large prime number p and a primitive root g in Z_{p}^{*}

Let $\quad h(x)=g^{x} \bmod p$
Then h is a one-way function

- Repetition: A function H is called a cryptographic hash function if:
- Repetition: A function H is called a cryptographic hash function if:

1. H is a one-way function ($1^{\text {st }}$ pre-image resistance):

For all pre-specified outputs y, it is computationally infeasible to find an x with $H(x)=y$

- Repetition: A function H is called a cryptographic hash function if:

1. H is a one-way function ($1^{\text {st }}$ pre-image resistance):

For all pre-specified outputs y, it is computationally infeasible to find an x with $H(x)=y$
2. $2^{\text {nd }}$ pre-image resistance:

Given x it is computationally infeasible to find any second input x^{\prime} with $x \neq x$ ' such that $H(x)=H\left(x^{\prime}\right)$
Note: This property is very important for digital signatures.

- Repetition: A function H is called a cryptographic hash function if:

1. H is a one-way function ($1^{\text {st }}$ pre-image resistance):

For all pre-specified outputs y, it is computationally infeasible to find an x with $H(x)=y$
2. $2^{\text {nd }}$ pre-image resistance:

Given x it is computationally infeasible to find any second input x^{\prime} with $x \neq x$ ' such that $H(x)=H\left(x^{\prime}\right)$
Note: This property is very important for digital signatures.
3. Collision resistance:

It is computationally infeasible to find any pair $\left(x, x^{\prime}\right)$ with $x \neq x^{\prime}$ such that $H(x)=H\left(x^{\prime}\right)$

Definition

Comparsion to CRC:

- In networking there are codes for error detection.
- Common example: Cyclic redundancy checks (CRC)
- Based on binary polynomial division with Input / CRC divisor.
- The remainder of the division is the resulting error detection code.
- CRC is a fast compression function.

Definition

Comparsion to CRC:

- In networking there are codes for error detection.
- Common example: Cyclic redundancy checks (CRC)
- Based on binary polynomial division with Input / CRC divisor.
- The remainder of the division is the resulting error detection code.
- CRC is a fast compression function.
- Why not use CRC?

Comparsion to CRC:

- In networking there are codes for error detection.
- Common example: Cyclic redundancy checks (CRC)
- Based on binary polynomial division with Input / CRC divisor.
- The remainder of the division is the resulting error detection code.
- CRC is a fast compression function.
- Why not use CRC?
- CRC is not a cryptographic hash function
- CRC does not provide $2^{\text {nd }}$ pre-image resistance and collision resistance
- CRC is additive
- If $x^{\prime}=x \oplus \triangle$, then $\operatorname{CRC}\left(x^{\prime}\right)=C R C(x) \oplus C R C(\triangle)$
- CRC is useful for protecting against noisy channels
- But not against intentional manipulation

Applications

Can Hashing ensure Integrity?

Case:
No attacker
Alice (A)

Case:
With attacker

Applications

Can Hashing ensure Integrity?

Bob (B) ok

- Applying a hash function is not sufficient to secure a message.
- $H(m)$ needs to be protected.

Applications

Can Hashing ensure Integrity?

- Simply hashing a message and appending the hash is not secure against intentional manipulation (compare with CRC)!

Can Hashing ensure Integrity?

- Simply hashing a message and appending the hash is not secure against intentional manipulation (compare with CRC)!
- Solution:
- Include a secret in the hash.
- Since the secret key k is unknown to the attacker, the attacker cannot compute $M A C_{K}\left(m^{\prime}\right)$ (see next section).

Applications

Other applications which require some caution:

- Pseudo-random number generation
- The output of a cryptographic hash function is assumed to be uniformly distributed
- Although this property has not been proven in a mathematical sense for common cryptographic hash functions, such as MD5, SHA-1, it is often used
- Start with random seed, then hash
- $b_{0}=$ seed
- $b_{i+1}=H\left(b_{i} \mid\right.$ seed $)$

Applications

Other applications which require some caution:

- Pseudo-random number generation
- The output of a cryptographic hash function is assumed to be uniformly distributed
- Although this property has not been proven in a mathematical sense for common cryptographic hash functions, such as MD5, SHA-1, it is often used
- Start with random seed, then hash

$$
\text { - } b_{0}=\text { seed }
$$

- $b_{i+1}=H\left(b_{i} \mid\right.$ seed $)$
- Encryption
- Remember: Output Feedback Mode (OFB) - encryption by generating a pseudo random stream, and performing XOR with plain text
- Generate a key stream as follow:
- $k_{0}=H\left(K_{A, B} \mid I V\right)$
- $k_{i+1}=H\left(K_{A, B} \mid k_{i}\right)$
- The plain text is XORed with the key stream to obtain the cipher text.

Applications

- Authentication with a challenge-response mechanism

Applications

- Authentication with a challenge-response mechanism

- Given only Alice and Bob know the shared secret $K_{A, B}$, Alice knows that an attacker is not able to compute $H\left(K_{A, B}, r_{A}\right)$. Therefore the response must be from Bob.
- Mutual authentication can be achieved by a 2nd exchange in opposite direction
- Authentication with a challenge-response mechanism

- Given only Alice and Bob know the shared secret $K_{A, B}$, Alice knows that an attacker is not able to compute $H\left(K_{A, B}, r_{A}\right)$. Therefore the response must be from Bob.
- Mutual authentication can be achieved by a 2nd exchange in opposite direction
- This type of authentication is based on a authentication method called challengeresponse and used e.g. by HTTP digest authentication
- It avoids transmitting the transport of the shared key (e.g. password) in clear text
- Authentication with a challenge-response mechanism

- Given only Alice and Bob know the shared secret $K_{A, B}$, Alice knows that an attacker is not able to compute $H\left(K_{A, B}, r_{A}\right)$. Therefore the response must be from Bob.
- Mutual authentication can be achieved by a 2nd exchange in opposite direction
- This type of authentication is based on a authentication method called challengeresponse and used e.g. by HTTP digest authentication
- It avoids transmitting the transport of the shared key (e.g. password) in clear text
- Another type of a challenge-response would be, e.g., if Bob signs the challenge " r_{A} " with his private key
- Note that this kind of authentication does not include negotiation of a session key.
- Protocols for key negotiation will be discussed in subsequent chapters.

Common Cryptographic Hash Functions

- Cryptographic Hash Functions:

Common Cryptographic Hash Functions

- Cryptographic Hash Functions:
- Message Digest 5 (MD5): Considered broken.
- Invented by R. Rivest, Successor to MD4. Considered broken.

Common Cryptographic Hash Functions

- Cryptographic Hash Functions:
- Message Digest 5 (MD5): Considered broken.
- Invented by R. Rivest, Successor to MD4. Considered broken.
- Secure Hash Algorithm 1 (SHA-1): Considered broken.
- Old NIST standard.
- Invented by the National Security Agency (NSA). Inspired by MD4.

Common Cryptographic Hash Functions

- Cryptographic Hash Functions:
- Message Digest 5 (MD5): Considered broken.
- Invented by R. Rivest, Successor to MD4. Considered broken.
- Secure Hash Algorithm 1 (SHA-1): Considered broken.
- Old NIST standard.
- Invented by the National Security Agency (NSA). Inspired by MD4.
- Secure Hash Algorithm 3 (SHA-3):
- Current NIST standard (since October 2012).
- Keccak algorithm by G. Bertoni, J. Daemen, M. Peeters und G. Van Assche.

Motivation

Repetition: Cryptographic Hash Functions

Repetition: Message Authentication Codes (MAC)

Definition

Application
Attack Against an Insecure MAC
Common MAC Functions

Literature

- (Cryptographic) hashes alone don't protect against tampering!
- MACs include a secret key K in addition to the message m they aim to protect.
- Only the persons with knowledge of K can (re-)compute the MAC.
- (Cryptographic) hashes alone don't protect against tampering!
- MACs include a secret key K in addition to the message m they aim to protect.
- Only the persons with knowledge of K can (re-)compute the MAC.
- Procedure:
- Sender s computes $M A C_{K}(m)$.
- $<m, M A C_{K}(m)>$ is sent to the receiver r.
- r receives $<m^{\prime}, M A C_{K}(m)>$.
- r can compute $M A C_{K}\left(m^{\prime}\right)$ based on his knowledge of K and m^{\prime}.
- If $M A C_{K}\left(m^{\prime}\right)=M A C_{K}(m)$, he knows that $m=m^{\prime}$, since nobody else had knowledge of K.
- (Cryptographic) hashes alone don't protect against tampering!
- MACs include a secret key K in addition to the message m they aim to protect.
- Only the persons with knowledge of K can (re-)compute the MAC.
- Procedure:
- Sender s computes $M A C_{K}(m)$.
- $<m, M A C_{K}(m)>$ is sent to the receiver r.
- r receives $<m^{\prime}, M A C_{K}(m)>$.
- r can compute $M A C_{K}\left(m^{\prime}\right)$ based on his knowledge of K and m^{\prime}.
- If $M A C_{K}\left(m^{\prime}\right)=M A C_{K}(m)$, he knows that $m=m^{\prime}$, since nobody else had knowledge of K.
- MACs:
- Prove message authenticity \leftrightarrow integrity.
- Do detect tampering.
- Can't be forged.
- Can be replayed.

Alice (A)

Bob (B)

$$
\mathrm{m}, M A C_{K}(m)
$$

- Alice protects/authenticates her message m with a MAC function
- Alice has to send m and the MAC value to Bob.

Alice (A)

Bob (B)

$\mathrm{m}, M A C_{K}(m)$

- Alice protects/authenticates her message m with a MAC function
- Alice has to send m and the MAC value to Bob.
- Examples for potential MAC constructions:
- HMAC
- CBC-MAC / CMAC
- $E n c_{K}(\mathrm{~h}(\mathrm{~m})) \rightarrow \mathrm{NO}!$

Alice (A)

Bob (B)

$$
\mathrm{m}, M A C_{K}(m)
$$

- Bob can verify the MAC code by using the shared key:
- He reads Alice's $M A C_{K}(m)$
- He can check if his $M A C_{K}\left(m^{\prime}\right)$ matches the one sent by Alice.
- Only Alice and Bob who know K can do this.

Alice (A)

share symmetric key K

Bob (B)

$$
\mathrm{m}, M A C_{K}(m)
$$

- Bob can verify the MAC code by using the shared key:
- He reads Alice's $M A C_{K}(m)$
- He can check if his $M A C_{K}\left(m^{\prime}\right)$ matches the one sent by Alice.
- Only Alice and Bob who know K can do this.
- Take home message: for authenticity checks the receiver needs to know m and a secure modification check value that it can compare.
- Think about it: Why is $E n c_{K}(m)$ usually not sufficient?

Application

- Reasons for constructing MACs from cryptographic hash functions:
- Cryptographic hash functions generally execute faster than symmetric block ciphers (Note: with AES this isn't much of a problem today)
- There are no export restrictions to cryptographic hash functions

Application

- Reasons for constructing MACs from cryptographic hash functions:
- Cryptographic hash functions generally execute faster than symmetric block ciphers (Note: with AES this isn't much of a problem today)
- There are no export restrictions to cryptographic hash functions
- Basic idea: "mix" a secret key K with the input and compute a hash value.
- The assumption that an attacker needs to know K to produce a valid MAC nevertheless raises some cryptographic concern:
- The construction $H(K \| m)$ is not secure
- The construction $H(m \| K)$ is not secure
- The construction $H(K\|p\| m \| K)$ with p denoting an additional padding field does not offer sufficient security

Attack Against an Insecure MAC

- For illustrative purposes, consider the following MAC definition:
- Input: message $m=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with x_{i} being 128-bit values, and key K
- Compute $\triangle(m):=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{n}$ with \oplus denoting XOR
- Output: $M A C_{K}(m):=E n c_{K}(\triangle(m))$ with $E n c_{K}(x)$ denoting AES encryption

Attack Against an Insecure MAC

- For illustrative purposes, consider the following MAC definition:
- Input: message $m=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with x_{i} being 128-bit values, and key K
- Compute $\triangle(m):=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{n}$ with \oplus denoting XOR
- Output: $M A C_{K}(m):=E n c_{K}(\triangle(m))$ with $E n c_{K}(x)$ denoting AES encryption
- The key and the MAC length are both 128 bit, so we would expect an effort of about 2^{127} operations to break the MAC (being able to forge messages).

Attack Against an Insecure MAC

- For illustrative purposes, consider the following MAC definition:
- Input: message $m=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with x_{i} being 128-bit values, and key K
- Compute $\triangle(m):=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{n}$ with \oplus denoting XOR
- Output: $M A C_{K}(m):=E n c_{K}(\triangle(m))$ with $E n c_{K}(x)$ denoting AES encryption
- The key and the MAC length are both 128 bit, so we would expect an effort of about 2^{127} operations to break the MAC (being able to forge messages).
- Unfortunately the MAC definition is insecure:
- Attacker Eve wants to forge messages. Eve does not know K.
- Alice and Bob exchange a message (m, MAC $C_{K}(m)$), Eve eavesdrops it.
- Eve can construct a message m ' that yields the same MAC:

Attack Against an Insecure MAC

- For illustrative purposes, consider the following MAC definition:
- Input: message $m=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with x_{i} being 128-bit values, and key K
- Compute $\triangle(m):=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{n}$ with \oplus denoting XOR
- Output: $M A C_{K}(m):=E n c_{K}(\triangle(m))$ with $E n c_{K}(x)$ denoting AES encryption
- The key and the MAC length are both 128 bit, so we would expect an effort of about 2^{127} operations to break the MAC (being able to forge messages).
- Unfortunately the MAC definition is insecure:
- Attacker Eve wants to forge messages. Eve does not know K.
- Alice and Bob exchange a message (m, MAC $K_{K}(m)$), Eve eavesdrops it.
- Eve can construct a message m' that yields the same MAC:
- Let $y_{1}, y_{2}, \ldots, y_{n-1}$ be arbitrary 128-bit values
- Define $y_{\boldsymbol{n}}:=y_{1} \oplus y_{2} \oplus \ldots \oplus y_{n-1} \oplus \triangle(m)$
- This $\boldsymbol{y}_{\boldsymbol{n}}$ allows to construct the new message $m^{\prime}:=\left(y_{1}, y_{2}, \ldots, \boldsymbol{y}_{\boldsymbol{n}}\right)$

Attack Against an Insecure MAC

- For illustrative purposes, consider the following MAC definition:
- Input: message $m=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with x_{i} being 128-bit values, and key K
- Compute $\triangle(m):=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{n}$ with \oplus denoting XOR
- Output: $M A C_{K}(m):=E n c_{K}(\triangle(m))$ with $E n c_{K}(x)$ denoting AES encryption
- The key and the MAC length are both 128 bit, so we would expect an effort of about 2^{127} operations to break the MAC (being able to forge messages).
- Unfortunately the MAC definition is insecure:
- Attacker Eve wants to forge messages. Eve does not know K.
- Alice and Bob exchange a message (m, MAC $K_{K}(m)$), Eve eavesdrops it.
- Eve can construct a message m' that yields the same MAC:
- Let $y_{1}, y_{2}, \ldots, y_{n-1}$ be arbitrary 128 -bit values
- Define $y_{\boldsymbol{n}}:=y_{1} \oplus y_{2} \oplus \ldots \oplus y_{n-1} \oplus \triangle(m)$
- This $\boldsymbol{y}_{\boldsymbol{n}}$ allows to construct the new message $m^{\prime}:=\left(y_{1}, y_{2}, \ldots, \boldsymbol{y}_{\boldsymbol{n}}\right)$
- Therefore, $M A C_{K}\left(m^{\prime}\right)=\operatorname{Enc}\left(\triangle\left(m^{\prime}\right)\right)$

$$
\begin{aligned}
& \left.=E n c_{K}\left(y_{1} \oplus y_{2} \oplus \ldots \oplus y_{n-1} \oplus y_{n}\right)\right) \\
& \left.=E n c_{K}\left(y_{1} \oplus y_{2} \oplus \ldots \oplus y_{n-1} \oplus y_{1} \oplus y_{2} \oplus \ldots \oplus y_{n-1} \oplus \triangle(m)\right)\right) \\
& \left.=E n c_{K}(\triangle(m))\right)=M A C_{K}(m)
\end{aligned}
$$

Attack Against an Insecure MAC

- For illustrative purposes, consider the following MAC definition:
- Input: message $m=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with x_{i} being 128-bit values, and key K
- Compute $\triangle(m):=x_{1} \oplus x_{2} \oplus \ldots \oplus x_{n}$ with \oplus denoting XOR
- Output: $M A C_{K}(m):=E n c_{K}(\triangle(m))$ with $E n c_{K}(x)$ denoting AES encryption
- The key and the MAC length are both 128 bit, so we would expect an effort of about 2^{127} operations to break the MAC (being able to forge messages).
- Unfortunately the MAC definition is insecure:
- Attacker Eve wants to forge messages. Eve does not know K.
- Alice and Bob exchange a message (m, MAC $K_{K}(m)$), Eve eavesdrops it.
- Eve can construct a message m' that yields the same MAC:
- Let $y_{1}, y_{2}, \ldots, y_{n-1}$ be arbitrary 128 -bit values
- Define $y_{\boldsymbol{n}}:=y_{1} \oplus y_{2} \oplus \ldots \oplus y_{n-1} \oplus \triangle(m)$
- This $\boldsymbol{y}_{\boldsymbol{n}}$ allows to construct the new message $m^{\prime}:=\left(y_{1}, y_{2}, \ldots, \boldsymbol{y}_{\boldsymbol{n}}\right)$
- Therefore, $M A C_{K}\left(m^{\prime}\right)=\operatorname{Enc}\left(\triangle\left(m^{\prime}\right)\right)$

$$
\begin{aligned}
& \left.=E n c_{K}\left(y_{1} \oplus y_{2} \oplus \ldots \oplus y_{n-1} \oplus y_{n}\right)\right) \\
& \left.=E n c_{K}\left(y_{1} \oplus y_{2} \oplus \ldots \oplus y_{n-1} \oplus y_{1} \oplus y_{2} \oplus \ldots \oplus y_{n-1} \oplus \triangle(m)\right)\right) \\
& \left.=E n c_{K}(\triangle(m))\right)=M A C_{K}(m)
\end{aligned}
$$

- Therefore, $M A C_{k}(m)$ is a valid MAC for m^{\prime}, since $\triangle m=\triangle m^{\prime}$
- When Bob receives (m ', $M A C_{K}(m)$) from Eve, he will accept it as being originated from Alice.

Common MAC Functions

- MAC Functions:
- Hash MAC (HMAC):
- Standardized in RFC 2104.
- Used in conjunction with cryptographic hash functions (e.g. SHA-3)
- See following slides.

Common MAC Functions

- MAC Functions:
- Hash MAC (HMAC):
- Standardized in RFC 2104.
- Used in conjunction with cryptographic hash functions (e.g. SHA-3)
- See following slides.
- Cipher Block Chaining MAC (CBC-MAC):
- Recommended by NIST.
- Based on cbc mode encryption (e.g. with AES).
- See following slides.

Common MAC Functions

- MAC Functions:
- Hash MAC (HMAC):
- Standardized in RFC 2104.
- Used in conjunction with cryptographic hash functions (e.g. SHA-3)
- See following slides.
- Cipher Block Chaining MAC (CBC-MAC):
- Recommended by NIST.
- Based on cbc mode encryption (e.g. with AES).
- See following slides.
- Cipher based MAC (CMAC):
- AES-CMAC is standardized by IETF as RFC 4493 and its truncated form in RFC 4494.
- See following slides.

Common MAC Functions

- MAC Functions:
- Hash MAC (HMAC):
- Standardized in RFC 2104.
- Used in conjunction with cryptographic hash functions (e.g. SHA-3)
- See following slides.
- Cipher Block Chaining MAC (CBC-MAC):
- Recommended by NIST.
- Based on cbc mode encryption (e.g. with AES).
- See following slides.
- Cipher based MAC (CMAC):
- AES-CMAC is standardized by IETF as RFC 4493 and its truncated form in RFC 4494.
- See following slides.
- Poly1305:
- Standardized in RFC 7539.
- The construction $H(K / m / K)$, called prefix-suffix mode, has been used for a while.
- See for example RFC 1828
- It has been also used in earlier implementations of the Secure Socket Layer (SSL) protocol (until SSL 3.0)
- However, it is now considered vulnerable to attack by the cryptographic community.
- The construction $H(K / m / K)$, called prefix-suffix mode, has been used for a while.
- See for example RFC 1828
- It has been also used in earlier implementations of the Secure Socket Layer (SSL) protocol (until SSL 3.0)
- However, it is now considered vulnerable to attack by the cryptographic community.
- The most used construction is HMAC: H ($K \oplus$ opad / $H(K \oplus i p a d / m)$)
- The length of the key K is first extended to the block length required for the input of the hash function H by appending zero bytes.
- Then it is xor'ed respectively with two constants opad and ipad
- The hash function is applied twice in a nested way.
- Currently no attacks have been discovered on this MAC function.

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

- A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last ciphertext block or a part of it as the MAC:

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

- A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last ciphertext block or a part of it as the MAC:

for some publicly known, fixed, IV.
- A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last ciphertext block or a part of it as the MAC:

- $\mathrm{MAC}_{k}(m)=c_{n} \quad$ for some publicly known, fixed, $I V$.
- This MAC needs not to be mixed with a secret any further, as it has already been produced using a shared secret K.
- This scheme works with any block cipher (AES, Twofish, 3DES, ...)
- It is used, e.g., for IEEE 802.11 (WLAN) WPA2, many modes in SSL / IPSec use some CBC-MAC construction.

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

- CBC-MAC security
- CBC-MAC must NOT be used with the same key as for the encryption
- In particular, if CBC mode is used for encryption, and CBC-MAC for authenticity with the same key, the MAC will be equal to the last cipher text block
- If the length of a message is unknown or no other protection exists, CBC-MAC can be prone to length extension attacks. CMAC resolves the issue.

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

- CBC-MAC security
- CBC-MAC must NOT be used with the same key as for the encryption
- In particular, if CBC mode is used for encryption, and CBC-MAC for authenticity with the same key, the MAC will be equal to the last cipher text block
- If the length of a message is unknown or no other protection exists, CBC-MAC can be prone to length extension attacks. CMAC resolves the issue.
- CBC-MAC performance
- Older symmetric block ciphers (such as DES) require more computing effort than dedicated cryptographic hash functions, e.g. MD5, SHA-1 therefore, these schemes are considered to be slower.
- However, newer symmetric block ciphers (AES) is faster than conventional cryptographic hash functions.
- Therefore, AES-CBC-MAC is becoming popular.

Common MAC Functions: Cipher-based MACs (CMAC)

- CMAC is a modification of CBC-MAC
- Compute keys k_{1} and k_{2} from shared key k.
- Within the CBC processing
- XOR complete blocks before encryption with k_{1}
- XOR incomplete blocks before encryption with k_{2}
- k is used for the block encryption
- Output is the last encrypted block or the I most significant bits of the last block.
- XCBC-MAC (e.g. found in TLS) is a predecessor of CMAC where k_{1} and k_{2} are input to algorithm and not derived from k.

Motivation

Repetition: Cryptographic Hash Functions

Repetition: Message Authentication Codes (MAC)

Literature
(Beyond the scope of examination)

- B. Coskun, N. Memon, Confusion/Diffusion Capabilities of Some Robust Hash Functions, CISS 2006: Conference on Information Sciences and Systems
- H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed-Hashing for Message Authentication, Internet RFC 2104, February 1997.
- R. Merkle, One Way Hash Functions and DES, Proceedings of Crypto ‘89, Springer, 1989.
- Niels Ferguson, Bruce Schneier, Practical Cryptography, John Wiley \& Sons, 2003
- Peter Selinger, http://www.mscs.dal.ca/ selinger/md5collision/
- P. Metzger, IP Authentication using Keyed MD5, IETF RFC 1828, August 1995
- R. L. Rivest. The MD5 Message Digest Algorithm, Internet RFC 1321, April 1992.
- M. Robshaw. On Recent Results for MD2, MD4 and MD5, RSA Laboratories' Bulletin, No. 4, November 1996.
- Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu, Collision Search Attacks on SHA1, February 2005
- G. Yuval. How to Swindle Rabin, Cryptologia, July 1979.
- Niels Ferguson, Stefan Lucks, Bruce Schneier, et. al., Skein Specification v1.1
- http://www.skein-hash.info
- NIST (National Institute for Standards and Technology (USA)), CRYPTOGRAPHIC HASH ALGORITHM COMPETITION, http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
- G. Bertoni, J. Daemen, M. Peeters und G. Van Assche, Cryptographic Sponge Functions http://sponge.noekeon.org/CSF-0.1.pdf
- G. Bertoni, J. Daemen, M. Peeters und G. Van Assche, Keccak Reference (version 3.0), http://keccak.noekeon.org/Keccak-reference-3.0.pdf
- G. Bertoni, J. Daemen, M. Peeters und G. Van Assche, Keccak sponge function family main document, http://keccak.noekeon.org/Keccak-main-2.1.pdf

