

Network Security (NetSec)

IN2101 - WS 16/17

Prof. Dr.-Ing. Georg Carle

Cornelius Diekmann

Version: October 17, 2016

Chair of Network Architectures and Services Department of Informatics Technical University of Munich

Chapter 1: Introduction

Network InSecurity

Network "Security" offered by our Secret Services

Attacker Models

General Attacker Model

Attackers Limited by their Position in the Network

Security Goals

Security Goals Technically Defined

Threats

Threats Technically Defined

Chapter 1: Introduction

Network InSecurity

Network "Security" offered by our Secret Services

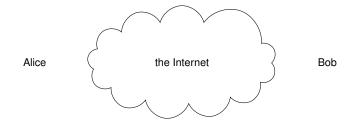
Attacker Models

Security Goals

Threats

- · By example: An Ethernet cable
- · How secure is it?

- Step 1: Obtain a knife
- · Step 2: Add RJ45 adapters



ТШТ

- · Step 3: Configure transparent ethernet bridging
- · You are now in full control of the traffic
 - read
 - modify
- Technical term: Man in the Middle (MitM)

Network "Security" offered by our Secret Services

http://lifewinning.com/submarine-cable-taps/

- Passive attacks: wiretapping,
- Active attacks: Quantum Insert, ...
- · Combined: economic espionage, ...

Chapter 1: Introduction

Network InSecurity

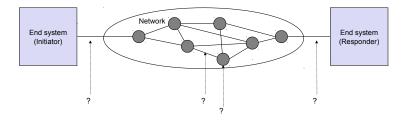
Attacker Models

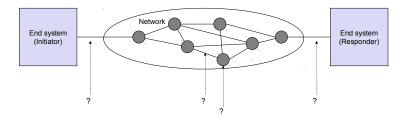
General Attacker Model

Attackers Limited by their Position in the Network

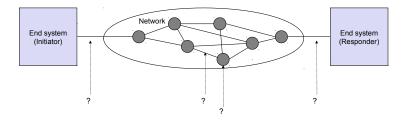
Security Goals

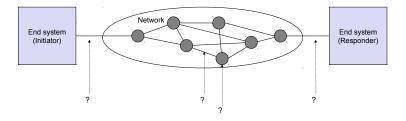
Threats


Attacker Models


- Attacking communications on the message level
- · Passive attacks:
 - Eavesdropping of messages
- Active attacks
 - all passive attacks
 - Delay
 - Replay
 - Deletion
 - Modification
 - Insertion

- The attacker is the network
- And can perform any active attack
- But cannot break cryptographic primitives
- This is called the Dolev-Yao attacker model
- If not stated otherwise, we will always assume this attacker model.


Attackers Limited by their Position in the Network



- Assume the Attacker is close to you
- · Example: You sit in a cyber cafe and accidentally connected to the attacker's hotspot
 - The attacker can perform any active attacks on you
 - · But you can bypass this attacker: Establish a secure tunnel to a server in the Internet
 - Route all your packets over the secure tunnel
 - The attacker can now perform only DOS (Denial Of Service) attacks against you

- · Assume the Attacker is close to your servers
- Example: She rented a VM on the same host machine where your virtual server is running
 - The attacker could try to perform timing attacks against you
 - By measuring how long certain operations take at your server, the attacker might be able to break a security service
 - · (only if the service is vulnerable to side channel attacks)
 - · Such measurement is usually not possible over the Internet

- · Assume the Attacker is somewhere in the Internet
- · Internet: Best effort packet switching
- · End-user has no control how packets are routed
- Are all AS/ISP trustworthy?
- · Does you ISP alter your packets?
 - · "value added service" i.e. your ISP places advertisement on the websites you are visiting
- · NSA/GCHQ/BND/... black boxes are basically everywhere

Chapter 1: Introduction

ТШ

Network InSecurity

Attacker Models

Security Goals

Security Goals Technically Defined

Threats

Security Goals Technically Defined

ТШ

- Data Integrity
 - · No improper or unauthorized change of data
- Confidentiality
 - · Concealment of information
- Availability
 - · Services should be available and function correctly
- Authenticity
 - · Entity is who she claims to be
- Accountability german: "Zurechenbarkeit"
 - · Identify the entity responsible for any communication event
- Controlled Access
 - · Only authorized entities can access certain services or information

· What is needed to support non-repudiation? ("Nicht-Abstreitbarkeit")

- · What is needed to support non-repudiation? ("Nicht-Abstreitbarkeit")
 - Accountability

· What is necessary to support accountability?

- · What is necessary to support accountability?
 - Authenticity

• What do you want to support deterrence ("Abschreckung")

- What do you want to support deterrence ("Abschreckung")
 - Accountability

· What is data origin integrity?

- · What is data origin integrity?
 - Authenticity

- · What it the difference?
- Authentication

Authorization

- · What it the difference?
- Authentication
 - · Proves who you are
 - Associated security goal: Authenticity
- Authorization
 - · Defines what you are allowed to do
 - Associated security goal: Controlled Access

- · What it the difference?
- Authentication
 - Proves who you are
 - Associated security goal: Authenticity
 - E.g. your passport
- Authorization
 - · Defines what you are allowed to do
 - · Associated security goal: Controlled Access
 - E.g. "are you on the VIP list?"

Mixing Authentication and Authorization

https://twitter.com/mikko/status/587973545797492738

My best attempt was registering to Black Hat with first name: "Staff" and last name: "Access All Areas"

Attacker Models

Security Goals

Threats

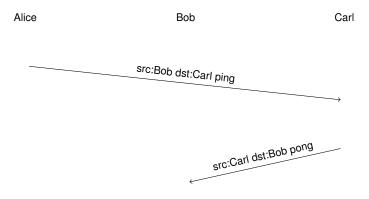
Threats Technically Defined

Threats

- Abstract Definition
 - A threat in a communication network is any possible event or sequence of actions that might lead to a violation of one or more security goals
 - · The actual realization of a threat is called an attack

Threats Technically Defined

- Masquerade
 - · An entity claims to be another entity (also called "impersonation")
- Eavesdropping
 - · An entity reads information it is not intended to read
- · Loss or Modification of (transmitted) Information
 - · Data is being altered or destroyed
- · Denial of Communication Acts (Repudiation)
 - · An entity falsely denies its participation in a communication act
- Forgery of Information
 - · An entity creates new information in the name of another entity
- · Sabotage/Denial of Service
 - Any action that aims to reduce the availability and / or correct functioning of services or systems
- Authorization Violation:
 - An entity uses a service or resources it is not intended to use



- Eavesdropping + Authorization Violation
- Example
 - Alice@Box\$./rootremoteshell \$ROUTER root@router# tcpdump | grep password
- · If Alice does not start modifying the traffic, she is a passive attacker
- Note: If not stated otherwise, we assume that attackers don't have remote code execution on our boxes

- Masquerade + Forgery of Information
- Example
 - · Alice pretends to be Bob
 - Alice@Box\$ hping3 --count 1 --spoof \$BOB --icmp --icmptype 8 \$CARL
 - · Bob gets an ICMP Echo Reply which he never requested
- · Alice is an active attacker

Example 2: IP Spoofing cont.

- Alice: 192.168.1.170
- Bob 192.168.1.227
- Carl: 192.168.1.1
- · Alice sends the spoofed packet
 - · Internet Protocol Version 4, Src: 192.168.1.227, Dst: 192.168.1.1; ICMP Echo Request
- · Carl replies to the source address specified
- Bob receives a lonely echo reply
 - Internet Protocol Version 4, Src: 192.168.1.1, Dst: 192.168.1.227; ICMP Echo Reply

192.168.1.1 192.168.1.227 ICMP 60 Echo (ping) reply id=0xcelf, seq=0/0, ttl=61

Example 3

- · Denial of Service
- Example
 - · Bob runs a webserver (http, tcp port 80) with very few memory
 - Alice floods Bob with TCP SYN packets
 - Alice@Box\$ hping3 --fast --count 42 --syn --destport 80 \$BOB
 - · Bob allocates memory to store the 42 connections in the SYN-RECEIVED state
- · Now Alice starts to deny that she is responsible for the attack
- Denial of Service + Forgery of Information + Denial of Communication Acts
- Example
 - Alice@Box\$ hping3 --fast --count 42 --rand-source --syn --destport 80 \$BOB
 - --rand-source: random spoofed source IP address

Example 3

4		Capturing from Ethernet	[Wireshark 1.12.4 (v1.12	2.4-0-gb4861da	from master-	1.12)]	- 🗆 🗙	
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>Go</u> <u>C</u> apture	Analyze Statistics Telephon	ny <u>T</u> ools <u>I</u> nternals <u>H</u> elp					
۲	o 💉 🗖 🧖 🗎 🖻	🗶 😂 🔍 🔶 🏟 😜	👍 🛃 📄 📑 🛛 🕀 🤇	Ə. Q. 🖭 🎬	🗹 畅 🐝	1		
Filte	eri		✓ Expression	Clear Apply Save				
No.	Time Sou	urce D	lestination	Protocol Length	Info			^
	736 686.042764000 56	5.10.51.117 1	192.168.1.227			YN] Seq=0 win=512		
	737 686.129344000 38					YN] Seq=0 Win=512		
	738 686.229507000 36					YN] Seq=0 Win=512		
	739 686.329714000 18					YN] Seq=0 Win=512		
	740 686.429848000 24					YN] Seq=0 Win=512		
	741 686.530802000 25					YN] Seq=0 Win=512		
	742 686.630208000 16					YN] Seq=0 Win=512		
	743 686.730401000 9.		192.168.1.227			YN] Seq=0 Win=512		
	744 686.830479000 20					YN] Seq=0 Win=512		
	745 686.930632000 23					YN] Seq=0 Win=512		
	746 687.030809000 19					YN] Seq=0 Win=512		
	747 687.130950000 11	1.148.162.200 1	192.168.1.227			YN] Seq=0 Win=512		
	748 687.230995000 22					YN] Seq=0 Win=512		
	749 687.331114000 12					YN] Seq=0 Win=512		
	750 687.431808000 19	3.202.206.237 1	L92.168.1.227	TCP 6	0 1364→80 [s	YN] Seq=0 Win=512	Len=0	

- · Why does the attack succeed?
- This is a good opportunity to refresh your knowledge about the TCP 3-way handshake

Chapter 1: Introduction

Network InSecurity

Attacker Models

Security Goals

Threats

Literature

Chapter 1: Introduction 1-32

- Matt Bishop, Introduction to Computer Security, Addison-Wesley, 2004
- · Claudia Eckert, IT-Sicherheit: Konzepte Verfahren Protokolle, Oldenbourg, 2014
- Charlie Kaufman, Radia Perlman, and Mike Speciner, *Network Security: Private Communication in a Public World (2nd Edition)*, Prentice Hall, 2002
- Matt Bishop, Computer Security: Art and Science, Addison-Wesley, 2002
- Günter Schäfer, Security in Fixed and Wireless Networks: An Introduction to Securing Data Communications, Wiley, 2004
- · Günter Schäfer, Netzsicherheit, dpunkt, 2003