
Fast and Reliable P2P Without

Breaking the Memory Budget
Ognjen Maric, DFINITY Foundation

Joint work with:

Manu Drijvers, Tim Gretler, Yotam Harchol, Tobias

Klenze, Stefan Neamtu, Yvonne-Anne Pignolet,

Rostislav Rumenov, Daniel Sharifi, Victor Shoup 1

P2P Broadcast in (Blockchain) Consensus

Casper the Friendly Finality Gadget (ETH 2.0)

GRANDPA: a Byzantine Finality Gadget
(Polkadot)

Internet Computer Consensus (ICP)

Textbook stuff, solved
problem?

2

Best-effort broadcast
Uniform broadcast
Stubborn broadcast
…

Simple problems sometimes not so simple:
Reliable, fault-tolerant broadcast w/ bounded

memory

Handling Failures: Client-Server Scenario

3

Server
Networking

Layer
Server App

Server ClientNetwork

How to handle
failures?

Drop
messages?

Backpressure
(stop production)?

Buffer
(unbounded)

?

send send

Handling Failures: P2P Broadcast Scenario

4

Sender P2P
Networking

Layer

High-level
protocol

Sender

Peer

Drop
messages?

Backpressure
(stop production)?

Buffer
(unbounded)

?

Peer

Peer

Option 1: Drop ⇒ Broadcast not
reliable!
Option 2: Backpressure ⇒ Broadcast not fault tolerant!

Option 3: Buffer ⇒ Eventually out-of-
memory (DoS)!

send send

Our Solution: Abortable Broadcast

5

Sender P2P
Networking

Layer

High-level
protocol

Sender

Peer

Peer

Peer

Key observation: protocol messages become obsolete
(e.g., through checkpointing)

send
send

abort

Idea: add explicit abort call for obsolete messages; buffer only
unaborted

Buffer unaborted

Our Solution: Abortable Broadcast

6

Sender P2P
Networking

Layer

High-level
protocol

Sender

Peer

Peer

Peer

send
send

abort

Buffer unaborted

Reliable (for unaborted messages)

Fault tolerant (no backpressure)

Bounded memory usage

assuming bounded #
of unaborted messages

Talk Outline

7

1. Abortable broadcast: interface, assumptions and guarantees

1. Our implementation of abortable broadcast

1. Evaluation & related work

Talk Outline

8

1. Abortable broadcast: interface, assumptions and guarantees

1. Our implementation of abortable broadcast

1. Evaluation & related work

Abortable Broadcast: Interface

9

Send message pool

Send logic

Send/abort
message events

Received message pool

Receive logic

Add/delete
messages

Send side Receive side

High-level
protocol

P2P

Message processor

Add/delete
messages

Process
(async)

Abortable Broadcast: Assumption

10

Send message pool

Send logic

Send/abort
message events

Received message pool

Receive logic

Add/delete
messages

Send side Receive side

High-level
protocol

P2P

Message processor

Add/delete
messages

Process
(async)

Bounded
(#msgs
& size)

Abortable Broadcast: Guarantees

11

Sender
P2P

High-level
protocol

Honest Sender

G1: Sent & not aborted messages eventually received

send

abort

Receive
message

pool

Receiver
P2P

Honest Receiver

add

delete

G2: Sent & not aborted messages received timely, when network behaves

G3: P2P and receive pool use bounded memory

Talk Outline

12

1. Abortable broadcast: interface, assumptions and guarantees

1. Our implementation of abortable broadcast

1. Evaluation & related work

Abortable Broadcast: Implementation (Conceptual)

13

Send message pool

Send/abort
message events

Received message pool

Add/delete
messages

Sender Receiver

P2P P2P

Transport

Connection

To Peer

Transport

Connection

To Peer

Transport

Connection

From Peer

Transport

Connection

From Peer

Transport

Connection

From Peer

… Transport

Connection

To Peer

…

Table of active messages (bounded!)

In case of congestion:
slow down table

updates for that peer

The “Slot Table” data structure

content: A, version: 2

content: none, version: 3

content: C, version: 1

content: D, version: 2

content: E, version: 4

content: none, version: 0

0

1

2

3

4

5

● Numbered slots, bounded

● Each slot has content and a version

○ Slots may be empty

○ Version is increased with every change to

the table

The “Slot Table” data structure

content: A, version: 2

content: none, version: 3

content: C, version: 1

content: D, version: 2

content: E, version: 4

content: none, version: 0

0

1

2

3

4

5

● Numbered slots, bounded (G3)

● Each slot has content and a version

○ Slots may be empty

○ Version is increased with every change to

the table

The “Slot Table” data structure

content: A, version: 2

content: none, version: 3

content: C, version: 1

content: D, version: 2

content: E, version: 4

content: none, version: 0

0

1

2

3

4

5

● Numbered slots, bounded

● Each slot has content and a version

○ Slots may be empty

○ Version is increased with every change to

the table

Send message pool

New

message: F

Find an

empty slot

(must exist)

The “Slot Table” data structure

content: A, version: 2

content: none, version: 3

content: C, version: 1

content: D, version: 2

content: E, version: 4

content: none, version: 0

0

1

2

3

4

5

● Numbered slots, bounded

● Each slot has content and a version

○ Slots may be empty

○ Version is increased with every change to

the table

Send message pool

New

message: F

Find an

empty slot

(must exist)

The “Slot Table” data structure

content: A, version: 2

content: F, version: 5

content: C, version: 1

content: D, version: 2

content: E, version: 4

content: none, version: 0

0

1

2

3

4

5

● Numbered slots, bounded

● Each slot has content and a version

○ Slots may be empty

○ Version is increased with every change to

the table

Send message pool

Find an

empty slot

(must exist)

New

message: F

The “Slot Table” data structure

content: A, version: 2

content: F, version: 5

content: C, version: 1

content: D, version: 2

content: E, version: 4

content: none, version: 0

0

1

2

3

4

5

● Numbered slots, bounded

● Each slot has content and a version

○ Slots may be empty

○ Version is increased with every change to

the table

Send message pool

Delete

message: D

The “Slot Table” data structure

content: A, version: 2

content: F, version: 5

content: C, version: 1

content: D, version: 2

content: E, version: 4

content: none, version: 0

0

1

2

3

4

5

● Numbered slots, bounded

● Each slot has content and a version

○ Slots may be empty

○ Version is increased with every change to

the table

Send message pool

Delete

message: D

The “Slot Table” data structure

content: A, version: 2

content: F, version: 5

content: C, version: 1

content: none, version: 6

content: E, version: 4

content: none, version: 0

0

1

2

3

4

5

● Numbered slots, bounded

● Each slot has content and a version

○ Slots may be empty

○ Version is increased with every change to

the table

Send message pool

Delete

message: D

The “Slot Table” data structure

content: A, version: 1

content: none, version: 7

content: C, version: 3

content: D, version: 4

content: none, version: 8

content: G, version: 10

0

1

2

3

4

5

Send message pool

content: A, version: 1

content: B, version: 2

content: C, version: 3

content: D, version: 4

content: none, version: 8

content: F, version: 6

0

1

2

3

4

5

Sync protocol

Sender Receiver

Events:
1. Add A (0)

2. Add B (1)

3. Add C (2)

4. Add D (3)

5. Add E (4)

6. Add F (5)

7. Remove B (1)

8. Remove E (4)

9. Remove F (5)

10. Add G (5)

Events:
1. Add A (0)

2. Add B (1)

3. Add C (2)

4. Add D (3)

5. Add E (4)

6. Add F (5)

7. Remove B (1)

8. Remove E (4)

9. Remove F (5)

10. Add G (5)

receive side table is eventually-
consistent view of the

send side table, even under
congestion

The “Slot Table” data structure

content: A, version: 1

content: none, version: 7

content: C, version: 3

content: D, version: 4

content: none, version: 8

content: G, version: 10

0

1

2

3

4

5

Send message pool

content: A, version: 1

content: B, version: 2

content: C, version: 3

content: D, version: 4

content: none, version: 8

content: F, version: 6

0

1

2

3

4

5

Sync protocol

Sender Receiver

Events:
1. Add A (0)

2. Add B (1)

3. Add C (2)

4. Add D (3)

5. Add E (4)

6. Add F (5)

7. Remove B (1)

8. Remove E (4)

9. Remove F (5)

10. Add G (5)

Events:
1. Add A (0)

2. Add B (1)

3. Add C (2)

4. Add D (3)

5. Add E (4)

6. Add F (5)

7. Remove B (1)

8. Remove E (4)

9. Remove F (5)

10. Add G (5)

receive side table is eventually-
consistent view of the

send side table, even under
congestion

Version has

changed: new

message!

content: G, version: 10

The “Slot Table” data structure

content: A, version: 1

content: none, version: 7

content: C, version: 3

content: D, version: 4

content: none, version: 8

content: G, version: 10

0

1

2

3

4

5

Send message pool

content: A, version: 1

content: B, version: 2

content: C, version: 3

content: D, version: 4

content: none, version: 8

content: F, version: 6

0

1

2

3

4

5

Sync protocol

Sender Receiver

Events:
1. Add A (0)

2. Add B (1)

3. Add C (2)

4. Add D (3)

5. Add E (4)

6. Add F (5)

7. Remove B (1)

8. Remove E (4)

9. Remove F (5)

10. Add G (5)

Events:
1. Add A (0)

2. Add B (1)

3. Add C (2)

4. Add D (3)

5. Add E (4)

6. Add F (5)

7. Remove B (1)

8. Remove E (4)

9. Remove F (5)

10. Add G (5)

Obsolete slot events dropped on network
congestion

Version has

changed: new

message!

content: G, version: 10

The “Slot Table” data structure

content: A, version: 1

content: none, version: 7

content: C, version: 3

content: D, version: 4

content: none, version: 8

content: G, version: 10

0

1

2

3

4

5

Send message pool

content: A, version: 1

content: B, version: 2

content: C, version: 3

content: D, version: 4

content: none, version: 8

content: F, version: 5

0

1

2

3

4

5

Sync protocol

Sender Receiver

Events:
1. Add A (0)

2. Add B (1)

3. Add C (2)

4. Add D (3)

5. Add E (4)

6. Add F (5)

7. Remove B (1)

8. Remove E (4)

9. Remove F (5)

10. Add G (5)

Version has

changed: new

message!Events:
1. Add A (0)

2. Add B (1)

3. Add C (2)

4. Add D (3)

5. Add E (4)

6. Add F (5)

7. Remove B (1)

8. Remove E (4)

9. Remove F (5)

10. Add G (5)

content: G, version: 10

Eventual delivery (G1), timely delivery (G2)
still hold

Bandwidth Optimization

For large messages, nodes broadcast just their adverts

Receivers request the full messages they are interested in

● Many messages are relayed; no need to receive
them from all peers

● Some messages may not be interesting, or may only
become interesting later

Decreases latency, saves bandwidth, increases throughput

Block

Advert

Block

Talk Outline

27

1. Abortable broadcast: interface, assumptions and guarantees

1. Our implementation of abortable broadcast

1. Evaluation & related work

Related Work

● Little in terms of guaranteed message delivery with bounded memory
○ PBFT includes a bespoke retransmission mechanism to keep memory bounded

● Bitcoin, ETH1.0: no checkpointing, so unbounded memory
○ Bounded in practice by low throughput

○ ~600GB state for Bitcoin

● GossipSub (libp2p):
○ Used by ETH2.0, Polkadot, Polygon, Mina, …

○ Bounded memory

○ No delivery guarantees; clients must implement bespoke retransmission

28

Comparison to GossipSub: Delivery Guarantees

29

T
o

ta
l

m
e

s
s

a
g

e
s

 r
e

c
e

iv
e

d

GossipSub

30s crash 30s crash

Our implementation

31 nodes, crash 4/31 for 30 seconds

Comparison to GossipSub: Latency

30

31 nodes, send rate up to 4 Gbps (12.5 Gbps links)

Takeaways

● True (Byzantine) fault tolerance requires bounding memory

● Reliability not so simple when bounded

● Our solution achieves all three

Future work

● Better bandwidth utilization
○ More peers: overlay networks, ECCs?

○ Better handling of input messages

● Better resilience to volumetric attacks https://dfinity.org/grants

Conclusion & Future Work

31

https://dfinity.org/grants

Appendix

32

Bounding the receive pools

⇒ If a message is aborted by all senders,

it is no longer needed

→ can be deleted from the receive pool

The receive pool is bounded using the same bound

on the slot tables

(More specifically, |pool| < C*n, for n peers and a bound C)

Received message pool

Add/delete
messages

Receiver

P2P

Transport

Connection

From Peer

Transport

Connection

From Peer

Transport

Connection

From Peer

…

Bounded memory guarantee (G3) fulfilled!

Internet Computer Protocol (ICP)

Coordination of nodes in

independent data centers,

jointly performing any

computation for anyone

● Create Internet Computer
blockchains

● Guarantee safety and
liveness of smart contract
execution despite Byzantine
participants

Internet Computer
Public cyberspace

ICP

IP / Internet

Data Centers

Scalability: Nodes and Subnets

Nodes are partitioned into

subnets

Canister smart contracts are

assigned to different subnets

Scalability: Nodes and Subnets

Nodes are partitioned into subnets

Canister smart contracts are
assigned to different subnets

One subnet is special: it host the
Network Nervous System (NNS)
canisters which govern the IC

ICP token holders vote on
● Creation of new subnets

● Upgrades to new protocol version

● Replacement of nodes

● …

Comparison* with other Blockchain Systems

https://coincodex.com/article/14198/layer-1-performance-comparing-6-leading-blockchains/

* a bit old and somewhat outdated

Newer comparison

by DFINITY

https://coincodex.com/article/14198/layer-1-performance-comparing-6-leading-blockchains/

	Slide 1: Fast and Reliable P2P Without Breaking the Memory Budget
	Slide 2: P2P Broadcast in (Blockchain) Consensus
	Slide 3: Handling Failures: Client-Server Scenario
	Slide 4: Handling Failures: P2P Broadcast Scenario
	Slide 5: Our Solution: Abortable Broadcast
	Slide 6: Our Solution: Abortable Broadcast
	Slide 7: Talk Outline
	Slide 8: Talk Outline
	Slide 9: Abortable Broadcast: Interface
	Slide 10: Abortable Broadcast: Assumption
	Slide 11: Abortable Broadcast: Guarantees
	Slide 12: Talk Outline
	Slide 13: Abortable Broadcast: Implementation (Conceptual)
	Slide 14: The “Slot Table” data structure
	Slide 15: The “Slot Table” data structure
	Slide 16: The “Slot Table” data structure
	Slide 17: The “Slot Table” data structure
	Slide 18: The “Slot Table” data structure
	Slide 19: The “Slot Table” data structure
	Slide 20: The “Slot Table” data structure
	Slide 21: The “Slot Table” data structure
	Slide 22: The “Slot Table” data structure
	Slide 23: The “Slot Table” data structure
	Slide 24: The “Slot Table” data structure
	Slide 25: The “Slot Table” data structure
	Slide 26: Bandwidth Optimization
	Slide 27: Talk Outline
	Slide 28: Related Work
	Slide 29: Comparison to GossipSub: Delivery Guarantees
	Slide 30: Comparison to GossipSub: Latency
	Slide 31: Conclusion & Future Work
	Slide 32: Appendix
	Slide 33: Bounding the receive pools
	Slide 34: Internet Computer Protocol (ICP)
	Slide 35: Scalability: Nodes and Subnets
	Slide 36: Scalability: Nodes and Subnets
	Slide 37: Comparison* with other Blockchain Systems

