o0

DFINITY

Fast and Reliable P2P Without
Breaking the Memory Budget

Ognjen Maric, DFINITY Foundatlon N S
e Jomt work with:

Manu Drijvers, Tim Gretler Yotam ‘Harchol, Tobias
Klenze, Stefan Neamtu, Yvonne-Anne Pignolet,
Rostislav Rumenov, Daniel Shatrifi, Victor Shoup

P2P Broadcast in (Blockchain) Consensus

Michel Raynal

Validators can broadcast a vote message containing
together with the1r helghts h(s) and h(¢) We requi

Tl\. vnte ‘L O .~t.~r1 1] I‘ FaU|t_T0|erant

Message-Passing

! : Distributed
Casper the Friendly Fi Textbook Sthf, solved o Systee -

re Distributed le 7
2. At time ¢, ,, if v is the primary] prObIem? ‘amming Dlstnbutecl
fton gon’c ms

\
>
s sl
E,._y . If they have finalised it, h E E
__ *

3. If v is a voter for the prevote of rour
is completable, then br aj

O € i B 1 K1) “ J I L
. : Rt 2 o Narey A. Lynch
1e head of the best chain containing : ' -

Simple problems sometimes not so simple:

g% Reliable, fault-tolerant broadcast w/ bounded
e memory
|

CO

Handling Failures: Client-Server Scenario

How to handle
failures?

Backpressure
(stop production)?

Server

Server App send » Networking gend A
Buffer Layer Dro
(unbounded) P o
- messages?
Server Network Client

Handling Failures: P2P Broadcast Scenario

Backpressure
(stop production)?

messages?

Sender P2P send

ioh- d P
ngorl (I)i\cljl il » Networking eet
> Buffer Layer
(unbounded)
?
Sender Peer
Option 1' Drop = X Broadcast not
E? tlon 2 Backpressure = X Broadcast not fault tolerant! Peer

Option 3: Buffer = X Eventually out-of-
memory (DoS)!

CO

Our Solution: Abortable Broadcast

send
High-level > SenderP2P send Peer
Networking
protocol abort ‘ Layer

»

Buffer unaborted
Sender Peer
Key observation: protocol messages become obsolete
(e.g., through checkpointing) .
eer

|dea: add explicit abort call for obsolete messages; buffer only
unaborted

CO

Our Solution: Abortable Broadcast

send

High-level > SenderEZP send Peer

il b Networking

P abort Layer
Buffer unaborted
Peer
Sender

&4 Reliable (for unaborted messages)

assuming bounded # Peer

of unaborted messages

&4 Fault tolerant (no backpressure)
&4 Bounded memory usage

CO

Talk Outline

1. Abortable broadcast: interface, assumptions and guarantees

1. Our implementation of abortable broadcast

1. Evaluation & related work

Talk Outline

[1. Abortable broadcast: interface, assumptions and guarantees]

1. Our implementation of abortable broadcast

1. Evaluation & related work

Abortable Broadcast: Interface

H'Qh'level Send message pool
protocol
Add/delete
messages
Send/abort
message events
P2P Send logic
Send side

Message processor

Process
(async)

Received message pool

Add/delete
messages

Receive logic

Receive side

Abortable Broadcast: Assumption

High-level

Send message pool
protocol

Add/delete
messages

Send/abort
message events

P2P Send logic

Send side

Message processor

Process
(async)

Received message pool

Add/delete
messages

Receive logic

Receive side

10

Abortable Broadcast: Guarantees

send add '
High-level > Sender _, Receiver > rrlfg(s:::avgee

[
»

y

Honest Sender Honest Receiver

G1: Sent & not aborted messages eventually received
G2: Sent & not aborted messages received timely, when network behaves
G3: P2P and receive pool use bounded memory

e 11

Talk Outline

1. Abortable broadcast: interface, assumptions and guarantees

[1. Our implementation of abortable broadcast]

1. Evaluation & related work

12

Abortable Broadcast: Implementation (Conceptual)

Send message pool

Send/abort
message events

Table of active messages (bounded!)

P2P

L T,

Transport Transport Transport
Connection Connection e Connection
To Peer To Peer To Peer

Sender B R e

slow down table

m updates for that peer

Received message pool

Add/delete
messages

P2P

T I T

Transport Transport Transport
Connection *** Connection Connection
From Peer From Peer From Peer
A
Receiver

13

The “Slot Table” data structure

a b~ Ww DN PEFL O

content: A, version: 2

content: none, version: 3

content: C, version: 1

content: D, version: 2

content: E, version: 4

content: none, version: 0

Numbered slots, bounded

Each slot has content and a version

(@)

(@)

Slots may be empty

Version is increased with every change to
the table

The “Slot Table” data structure

a b~ Ww DN PEFL O

content: A, version: 2

content: none, version: 3

content: C, version: 1

content: D, version: 2

content: E, version: 4

content: none, version: 0

Numbered slots, bounded (G3)

Each slot has content and a version

(@)

(@)

Slots may be empty

Version is increased with every change to
the table

The “Slot Table” data structure

Send message pool

New
message: F

Find an
empty slot
(must exist)

a b~ Ww DN PEFL O

content: A, version: 2

content: none, version: 3

content: C, version: 1

content: D, version: 2

content: E, version: 4

content: none, version: 0

Numbered slots, bounded

Each slot has content and a version

(@)

(@)

Slots may be empty

Version is increased with every change to
the table

The “Slot Table” data structure

Send message pool

New
message: F

Find an
empty slot
(must exist)

a b~ Ww DN PEFL O

content: A, version: 2

content: none, version: 3

content: C, version: 1

content: D, version: 2

content: E, version: 4

content: none, version: 0

Numbered slots, bounded

Each slot has content and a version

(@)

(@)

Slots may be empty

Version is increased with every change to
the table

The “Slot Table” data structure

Send message pool

e Numbered slots, bounded

the table

New 0 content: A, version: 2
message: F .
1 content: F, version: 5 e Each slot has content and a version
Find an . .
empty slot 2 content: C, version: 1 o Slots may be empty
(must exist) 3 content: D, version: 2 . .
: o Version is increased with every change to
4 content: E, version: 4
5

content: none, version: 0

The “Slot Table” data structure

Send message pool

5 e Numbered slots, bounded
elete

message: D

content: A, version:

content: F, version: e Each slot has content and a version

content: C, version: o SIOtS may be empty

content: D, version:

o Version is increased with every change to
the table

AN | |0 DN

content: E, version:

a b~ Ww DN PEFL O

content: none, version: 0

The “Slot Table” data structure

Send message pool

5 e Numbered slots, bounded
elete

message: D

content: A, version:

content: F, version: e Each slot has content and a version

content: C, version: o SIOtS may be empty

content: D, version:

o Version is increased with every change to
the table

AN | |ODN

content: E, version:

a b~ Ww DN PEFL O

content: none, version: 0

The “Slot Table” data structure

Delete
message: D

Send message pool

a b~ Ww DN PEFL O

content: A, version: 2

content: F, version: 5

content: C, version: 1

content: none, version: 6

content: E, version: 4

content: none, version: 0

Numbered slots, bounded

Each slot has content and a version

(@)

(@)

Slots may be empty

Version is increased with every change to
the table

The “Slot Table” data structure

Send message pool

O content: A' version: 1 O content: A, version: 1
_ 1 | content: none, version: 7 1 content: B, version: 2
Events: :
1. Add A (0) 2 content: C, version: 3 2 content: C, version: 3
2. Add B (1) Sync protocol _ —
3. Add C (2) 3 content: D’ version: 4 3 content: D, version: 4
4. Add D (3) : . .
content: none, version: 8 4 | content: none, version: 8
5.AddE(4) 4 Events: ,
6. Add F (5) 5 content: G, version: 10 1. Add A (0) 5 content: F, version: 6
7. Remove B (1) 2. Add B (1)
8. Remove E (4) 3. Add C (2)
9. Remove F (5) 4. Add D (3) .
10. Add G (5) Sender S AddE (1 Receiver
6. Add F (5)
7. Remove B (1) . . .
8. Remove E (4) receive side table is eventually-
9. Remove F (5) consistent view of the
10. Add G (5) send side table, even under

m congestion

The “Slot Table” data structure

Send message pool

Events:
1. Add A (0)

2. Add B (1)

3. Add C (2)

4. Add D (3)

5. Add E (4)

6. Add F (5)

7. Remove B (1)
8. Remove E (4)
9. Remove F (5)
10. Add G (5)

a b~ Ww DN PEFL O

content: A, version: 1

content: none, version: 7

content: C, version: 3

content: D, version: 4

content: none, version: 8

content: G, version: 10

Sender

Sync protocol

Events:
1. Add A (0)

2. Add B (1)
3.Add C (2)

4. Add D (3)

5. Add E (4)

6. Add F (5)

7. Remove B (1)
8. Remove E (4)
9. Remove F (5)
10. Add G (5)

o b~ W DN PEFL O

receive side table is eventually-

content: A, version: 1

content: B, version: 2

content: C, version: 3

content: D, version: 4

content: none, version: 8

content: G, version: 10

Version has
changed: new
message!

Receiver

consistent view of the

send side table, even under

congestion

The “Slot Table” data structure

Send message pool

0 content: A, version: 1 0 content: A, version: 1
. 1 content: none, version: 7 1 content: B, version: 2
Events:
1. Add A (0) 2 content: C, version: 3 T — 2 content: C, version: 3
2. Add B (1) : _
3. Add C (2) 3 content: D, version: 4 ynep 3 content: D, version: 4 Version has
4.Add D (3) : ion: content: none, version: 8 changed: new
5. Add E (4) / | content: none, version: 8 Events: 4 message!
6. Add F (5) 5 content: G, version: 10 1. Add A (0) 5 content: G. version: 10
7. Remove B (1) 2_Add-B{1) 2 =k ;
9. Remove F (5) .
10. Add G (5) Sender 45: ~ dﬂdgl DE ((34}) Recelver
6-Add-F(5)
7 Remove B (1) Obsolete slot events drppped on network
8. Remove E (4) congestion

10. Add G (5)

The “Slot Table” data structure

Send message pool

0 content: A, version: 1 0 content: A, version: 1
_ 1 | content: none, version: 7 1 content: B, version: 2
Events: :
1. Add A (0) 2 content: C, version: 3 2 content: C, version: 3
2. Add B (1) Sync protocol) — _
3.Add C (2) 3 content: D, version: 4 3 content: D, version: 4 Version has
4.Add D (3) : ion: content: none, version: 8 changed: new
5. Add E (4) / | content: none, version: 8 Events: 4 message!
?- /I:(i?n'(:)v(s)B 0 5 content: G, version: 10 1. Add A (0) 5 content: G, version: 10
8. Remove E (4) 3 Add C @)
9. Remove F (5) .
10. Add G (5) Sender 45' ~ dﬂdgl DE ((34}) Recelver
6-Add-F(5)

7. Remove B (1)
8. Remove E (4)

Eventual delivery (G1), timely delivery (G2)

9-Remove F(5) X
10. Add G (5) still hold

Bandwidth Optimization

For large messages, nodes broadcast just their adverts
Receivers request the full messages they are interested in
e Many messages are relayed; no need to receive
them from all peers
e Some messages may not be interesting, or may only

become interesting later

Decreases latency, saves bandwidth, increases throughput

WJ

|

Block

Talk Outline

1. Abortable broadcast: interface, assumptions and guarantees

1. Our implementation of abortable broadcast

[1. Evaluation & related work]

27

Related Work

e Little in terms of guaranteed message delivery with bounded memory
o PBFT includes a bespoke retransmission mechanism to keep memory bounded

e Bitcoin, ETH1.0: no checkpointing, so unbounded memory
o Bounded in practice by low throughput
o ~600GB state for Bitcoin

e GossipSub (libp2p):
o Used by ETH2.0, Polkadot, Polygon, Mina, ...

o Bounded memory
o No delivery guarantees; clients must implement bespoke retransmission

28

Comparison to GossipSub: Delivery Guarantees

10000 10000 N

o e Operational nodes o® e Operational nodes UUUU

.qz) 8000 Faulty nodes .." 8000 Faulty nodes Uu"u

O ... _UUU

ql_) .. lo\)

@ 6000 - 6000 - .A‘"U

@ o‘.. o'..

» 4000- +*° 4000 - pe®

g _U'U _\')\]U

£ @ |30scrash & |30scrash

— 2000 o° 2000 7 oV

) oV oV

@) (Vo oY

|_ O UU T T T T T T 0 U\) T T T T T T

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Time [seconds] Time [seconds]

GossipSub Our implementation

31 nodes, crash 4/31 for 30 seconds

Comparison to GossipSub: Latency

100

/’

co
o
L

[=)]
o
L

B
o
1

]
o
1

— IC
GossipSub

Cumulative Distribution [%]

o
L

0 1 2 3
Latency [seconds]

31 nodes, send rate up to 4 Gbps (12.5 Gbps links)

30

Conclusion & Future Work

Takeaways

e True (Byzantine) fault tolerance requires bounding memory
e Reliability not so simple when bounded
e Our solution achieves all three

Future work

e Better bandwidth utilization

o More peers: overlay networks, ECCs?
o Better handling of input messages

e Better resilience to volumetric attacks https://dfinity.org/grants

CO

31

https://dfinity.org/grants

Appendix

Bounding the receive pools

= If a message is aborted by all senders,
it is no longer needed

— can be deleted from the receive pool

The receive pool is bounded using the same bound
on the slot tables

(More specifically, |pool| < C*n, for n peers and a bound C)

Bounded memory guarantee (G3) fulfilled!

Received message pool

T

Transport
Connection
From Peer

Add/delete
messages

P2P

I T

Transport Transport

Connection Connection

From Peer From Peer
Receiver

Internet Computer Protocol (ICP)

Coordination of nodes in
data centers,

jointly performing any

computation for

Internet Computer
Public cyberspace

e Create Internet Computer
blockchains

IP / Internet

e (Guarantee safety and
liveness of smart contract
execution despite Byzantine
participants

Data Centers

......

Scalability: Nodes and Subnets

Nodes are partitioned into
subnets

Canister smart contracts are
assigned to different subnets

Scalability: Nodes and Subnets

Nodes are partitioned into subnets

Canister smart contracts are
assigned to different subnets

One subnet is special: it host the
Network Nervous System (NNS)
canisters which govern the IC

ICP token holders vote on
e Creation of new subnets

e Upgrades to new protocol version
e Replacement of nodes
o

Layer-1 Performance Comparison

Transaction Speed

Transaction Finality

Scalability

Node Count

Storage Costs

Cloud Service
Dependency

>

v

Ethereum

15-20 TPS

14 minutes

Not very
scalable

6,000 nodes

$73,000,000 / GB

70% of nodes
run on AWS

Cardano

2TPS

10-60 minutes

Not very
scalable

3,173 nodes

Solana

2,000-3,000 TPS

21-46 seconds

Not very
scalable

1,603 nodes

$1,000,000/ GB

Most nodes
run on cloud

Q

Avalanche

4,500 TPS

2-3 seconds

Not very
scalable

1,243 nodes

$988,000 / GB

https://coincodex.com/article/14198/layer-1-performance-comparing-6-leading-blockchains

A

Algorand

20 TPS
4-5 seconds

More
scalability

1,997 nodes

Most nodes
run on cloud

Comparison* with other Blockchain Systems

77 coincodex

OO

Internet Computer

11,500 TPS
250,000 QPS

1 second

Indefinite
scalability

443 nodes

$5/GB

Independent
data centers

Newer comparison
by DFINITY

* a bit old and somewhat outdated

https://coincodex.com/article/14198/layer-1-performance-comparing-6-leading-blockchains/

	Slide 1: Fast and Reliable P2P Without Breaking the Memory Budget
	Slide 2: P2P Broadcast in (Blockchain) Consensus
	Slide 3: Handling Failures: Client-Server Scenario
	Slide 4: Handling Failures: P2P Broadcast Scenario
	Slide 5: Our Solution: Abortable Broadcast
	Slide 6: Our Solution: Abortable Broadcast
	Slide 7: Talk Outline
	Slide 8: Talk Outline
	Slide 9: Abortable Broadcast: Interface
	Slide 10: Abortable Broadcast: Assumption
	Slide 11: Abortable Broadcast: Guarantees
	Slide 12: Talk Outline
	Slide 13: Abortable Broadcast: Implementation (Conceptual)
	Slide 14: The “Slot Table” data structure
	Slide 15: The “Slot Table” data structure
	Slide 16: The “Slot Table” data structure
	Slide 17: The “Slot Table” data structure
	Slide 18: The “Slot Table” data structure
	Slide 19: The “Slot Table” data structure
	Slide 20: The “Slot Table” data structure
	Slide 21: The “Slot Table” data structure
	Slide 22: The “Slot Table” data structure
	Slide 23: The “Slot Table” data structure
	Slide 24: The “Slot Table” data structure
	Slide 25: The “Slot Table” data structure
	Slide 26: Bandwidth Optimization
	Slide 27: Talk Outline
	Slide 28: Related Work
	Slide 29: Comparison to GossipSub: Delivery Guarantees
	Slide 30: Comparison to GossipSub: Latency
	Slide 31: Conclusion & Future Work
	Slide 32: Appendix
	Slide 33: Bounding the receive pools
	Slide 34: Internet Computer Protocol (ICP)
	Slide 35: Scalability: Nodes and Subnets
	Slide 36: Scalability: Nodes and Subnets
	Slide 37: Comparison* with other Blockchain Systems

