# Modern Blockchains and Next-Generation Internet Architectures: Opportunities and Synergies

Markus Legner 2024-05-16



#### A brief history of Mysten Labs and Sui



2

# Why are current networking solutions insufficient?



# Distributed

systems

# fundamentally

depend on

# reliable global connectivity

Blockchain nodes are globally distributed

The Internet is insecure and attacks can cause severe damage

Centralized networking solutions contradict decentralization

 $\rightarrow$  Build on a secure public network infrastructure

#### How we (want to) protect critical communication

#### Need

**High availability** required for communication between validators and for client access.

### **Existing solutions**

Protections include cryptographic signatures, filtering, and rate-limiting.

### Ideal setup

Use a networking layer that provides **secure routing** and **availability guarantees**.

5

# **Enter SCION: A next-generation Internet** with built-in security

### SCION: A next-generation Internet with built-in security

#### Strong security properties and high performance

- Replaces BGP (routing) and IP (forwarding)
- Secure routing protocol prevents attacks
- Faster recovery after network failures
- Allows hosts to select from multiple available paths
- Often provides **lower latency** than the Internet

#### **Global production deployment**

- In production use in Swiss financial, healthcare, and energy sectors
- New redundant global network created by Mysten Labs with its partners



#### Mysten Labs

#### Networking setup with SCION at a Sui validator



8

# **Can SCION in turn benefit from blockchains?**



#### Blockchains have come a long way...

|                 | Bitcoin                              | Sui                                                             |
|-----------------|--------------------------------------|-----------------------------------------------------------------|
| Sustainability  | Wasteful proof of work               | Efficient delegated proof of stake                              |
|                 | 1 tx ~ 1 person flying Zurich–Lisbon | 1 tx ~ traditional financial transaction                        |
| Programmability | Limited Bitcoin script               | <b>Ergonomic and Turing-complete</b><br>smart-contract language |
| Speed           | Finality in <b>minutes-hours</b>     | Sub-second finality                                             |
|                 | <b>5–10</b> transactions per second  | > 1000 transactions per second                                  |
| Cost            | >1USD per transaction                | < 0.1 cent per transaction                                      |

### Sui could perform control-plane tasks for SCION

# SCION has a **clean separation of control and data plane**

- Packet-carried forwarding state
- Forwarding information can be distributed out-of-band

## Sui enables **digital assets for network resources**

- Compose, transfer, and coordinate assets
- Assets for forwarding information, keys, bandwidth reservations
- Fast and cheap transactions enable real-time applications
- Directly integrated **financial settlement**
- Challenge: how to connect physical resources to on-chain assets

Hummingbird: A Flexible and Lightweight Inter-Domain Bandwidth-Reservation System. Giuliari et al. 2023. <u>https://arxiv.org/abs/2308.09959</u>

#### **Current efforts, next steps, and further research**



# Thank You

Markus Legner Senior Software Engineer markus@mystenlabs.com

