
Ethical identity, ring VRFs, and
zero-knowledge continuations

Jeffrey Burdges Handan Kilinc-Alper Alistair Stewart
Sergey Vasilyev

16-17 May 2024

https://eprint.iacr.org/2022/002

https://github.com/w3f/ring-vrf/

https://eprint.iacr.org/2022/002
https://github.com/w3f/ring-vrf/


Zero-knowledge in substrate?

Yes WASM works, but 10x slower for some optimized code.

EIP-2537 (BLS12-381) adds 9 precompiles (hostcalls).

Extra complexity means fewer curves
- Addition & hash-to-curve appear unecessary.

Inflexibility yields worse performance
- Groth16 needs 4 pairings
- Batch verifiers
- Large parameters like KZG trusted setups

https://github.com/paritytech/arkworks-extensions

https://github.com/paritytech/arkworks-extensions


Zero-knowledge in substrate?

Yes WASM works, but 10x slower for some optimized code.

EIP-2537 (BLS12-381) adds 9 precompiles (hostcalls).

Add hostcalls for the ”slow parts” but use WASM elsewhere

Bandersnatch, etc. — single & multi-scalar multiplication
BLS12-381, BLS12-377, BW6-761, BW6-767, BN254 —
Same, plus multi-miller loop & final exponentiation

https://github.com/paritytech/arkworks-extensions

https://github.com/paritytech/arkworks-extensions


Arkworks & others mostly descend from Zcash.

Adapt crates directly, without reimplementation.

https://github.com/paritytech/arkworks-extensions

https://github.com/paritytech/arkworks-extensions


Ring signatures prove the actual signer exists in
some publicly specified list, known as the ring.

Examples: Some “deniable” key exchanges, Monero, ZCash, etc.

Ring can be a fancy set commitment like ZCash,
but membership proofs are always very expensive.



EC VRF

A verifiable random function (VRF) proves evaluation of a
pseudo-random function (PRF) determined by a signing key.

ECVRF.Verify(msg, aux, pk, (out,R,Rmsg, s))

inbase := HG(msg)

c := H(msg, aux, pk, out,R,Rmsg)

s inbase == c out + Rmsg

s G == c pk + R

returnH(out,msg)



Ring VRF is a ring signature that’s also a VRF.

A ring verifiable random function (ring VRF) is a ring signature
that proves evaluation of a pseudo-random function (PRF)
determined by the actual key pair.



For what do you use a ring VRF?



Pedersen VRF

We set compk := skG + b K to be a Pedersen commitment to sk.

PedersenVRF.Verify(msg, aux, compk, (out,R,Rmsg, s, t))

inbase := HG(msg)

c := H(msg, aux, compk, out,R,Rmsg)

s inbase == c out + Rmsg

t K + s G == c compk + R

returnH(out,msg)

Just EC VRF except for t, b and pk being compk.



Zero-knowledge continuations..

Q: What are the fastest/cheapest SNARK proofs?

A: Ones we reuse without reproving.



Groth16.Verify(X , (A,B,C ))

e(A,B) = e([α]1, [β]2) · e(X , [γ]2) · e(C , [δ]2)

X = skG + comring L

Groth16

{
sk, comring

∣∣∣∣∣ ∃d s.t. pk← Posideon(sk , d)

∃o s.t. pk ∈o comring

}

Special(ized) G(roth16) means inner Groth16 leaks secrets, but..



Groth16.Verify(X , (A,B,C ))

e(A,B) = e([α]1, [β]2) · e(X , [γ]2) · e(C , [δ]2)

X = skG + comring L

Groth16

{
sk, comring

∣∣∣∣∣ ∃d s.t. pk← Posideon(sk , d)

∃o s.t. pk ∈o comring

}

Special(ized) G(roth16) means inner Groth16 leaks secrets, but..



Groth16.Verify(X , (A,B,C ))

e(A,B) = e([α]1, [β]2) · e(X , [γ]2) · e(C , [δ]2)

X = skG + comring L

Groth16

{
sk, comring

∣∣∣∣∣ ∃d s.t. pk← Posideon(sk , d)

∃o s.t. pk ∈o comring

}

Special(ized) G(roth16) means inner Groth16 leaks secrets, but..



Groth16.Verify(X , (A,B,C ))

e(A,B) = e([α]1, [β]2) · e(X , [γ]2) · e(C , [δ]2)

X = skG + b K + comring L

= compk + comring L

Add Kδ :=
γ
δK to trusted setup

X ′ := X + b K B ′ := r1B + r1r2[δ]2

A′ :=
1

r1
A C ′ := C + r2A+ b Kδ

Marginal signer cost of eight G1 mults plus two G2 mults



Are there other zero-knowledge continuations?

Avoid the Groth16 side channel and use CDH over Posideon..

X = skG + b K + Jpk.x Lx + Jpk.y Ly

Groth16
{
sk0 + sk12

128, Jpk
∣∣ ∃d s.t. Jpk = sk0J0 + sk1J1 + dJ2

}
Use with hidden KZG opening of Jpk like Caulk/Caulk+



Revokation could be done using a “cuckoo filter” in a KZG.

Groth16

 sk, pk, i1, i2, i3, comring

∣∣∣∣∣∣∣
∃d s.t. pk← Posideon(sk , d)

∃o s.t. pk ∈o comring

(i1, i2, i3)← Posideon(pk)


Non-revokation proof: pk ̸= f (ij) for j = 1, 2, 3 where f is a KZG
Nolonger like Caulk/Caulk+.



Q: How can identity be safe for online use?

A: By revealing nothing except users’ uniqueness.

No W3C attribute based bullshit!



Attribute credentials signed by authority.

User agent:

- Validates TLS cert of “site.com”

- Gets attribute request: name, age, nationality, employment status

- Asks user to approve sharing those attributes with “site.com”.
If approved, proves the atttributes

Issues:

- Attributes are unecessarily invasive.

- Attributes leak across domains. Users cannot change attributes.

- Users make mistakes and/or can be forced.



Attribute credentials signed by authority.

User agent:

- Validates TLS cert of “site.com”

- Gets attribute request: name, age, nationality, employment status

- Validates DPA certificate for attributes at “site.com”

- Asks user to approve sharing those attributes with “site.com”.
If approved, proves the atttributes

Issues:

- Attributes are unecessarily invasive.

- Attributes leak across domains. Users cannot change attributes.

- Users make mistakes and/or can be forced.

Attribute requests need certificate infrastructure.



Ring consists of people, with one key per person,
maybe populated from government identity documents.

User agent:

1st) validates TLS cert of “site.com”, including CT logs.

2nd) sends ring VRF signature with msg = “site.com“.

Do we have a “right to be forgotten” at “site.com“?

If so, use msg = “site.com“ ++month



Ring consists of people, with one key per person,
maybe populated from government identity documents.

User agent:

1st) validates TLS cert of “site.com”, including CT logs.

2nd) sends ring VRF signature with msg = “site.com“.

Do we have a “right to be forgotten” at “site.com“?

If so, use msg = “site.com“ ++month



Q: Can ring VRFs give us efficent anonymous payments?

A: Not really, but they can give anonymous rate limiting



“No civilization can possibly survive to an interstellar spacefaring

phase unless it limits its numbers” (and its consumption)

— Carl Sagan

We’re headed for +4◦C by 2100, so uninhabitable tropics
and world carrying capacity below 1 billion people (Steffan).

50% odds “of a synchronous crop failure [> 10%] across all four
[major maize producing] countries during 2040s” (Chatham House)



Anonymous rationing uses msg = “moutarde“ ++ week ++ counter
And treats outputs as short lived nullifiers.

Also yields free-to-play games, promotional discounts, etc.



As fraudulent TLS and covid certificates are commonplace..

Q: How can ration cards be trusted?

A: By asking users trust a public list of residents, not certificates.



Sassafras



Sassafras: Semi-anonymous sortition of staked assignees
for fixed-time rhythmic assignment of slots

It’s a (semi) secret single leader election (semi-SSLE)
by cards against humanity.



Sassafras

Disadvantages:
- Network layer anonymity is weak, but we care little..

Advantages:

- Ouroboros Praos quality randomness

- Vastly more efficient than Boneh’s shuffle SSLEs

- Block producers can prove their slot in advance

- Users send tx to upcoming slots via Tor-like .onion circuits.

- Avoids need for memepools, saving bandwidth and CPU.

- Better MEV defenses

Smart contracts, the Ford Pinto of security.



Sassafras

Disadvantages:
- Network layer anonymity is weak, but we care little..

Advantages:

- Ouroboros Praos quality randomness

- Vastly more efficient than Boneh’s shuffle SSLEs

- Block producers can prove their slot in advance

- Users send tx to upcoming slots via Tor-like .onion circuits.

- Avoids need for memepools, saving bandwidth and CPU.

- Better MEV defenses

Smart contracts, the Ford Pinto of security.


