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Motivation

• Observable events: simulation or emulation
• Upper bound: formal methods such as e.g. network calculus
• Rare events: ?
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Motivation
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• Latency meansurements of layer 2 forwarders1

• Relatively stable latencies, but rare events at higher percentiles

1 Sebastian Gallenmüller et al., “Ducked Tails: Trimming the Tail Latency of(f) Packet Processing Systems,” in 3rd International Workshop on High-Precision, Predictable, and Low-Latency
Networking (HiPNet 2021), Izmir, Turkey, Oct. 2021.
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Solution

Extreme Value Theory (EVT):

“Extreme value theory is unique as a statistical discipline in that it develops techniques and models
for describing the unusual rather than the usual.”
— Coles, Stuart, et al. An Introduction to Statistical Modeling of Extreme Values. Vol. 208. London: Springer, 2001.

• Commonly used to predict rare events such as storms or floods
• Models the tail of distributions
• Model can be used to predict occurence of rare events belonging to the tail of the distribution
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Methodology

Steps to obtain an EVT model:

1. Select a threshold, indicating which values belong to the tail

2. Fit all values above the threshold to a Generalized Pareto Distribution (GPD)

3. GPD is defined by three parameters: Threshold (µ), Location (σ), and Tail (ξ)

Steps to evaluate an EVT model:

• Predict occurence of events using the GPD, check if they match observations
• Can be achieved using the Return Level
• Return Level is the value that is expected to be exceeded on average exactly once during a given Return Period

or

• Compare quantiles of EVT model to empirical quantiles of evaluation data
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Methodology
Latency Measurements2

Hardware setup:
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100 random network topologies and flow configurations:
Parameter Minimum Maximum Mean

∑
Number of Network Nodes 6 15 12 1,190
Number of Flows 19 59 35 3,559
Flow Lengths 2 9 3 —
Flow Rates [Mbit/s] 1.0 831 44 —
Link Rates [Mbit/s] 434 2000 705 —
Link Utilization Rates [%] 0 87 24 —
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• Per flow latecies
• Total of 14 billion la-

tency values as input
to EVT models

2 Wiedner, Florian, et al. "HVNet: Hardware-Assisted Virtual Networking on a Single Physical Host." INFOCOM WKSHPS CNERT 2022.
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Methodology

Goodness-of-fit for a Maximum Likelihood Estimator to
a GPD:

• Generate an EVT model for latencies of each
flow

• Maximum Likelihood Estimator (MLE) to fit em-
pirical data points over threshold to GPD

• Threshold selection such that resulting EVT
model is stable:

99.0 99.2 99.4 99.6 99.8 100.0
Threshold Percentile

0

5

σ
?

×105

−2

0

ξ

σ ?

ξ

Helm, Wiedner, Carle — Tail Latency Estimation and Verification 7



Methodology

Goodness-of-fit for a Maximum Likelihood Estimator to
a GPD:

• Generate an EVT model for latencies of each
flow

• Maximum Likelihood Estimator (MLE) to fit em-
pirical data points over threshold to GPD

• Threshold selection such that resulting EVT
model is stable:

99.0 99.2 99.4 99.6 99.8 100.0
Threshold Percentile

0

5

σ
?

×105

−2

0

ξ

σ ?

ξ

Helm, Wiedner, Carle — Tail Latency Estimation and Verification 7



Methodology
Return Period and Return Level

Return Period
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Return Level:
Return level is the value that is on average exceeded exactly
once during a given return period

xm = µ +
σ

ξ
·
[(

m ·
Dd>µ

D

)ξ
− 1

]
Observations:

• Return level for different values of the tail parameter ξ
and the length of the return period m

• ξ < 0: Return level converges to a fixed value
• ξ > 0: Return level diverges
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Methodology
Overall Workflow

Flow-level Latency
and Jitter Values

∀ Flows:
5% of Flow Data

ADF Test
for Stationarity

Points over
Threshold

MLE Estimation
of GPD

∀ Flows:
95% of Flow Data

Comparison

Prediction about
95% of Data

using 5% of Data

Return Levels Percentiles
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Evaluation
Return Level

Accuracy of return level predictions:

• Return level for 95% of data (unseen), i.e., predictions for a twentyfold time horizon
• Return level calculated with confidence intervals of confidence level 95%
• Calculated return value (± confidence interval) is exceeded exactly once in 75% of cases
• Reducing the time horizon to twofold increases accuracy to 85%

Bounds on return levels:
• Observe bounded as well as un-bounded return

levels
• Majority of flows have bounded return levels

Bounded Return Level Unbounded Return Level

3,507 (57.51%) 2,591 (42.49%)
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Evaluation
Percentiles

Comparison of percentiles between GPD of EVT model
and evaluation data (95% of data points):

Percentile 50 75 90 99 99.9 99.99 99.999 100

MdAPE [%] 0.7 1.0 1.8 4.2 6.8 9.6 11.4 16.8
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Conclusion

Contributions:

• Flow-level latency EVT models for low-latency virtual-
ized wired networks

• Verification of the approach by testing predictive power
of EVT models against twentyfold time periods of un-
seen latency data

• Comparison of EVT approach against other methods

More details in an upcoming paper (CNSM 2022):
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