Chair of Network Architectures and Services Department of Informatics Technical University of Munich

Tail Latency Estimation and Verification

Max Helm, Florian Wiedner, and Georg Carle

September 30, 2022

Academic Salon on Low-Latency Communication, Programmable Network Components and In-Network Computation

Munich, Germany

Chair of Network Architectures and Services Department of Informatics Technical University of Munich

Tur Uhrenturm

- Observable events: simulation or emulation
- Upper bound: formal methods such as e.g. network calculus
- Rare events: ?

•

•

- Latency meansurements of layer 2 forwarders¹
- · Relatively stable latencies, but rare events at higher percentiles

Sebastian Gallenmüller et al., "Ducked Tails: Trimming the Tail Latency of(f) Packet Processing Systems," in 3rd International Workshop on High-Precision, Predictable, and Low-Latency Networking (HiPNet 2021), Izmir, Turkey, Oct. 2021.

Extreme Value Theory (EVT):

"Extreme value theory is unique as a statistical discipline in that it develops techniques and models for describing the unusual rather than the usual."

- Coles, Stuart, et al. An Introduction to Statistical Modeling of Extreme Values. Vol. 208. London: Springer, 2001.

- Commonly used to predict rare events such as storms or floods
- Models the tail of distributions
- Model can be used to predict occurence of rare events belonging to the tail of the distribution

Steps to obtain an EVT model:

- 1. Select a threshold, indicating which values belong to the tail
- 2. Fit all values above the threshold to a Generalized Pareto Distribution (GPD)
- 3. GPD is defined by three parameters: Threshold (μ), Location (σ), and Tail (ξ)

Steps to obtain an EVT model:

- 1. Select a threshold, indicating which values belong to the tail
- 2. Fit all values above the threshold to a Generalized Pareto Distribution (GPD)
- 3. GPD is defined by three parameters: Threshold (μ), Location (σ), and Tail (ξ)

Steps to evaluate an EVT model:

- · Predict occurence of events using the GPD, check if they match observations
- Can be achieved using the Return Level
- Return Level is the value that is expected to be exceeded on average exactly once during a given Return Period

or

Compare quantiles of EVT model to empirical quantiles of evaluation data

Latency Measurements² Hardware setup:

ТШ

100 random network topologies and flow configurations:

Parameter	Minimum	Maximum	Mean	Σ
Number of Network Nodes	6	15	12	1,190
Number of Flows	19	59	35	3,559
Flow Lengths	2	9	3	_
Flow Rates [Mbit/s]	1.0	831	44	_
Link Rates [Mbit/s]	434	2000	705	_
Link Utilization Rates [%]	0	87	24	_

- Per flow latecies
- Total of 14 billion latency values as input to EVT models

² Wiedner, Florian, et al. "HVNet: Hardware-Assisted Virtual Networking on a Single Physical Host." INFOCOM WKSHPS CNERT 2022.

Goodness-of-fit for a Maximum Likelihood Estimator to a GPD:

- Generate an EVT model for latencies of each flow
- Maximum Likelihood Estimator (MLE) to fit empirical data points over threshold to GPD
- Threshold selection such that resulting EVT model is stable:

Goodness-of-fit for a Maximum Likelihood Estimator to a GPD:

- Generate an EVT model for latencies of each flow
- Maximum Likelihood Estimator (MLE) to fit empirical data points over threshold to GPD
- Threshold selection such that resulting EVT model is stable:

Methodology Return Period and Return Level

Return Level:

Return level is the value that is on average exceeded exactly once during a given return period

$$x_m = \mu + \frac{\sigma}{\xi} \cdot \left[\left(m \cdot \frac{D_{d > \mu}}{D} \right)^{\xi} - 1 \right]$$

Observations:

 Return level for different values of the tail parameter ξ and the length of the return period m

Methodology Return Period and Return Level

Return Level:

Return level is the value that is on average exceeded exactly once during a given return period

ΠП

$$x_m = \mu + \frac{\sigma}{\xi} \cdot \left[\left(m \cdot \frac{D_{d > \mu}}{D} \right)^{\xi} - 1 \right]$$

Observations:

- Return level for different values of the tail parameter ξ and the length of the return period m
- $\xi < 0$: Return level converges to a fixed value

Methodology Return Period and Return Level

Return Level:

Return level is the value that is on average exceeded exactly once during a given return period

ΠП

$$x_m = \mu + \frac{\sigma}{\xi} \cdot \left[\left(m \cdot \frac{D_{d > \mu}}{D} \right)^{\xi} - 1 \right]$$

Observations:

- Return level for different values of the tail parameter ξ and the length of the return period m
- $\xi < 0$: Return level converges to a fixed value
- $\xi > 0$: Return level diverges

ТШ

Methodology

Overall Workflow

Accuracy of return level predictions:

- Return level for 95% of data (unseen), i.e., predictions for a twentyfold time horizon
- Return level calculated with confidence intervals of confidence level 95%
- Calculated return value (\pm confidence interval) is exceeded exactly once in 75% of cases
- Reducing the time horizon to twofold increases accuracy to 85%

Accuracy of return level predictions:

- Return level for 95% of data (unseen), i.e., predictions for a twentyfold time horizon
- Return level calculated with confidence intervals of confidence level 95%
- Calculated return value (± confidence interval) is exceeded exactly once in 75% of cases
- Reducing the time horizon to twofold increases accuracy to 85%

Bounds on return levels:

- Observe bounded as well as un-bounded return levels
- Majority of flows have bounded return levels

Bounded Return Level	Unbounded Return Level			
3,507 (57.51%)	2,591 (42.49%)			

ТΠ

Evaluation

Percentiles

Comparison of percentiles between GPD of EVT model and evaluation data (95% of data points):

Percentile	50	75	90	99	99.9	99.99	99.999	100
MdAPE [%]	0.7	1.0	1.8	4.2	6.8	9.6	11.4	16.8

Evaluation

Percentiles

Comparison of percentiles between GPD of EVT model and evaluation data (95% of data points):

Percentile	50	75	90	99	99.9	99.99	99.999	100
MdAPE [%]	0.7	1.0	1.8	4.2	6.8	9.6	11.4	16.8

Comparison to other methods for selected tail percentiles (50th and 90th):

Relative Error

ТЛП

Conclusion

More details in an upcoming paper (CNSM 2022):

Contributions:

- Flow-level latency EVT models for low-latency virtualized wired networks
- Verification of the approach by testing predictive power of EVT models against twentyfold time periods of unseen latency data
- Comparison of EVT approach against other methods

