
https://www.comsys.rwth-aachen.de/

In-Network Computation

and Processor-based SmartNICs

René Glebke, Klaus Wehrle

Munich / Zoom Cyberspace, September 2022

Lessons and suggestions

from pushing the boundaries

2

In-Network Computation: State-of-the-art applications

 Programmable data planes enable scenarios that

require low latencies & high bandwidths

Network operation & management

Distributed algorithms & databases

Partial offloading of application logic

Data (pre-)processing for compute centers & sensors in CPS

Industrial feedback control

Energy network stabilization

 AQM/load balanc. Heavy-hitter handling DDoS protection

 Consensus Key-value caching Failure protection

Common pattern in most considered scenarios:

Few individual operations on many small items

3

In-Network Computation Platforms: ASICs vs. NPUs

 Programmable ASICs (e.g., Intel/Barefoot Tofino)

Fixed-pipeline architecture, processing “stages”

Constant, predictable processing times, several Tbps

Limited arithmetic, limited memory (atomic r/w access)

More limited availability

 Network Processor Units (e.g., Netronome Agilio)

Many-core RISC architecture, thread-based processing

Shared buses require coordination Timing hard to predict

Allow more complex operations, large stateful memory

Usually more affordable, less restrictive in application

 Inherent trade-off between flexibility & performance

4

INC Example: Coordinate Transformation [ICPS 21]: Setting

 Problem setting: Coordinate tracking in industry

Fast & accurate alignment of values from different systems

Problem: Calculation requires multiplication, trigonometry

Fixed point arithmetic, i.e., represent as ± [0…2^𝑑].[0…2^(31−𝑑)]

n x m matrix-vector multiplication

 Variant 1: Long multiplication (school variant)

- On ASICs: Recirculation Throughput down by 1/(2mn)

- On NPUs: Direct multiplication possible

 Variant 2: Log-space mult. (a*b = exp(log(a) + log(b))) with LUTs

- On ASICs: Large table sizes, but cannot reuse tables

- On NPUs: Medium table sizes, tables often reusable

Trigonometry tables may grow large (230 * 32 bit 4 GB of space)

 On ASICs: Split tables via sin 𝑎 + 𝑏 = sin 𝑎 ∙ cos 𝑏 + cos 𝑎 ∙ sin 𝑏

 On NPUs: Also approximate via 6th degree Chebyshev poly.

5

INC Example: Coordinate Transformation [ICPS 21]: Results

 Evaluation 1: Calculation times in controlled setting

9000 calculations each

Raw calculation times (darker): CPUs perform best

Multiplication support on NPUs costly, optimizations help

Round-trip times (darker + lighter): ASICs/NPUs profit

6

INC Example: Coordinate Transformation [ICPS 21]: Results

 Evaluation 2: Accuracy

Maximum tolerable error of 10 µm met by most ASIC/NPU

configurations, NPU-based approximation approach fails

 Evaluation 3: Reliability

ASIC/Tofino drops randomly after saturation point

 Need to prioritize recirculated traffic on this platform

7

NPU-based INC Example: Computer Vision Offloading [ENCP 19]: Setting

 Problem setting: In-network edge detection

Given: Picture 𝑃 (grayscale, 𝑝 × 𝑞 pixels)

Define: Filter 𝐹 (grayscale or binary, 𝑚 × 𝑛 pixels)

Filter response: 𝑅Δ𝐷𝑖𝑟 𝑥, 𝑦 = 𝑖=1
𝑚 𝑗=1

𝑛 𝑃 𝑥 − 𝑖 + 𝑎, 𝑦 − 𝑗 + 𝑎 𝐹Δ𝐷𝑖𝑟(𝑖, 𝑗)

Maximum response 𝑀 = 𝑅Δ𝐻 𝑥, 𝑦
2 + 𝑅Δ𝑉 𝑥, 𝑦

2

Can be approximated: 𝑀 ∝ 𝑅Δ𝐻 𝑥, 𝑦 + 𝑅Δ𝑉(𝑥, 𝑦)

 Prewitt operator: Scharr (symmetric Sobel) operator:

-47 0 47

-162 0 162

-47 0 47

-1 -1 -1

0 0 0

1 1 1

-47 -162 -47

0 0 0

47 162 47

𝐹Δ𝐻 𝐹Δ𝑉 𝐹Δ𝐻 𝐹Δ𝑉

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

8

NPU-based INC Example: Computer Vision Offloading [ENCP 19]: Setting

 Problem setting: In-network edge detection

Given: Picture 𝑃 (grayscale, 𝑝 × 𝑞 pixels)

Define: Filter 𝐹 (grayscale or binary, 𝑚 × 𝑛 pixels)

Filter response: 𝑅Δ𝐷𝑖𝑟 𝑥, 𝑦 = 𝑖=1
𝑚 𝑗=1

𝑛 𝑃 𝑥 − 𝑖 + 𝑎, 𝑦 − 𝑗 + 𝑎 𝐹Δ𝐷𝑖𝑟(𝑖, 𝑗)

Maximum response 𝑀 = 𝑅Δ𝐻 𝑥, 𝑦
2 + 𝑅Δ𝑉 𝑥, 𝑦

2

Can be approximated: 𝑀 ∝ 𝑅Δ𝐻 𝑥, 𝑦 + 𝑅Δ𝑉(𝑥, 𝑦)

 Prewitt operator: Scharr (symmetric Sobel) operator:

-47 0 47

-162 0 162

-47 0 47

-1 -1 -1

0 0 0

1 1 1

-47 -162 -47

0 0 0

47 162 47

𝐹Δ𝐻 𝐹Δ𝑉 𝐹Δ𝐻 𝐹Δ𝑉

-1 0 1

-1 0 1

-1 0 1

Independent of other pictures

Only local information needed

(surroundings of a pixel)

Only addition/subtraction

and multiplication of integers

Minimal global state (if any,

maximum 𝑀 for normalization)

Independent of other pictures

Only local information needed

(surroundings of a pixel)

Only addition/subtraction

and multiplication of integers

Minimal global state (if any,

maximum 𝑀 for normalization)

Common pattern in most current scenarios:

Few individual operations on many small items

9

NPU-based INC Example: Computer Vision Offloading [ENCP 19]: Implementation

 Application: Steering a toy car via P4 edge detection

Captured & preprocessed on car (Python program),

identification of middle of line in (pure) P4 program on NPU

 Challenges

Large payload not accessible in P4

Reduced chunk size Messaging overhead

NPU’s P4 pipeline too short for “complete” convolution

Use recirculations, split pipeline into multiple similar passes

NPU’s P4 also has no associative memory (neither ASIC’s)

Susceptible to re-ordering

NPU’s P4 programs are restricted in size

Maximum filter sizes

10

NPU-based INC Example: Computer Vision Offloading [ENCP 19]: Evaluation

 Real-world and synthetic benchmarks on

Netronome Agilio CX 2x25GbE SmartNICs

2 connected NICs: 1 as car gateway/generator, 1 for P4

 Filter- & chunk sizes: Up to 10x10 pixels

O(1): Pipeline lengths (in-/egress)

O(𝑛): Table entries, calculations per action

Good results at 5x5 already

 Throughput: 19 fps (5x5); 77 fps (10x10)

Processing of last chunk at 5x5: 150µs (stddev 1.3ms)

Processing of last chunk at 10x10: 187µs (stddev 0.6ms)

13.7% drops at 5x5; none for 10x10 buffering/recirculation

Normal mode,

host w/wireless interface

P4 mode

11

NPU-based INC Work-in-Progress: Extended CV Functionality I: Setting

 Problem setting: Data reduction via area-of-interest

Only send packets containing region with pixels > threshold

 Challenges

Many-core architecture + memory hierarchy

Using too much shared memory incurs overhead

Split local (“for-each-packet”) / global (“for-trailer”) ops

Local: Save min/max x/y coordinates for pixel values > threshold

Global: Calculate min/max over “local” thresholds

Asynchronous thread operation

Trailer of images may arrive before threads finish local ops

Process n locally directly, globally when n+1 trailer arrives

Trade lag of >= 1 image for consistency

12

NPU-based INC Work-in-Progress: Extended CV Functionality I: Results

 Evaluation: Introduced error levels / throughput

Measured deviation from ground truth (exact are-of-interest)

Sustainable throughput with < 1% error

640 x 480 px: 341 FPS

1024 x 768 pix: 138 FPS

1440 x 1080 px: 70 FPS

13

NPU-based INC Work-in-Progress: Extended CV Functionality II

 Problem setting: Data reduction via image diff

Only send packets when image differs significantly from last

 Main challenge

Need to save entire image to memory #Streams limited

 Evaluation: Again error levels, throughput

14

NPU-based INC Work-in-Progress: Extended CV Functionality III

 Problem setting: On-path Gaussian blur for images

Uses convolution operation from previous example

 Main challenge

Convolution costly + regions to convolute may cross packets

 Performing convolution on full packet too costly/slow

 Need to coordinate when to start which convolution (hard)

 Alternative: Sliding-window approach with lag

 Evaluation: Again error levels, throughput
Consistent error

rates of <1%

only for very

low bit rates

15

In-Network Computation, ASICs and NPUs: Challenges and Possible Directions

 Mathematical functionalities

ASICs: Need to diligently design LUTs early on

Further research LUT-based calculations in general?

Non-P4 NPUs: Few problems, but processing bounds unclear

P4 ASICs/NPUs: One-pass paradigm causes overhead

Recirculations required but reduce throughput

Recirculations also cause queueing problems (new vs. recirc’d pkts)

P4 ASICs/NPUs: One-stage-per-table paradigm

Recirculate packet (latency) vs. duplicate tables (memory)

 Introduce tables to read multiple entries from per pass?

Do we need “real” ALUs on Networking Hardware?

Divisions hard but needed even in “core networking” scenarios…

At least some statistical functions such as (rolling) avg, stddev?

16

In-Network Computation, ASICs and NPUs: Challenges and Possible Directions

 Architecture / memory organization

P4 ASICs/NPUs: Cannot access full packet

Workaround 1: Define payload as “headers” Parsers limited…

Workaround 2: Make packets smaller Messaging overhead…

Fundamental limitation?

P4 ASICs/NPUs: Read-modify-write memory access

Required for pipelined execution

Allow conditional admittance (“per-flow register locking”)?

ASICs/NPUs: Re-ordering and multiple-packet data hard

Re-formulate problems so that they are more “local”?

Consider “lagged” execution & “trigger packets”?

Introduce “accumulation memory” to compensate?

17

In-Network Computation, ASICs and NPUs: Challenges and Possible Directions

 Further challenges / thoughts

ASICs: Limited packet generation on the data plane

Packet generator highly limited (1 fixed packet / pipeline) to rewrite

Use templates that can replace ingress packets in egress?

ASICs: Limited time-awareness of DP (CP packets & pkgten)

Add further mechanism for time-triggred DP operations?

ASICs/NPUs: Lack of cryptographic support

Big Netronome NICs have “crypto” modules; functionality unclear

Allow hashes / checksums beyond CRC/IP?

Message authentication code support?

AES may map to lookup / match-action principle [Che20]

Safe mechanism to share/deploy secrets/keys on-path?

18

In-Network Computation and Processor-based SmartNICs: Summary

 Processing data on-path is still in its infancy

 Scenarios meant to show viability of the approach

and test out boundaries

 Further work on our side

Security/Reliability: SYMBIOSYS Project: Software Testing

Scalability: MAKI Project: Pipeline Multi-Tenancy

Standardization: IRTF COIN: Use Case Draft RFC

19

Credits

 Parts of these slides are based on joint work with Johannes Krude, Ike Kunze, Jan Scheiper, Matthias

Bodenbenner, Robert H. Schmitt (all RWTH Aachen University)

 Pictures on slides 1, 3, 10: Barefoot Networks (Routers) & Netronome (NICs)

 Picture on slides 2/18: Wikimedia / Victorgrigas
(adapted (cropped) from https://commons.wikimedia.org/w/index.php?title=File:Wikimedia_Foundation_Servers-

8055_22.jpg&oldid=218547099)

CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0/)

 Graphic on slide 3 bottom: Felix Senger, COMSYS, RWTH Aachen University

 Pictures on slides 7/8: University of Central Florida
(adapted (cropped, filtered) from https://www.ucf.edu/pegasus/files/2015/10/HEADER_Fairwinds_PEGF15.jpg)

 Pictures on slides 11-13: Felix Senger, COMSYS, RWTH Aachen University

 Picture on slide 14: Wikimedia / Cmglee
(adapted from https://commons.wikimedia.org/w/index.php?title=File:Image_pyramid.svg&oldid=474572310)

CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)

 Picture on slide 15: Wikimedia / Mykl Roventine
(adapted from https://commons.wikimedia.org/w/index.php?title=File:The_ladder_of_life_is_full_of_splinters.jpg&oldid=450746547)

CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)

https://creativecommons.org/licenses/by-sa/3.0/
https://www.ucf.edu/pegasus/files/2015/10/HEADER_Fairwinds_PEGF15.jpg
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0

