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Random number generation
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Structure of this lecture

Generating U(0,1) random numbers

Motivation

Overview on RNG families

Linear congruential generators (LCG)

Statistical properties, statistical (empirical) tests

Histogram

χ2 test for uniformity

Correlation tests: Runs-up, sequence

Theoretical aspects, theoretical tests

Period length

Spectral test

RNG that are better than LCG
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Recall the inversion method

Generate uniformly distributed numbers ∈ 0.0 … 1.0

Compute inverse A-1(t) of PDF A(t)

Generate samples
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Generating U(0,1) random numbers is crucial

For all random number generation methods, we need 
uniformly distributed random numbers from ]0,1[
⇒ U(0,1) random numbers are required

Mandatory characteristics

Random (…obviously)

Uniform (make use of the whole distribution function)

Uncorrelated (no dependencies): difficult!

Reproducible (for verification of experiments) 
→ use pseudo random numbers

Fast (usually, there is a need for a lot of samples)
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RNG in simulation vs. RNG in cryptography

Also need for random numbers in cryptography

Key generation

Challenge generation in challenge-response systems

…

Additional requirement:

Prediction of future “random” values by sampling 
previous values must not be possible

In simulation: not an issue if there is no real correlation

Lighter requirement:

RNs are not used constantly, only in ~start-up phases
⇒ speed is not of much importance

In simulation: need lots of numbers
⇒ speed is very important
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Generation of U(0,1) random numbers

Generation approaches

“Real”, “natural” random numbers: sampling from 
radioactive material or white noise from electronic 
circuits, throwing dice, drawing from an urn, …

• Problems:

– If used online: not reproducible

– Tables: uncomfortable, not enough samples

Pseudo random numbers: recursive arithmetic formulas 
with a given starting value (seed)

• in hardware: shift register with feedback (based on primitive 
polynomials as feedback patterns)

• in software: linear congruential generator (LCG) (Lehmer, 
1951), …
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Generation of U(0,1) random numbers: overview

Main families:

Linear congruential generator (LCG): the simplest

General congruential generators

Quadratic congruential generator

Multiple recursive generators

Shift register with feedback (Tausworthe)

E.g., Mersenne Twister: state-of-the-art

Composite generators: output of multiple RNG

E.g., use one to shuffle (“twist”) the output of the other
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RNG: alternatives unsuitable for simulation

Algorithms from cryptography
For example: counter→AES, counter→SHA1, 
counter→MD5, etc.

Usually way too slow

Calculate transcendent numbers (e.g., π or e), view 
their digits as random

E.g.: digits of 100,000th decimal place of π onwards

Problem: Are they really random? There seems to be 
some structure…

Physical generators (cf. previous lecture)
Not reproducible, no seed

Tables with pre-computed random numbers
We need too many random numbers, the tables would 
have to be huge…
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Linear congruential generators

Calculate RN  from previous RN using some formula

Sequence of integers                  defined by

with modulus m, multiplier a,

increment c, and seed Z0

c=0: multiplicative LCG

Example: 

(Lewis, Goodman, Miller, 1969)

c>0: mixed LCG

1 2, ,Z Z K

1( ) (mod )i iZ a Z c m−= ⋅ +

( )31
116807 mod 2 1i iZ Z −= ⋅ −
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…but they don’t create floats, but integers > 1?!

Obviously,
Zi = something mod m

and
something mod m < m

⇒ Just normalise the result!

Divide by m? But then, 1.0 cannot be attained.

Better: Divide by m–1.
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Do they really generate uniformly distributed random 
numbers?

Test for uniformity:
Create a number of samples from RNG

Test if these numbers are uniformly distributed

A number of statistical tests to do this:
χ2 test (deutsch: Chi-Quadrat-Anpassungstest)

Kolmogorov-Smirnov test

… and a whole lot of others! For example:
• Cramér-von Mises test

• Anderson-Darling test

Graphical examination (not real tests):
Plot histogram / density / PDF

Distribution-function-difference plot

Quantile-quantile plot (Q-Q plot)

Probability-probability plot (P-P plot)

(later in course)
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Histogram

Given a series of n measurements Xi

Partition the domain min{Xi} … max{Xi}
into m intervals I1…Im
Count how many Xi fall into which interval Ij
Plot it:

~discretised density function

Recommendation:  nm ≈
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What the histogram can reveal (1)

Obviously not U(0,1) random variables:

(…okay, we could have calculated min and max)
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What the histogram can reveal (2)

Obviously not U(0,1) random variables:
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What the histogram can reveal (3a)

Looks like a U(0,1) random variable…:
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What the histogram can reveal (3b)

…but obviously not U(0,1) random variables: huge gaps!
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Statistical tests

Scenario: Given a set of measurements, we want to 
check if they conform to a distribution; here: U(0,1)

Graphs like presented before are nice indicators,
but not really tangible: “How straight is that line?” etc.

We want clearer things: Numbers or yes/no decisions

Statistical tests can do the trick, but…
Warning #1: Tests only can tell if measurements do not
fit a particular distribution—i.e., no “yes, it fits” proof!

Warning #2: The result is never absolutely certain, there 
is always an error margin.

Warning #3: Usually, the input must be ‘iid’:
• Independent

• Identically distributed

⇒You never get a ‘proof’, not even with an error margin!
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χ2 test (Pearson, 1900)

Input:

Series of n measurements X1 … Xn

A distribution function f (the ‘theoretical function’)

Measurements will be tested against the distribution

~formal comparison of a histogram with the density 
function of the theoretical function

Null hypothesis H0:
The Xi are IID random variables with distribution 
function f
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χ2 test: How it works

Divide [0…1] into k equal-size intervals

Count how many Xi fall into which interval (histogram):

Nj := number of Xi in j-th interval [aj-1 … aj[

Calculate how many Xi would fall into the j-th interval 
if they were sampled from the theoretical distribution:

(f: density of theor. dist.)

Calculate squared normalised difference between the 
observed and the expected:

Obviously, if χ2 is “too large”, the differences are too 

large, and we must reject the null hypothesis

But what is “too large”?

∫
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χ2 test: Using the χ2 distribution

χ2 distribution

A test distribution

Parameter: degrees of freedom (short df)

χ2(k–1 df) = Γ(½(k–1) , 2) (gamma distribution)

Mathematically: The sum of n independent
squared normal distributions

Compare the calculated χ2 against the χ2 distribution

If we use k intervals, then χ2 is distributed 
corresponding to the χ2 distribution with k–1 df

Let χ2
k–1,1–α be the (1–α) quantile of the distribution

α is called the confidence level

Reject H0 if χ2 > χ2
k–1,1–α (i.e., the Xi do not follow the

theoretical distribution function)
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χ2 test and degrees of freedom

χ2 test can be used to test against any distribution

Easy in our case: We know the parameters of the 
theoretical distribution f —it’s U(0,1)

Different in the general case:
For example, we may know it’s N(μ, σ)   (normal distribution)

but we know neither μ nor σ
Fitting a distribution: Find parameters for f that make f
fit the measurements Xi best

Topic of a later lecture

Theoretically:
Have to estimate m parameters ⇒ Also have to take 
χ2

k–m–1,1–α into account

Practically:
m≤2 and large k ⇒ Don’t care…



Network Security, WS 2008/09, Chapter 9 23IN2045 – Discrete Event Simulation, SS 2010 23

χ2: which parameters?

How many intervals (k)?
A difficult problem for the general case

Warning: A smaller or a greater k may change the 
outcome of the test!

As a general rule, use k>100

As a general rule, make the intervals equal-sized

As another general rule, make sure that ∀j: npj ≥ 5
(i.e., have enough samples that we expect to have at 
least 5 samples in each interval)

⇒ As a general rule, you need a lot of measurements!

What confidence level?
At most α=0.10 (almost too much);
typical values: 0.001, 0.01, 0.05 [ , and 0.10]

The smaller, the better confidence in the test result
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Alternatives to test

Kolmogorov-Smirnov test (K-S test)
Another very popular test

Advantages:
• No grouping into intervals required

• Valid for any sample size, not only for large n
• More powerful than χ2 for a number of distributions

Disadvantages:
• Applicability more limited than χ2
• Difficult to apply to discrete data

• If distribution needs to be fitted (unknown parameters),
then K-S works only for a number of distributions

Anderson-Darling test (A-D test)
Higher power than K-S for some distributions

…a lot of other tests
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Tests for uniformity: limitations

Consider this sequence of drawn “random numbers”:

They are in U(0,1) … but do they seem random!?
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Recall our requirements for RNG

RNs have to be uncorrelated — how to test this?

Statistical tests:
Draw some random numbers and examine them

Runs-up test

Autocorrelation function (later in course)

Serial test

…

Theoretical parameters and theoretical tests:

Length of period

Spectral test

Lattice test

…
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Runs-up test

Run up := the length of
a contiguous sequence
of monotonically increasing Xi.

Example sequence:
0.86 > length: 1
0.11 < 0.23 > length: 2
0.03 < 0.13 > length: 2
0.06 < 0.55 < 0.64 < 0.87 > length: 4
0.10 length: 1

Calculate ri (number of runs up of length i)

Compute a test statistic value R, using the ri and
a bestranging zoo of esoteric constants aij and bj

R will have an approximate χ2 distribution with 6 df.
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Serial test

Find possible correlations between subsequently 
drawn values

Visual “tests”:

2D plot of Xi and Xi-1

3D plot of Xi and Xi-1 and Xi-2

Generalisation: Serial test
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LCG examples (1/5)
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LCG examples (2/5)
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LCG examples (3/5)
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LCG examples (4/5)
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X(n) (normiert auf [0,1])

X(n+1)=(262145*X(n)+1) mod 2^35, X(0)=47594188, 0 < n < 10000
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LCG examples (5/5)

(see Law/Kelton: Simulation Modeling and Analysis, 4th edition, Fig. 7.4, p. 413)
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Serial test

“a generalised and formalised version of the plots”

Consider non-overlapping d-tuples of subsequently 
drawn random variables Xi :
U1 = (X1, X2, … Xd) U2 = (Xd+1, Xd+2, …, X2d) …

These Ui’s are vectors in the d-dimensional space

If the Xi are truly iid random variables, then the Ui are 
truly random iid vectors in the space [0…1]d

(the d-dimensional hypercube)

Test for d-dimensional uniformity (rough outline):
Divide [0…1] into k equal-sized intervals
Calculate a value χ2(d) based on the number of Ui

for each possible interval combination
χ2(d) has approximate distribution χ2(kd–1 df)

Rest: same as χ2 test above
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RANDU

A LCG with setup:
Zi = 65,539 ∙ Zi–1 mod 231

Advantage: It’s fast.
mod 231 can be calculated with a simple AND operation

65,539 is a bit more than 216; thus the multiplication 
(=expensive operation) can be replaced by a bit shift of 
16 bit plus three additions (=cheap operations)

Why 65,539? It’s a prime number.

Disadvantage:
An infamously bad RNG! Never, ever use it!

d≥3: The tuples are clumped into 15 plains (remember 
the animated 3D cube? That was RANDU!)

A lot of simulations in the 1970s used RANDU
⇒ sceptical view on simulation results from that time
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Theoretical parameters, theoretical tests

Tests so far: Based on drawing samples from RNG

No absolute certainty!
Usually, only a small subset of entire period is used
Remember the χ2 test

Remember
Dilbert:

Theoretical parameters and tests
Based directly on the algorithm and its parameters

No samples to be drawn

Hard mathematical stuff…
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Period length

After some time, the “random” numbers must repeat 
themselves.
Why?

LCG: Zi is entirely determined by Zi–1

The same Zi–1 will always produce the same Zi

There are only finitely many different Zi

How many?
We take mod m ⇒ at most m different values

Call this the period length
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Theorem by Hull and Dobell 1962

A LCG has full period if and only if the following 
three conditions hold:
1. c is relatively prime to m

(i.e., they do not have a prime factor in common)

2. If m has a prime factor q,
then (a—1) must have a prime factor q, too

3. If m is divisible by 4,
then (a—1) must be divisible by 4, too

⇒Prime numbers play an important role
Remember RANDU?
At least, it used a prime number…

Multiplicative RNGs (i.e., no increment Zi+c) cannot 
have period m.
(But period (m—1) is possible if m and a are chosen 
carefully.)
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LCG and period length considerations

On 32 bit machines, m≤231 or m≤232 due to efficiency 
reasons ⇒ period length 4.3 billion

Calculating that many random numbers only takes a 
couple of seconds on today’s hardware

Theory suggests to use only                        numbers;
that’s only 65,000 random numbers

How many random numbers do we need?
Example:

Simulate behaviour of 1,000 Web hosts

Each host consumes on average 1 random number per 
simulation second

Result: We can only simulate for one minute!

We need much longer period lengths

lengthperiod _



Network Security, WS 2008/09, Chapter 9 40IN2045 – Discrete Event Simulation, SS 2010 40

Spectral test (coarse description)

~ The theoretical variant of the serial test

Observation by Marsaglia (1968):
“Random numbers fall mainly in planes.”

Subsequent overlapping (!) tuples Ui:
U1=(X1, X2, … Xd) U2=(X2, X3, …, Xd+1) …

fall on a relatively small number of (d–1)-dimensional 
hyperplanes within the d-dimensional space

Note the difference to the serial test! (overlapping)

‘Lattice’ structure

Consider hyperplane families that cover all tuples Ui

Calculate the maximum distance between 
hyperplanes. Call it δd.

If δd is small, then the generator can ~uniformly fill up 
the d-dimensional space



Network Security, WS 2008/09, Chapter 9 41IN2045 – Discrete Event Simulation, SS 2010 41

Spectral test and LCG

For LCG, it is possible to give a theoretical lower 
bound δd*:

δd ≥ δd* = 1 / (γd m1/d)

γd is a constant whose exact value is only known for 
d≤8 (dimensions up to 8)

LCG do not perform very well in the spectral test:

All points lie on at most m1/n hyperplanes (Marsaglia’s
theorem)

Serial test: similar

There are way better random number generators than 
linear congruential generators.
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Discussion of LCGs

Advantages:
Easy to implement

Reproducible

Simple and fast

Disadvantages:
Period (length of a cycle) depends on
parameters a, c, and m

Distribution and correlation properties of generated 
sequences are not obvious

A value can occur only once per period (unrealistic!)

By making a bad choice of parameters, you can
screw up things massively

Bad performance in serial test / spectral test even for 
good choice of parameters
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Beyond LCGs

Why linear?

Quadratic congruential generator:
Zi = (a ∙ (Zi–1)

2 + a’ ∙ Zi–1) mod m

Period is still at most m

Why only use one previous Xi?

Multiple recursive generator:
Zi = (a1Zi–1 + a2Zi–2 + a3Zi–3 + … + aqZq) mod m

Period can be mq–1 if parameters are chosen properly

Why not change multiplier a and increment c
dynamically, according to some other congruential
formula?

Seems to work alright
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Feedback Shift Register Generators (1/2)

Linear feedback shift register generator (LFSR) 
introduced by Tausworthe (1965)

Operate on binary numbers (bits), not on integers

Mathematically, a multiple recursive generator:
bi = (c1bi–1 + c2bi–2 + c3bi–3 + … + cqbq) mod 2

ci: constants that are either 0 or 1

cq = 1 (why?)

Observe that + mod 2 is the same as XOR
(makes things faster)

In hardware:
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Feedback Shift Register Generators (2/2)

Usually only two cj coefficients are 1, thus:
bi = (bi–r + bi–q) mod 2

LFSR create random bits, not integers
Concatenate ℓ bits to form an ℓ-bit integer:

Wi = b(i–1)ℓ+1 b(i–1)ℓ+2 … biℓ

Properties
Period length of the bi = 2q–1 if parameters chosen 
accordingly (weird maths involved: characteristic 
polynomial has to be primitive over Galois field ℱ2 …)

Period length of the generated ints accordingly lower?
• Depends on whether ℓ | 2q–1 or not—probably not the case

• But there may be some correlation after one period

Statistical properties not very good

Combining LFSRs improves statistics and period
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Generalised feedback shift register (GFSR)

Lewis and Payne (1973)

To obtain sequence of ℓ-bit integers Y1, Y2, …:

Leftmost bit of Yi is filled with LFSR-generated bit bi

Next bit of Yi is filled with LFSR-generated bit after 
some “delay” d: bi+d

Repeat that with same delay for remaining bits up to 
length ℓ

Mathematical properties

Period length can be very large if q is very large, e.g., 
Fushimi (1990): period length = 2521–1 = 6.86 ∙ 10156

If ℓ<q, then many Yi’s will repeat during one period run 
(Is that good or bad?)

If two bits (as with LFSR), then Yi = Yi–r ⊕ Yi–q

XOR
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Mersenne Twister

Before we go into the mathematical details…
Very, very long period length: 219,937–1 > 106,000

Very good statistical properties: OK in 623 dimensions

Quite fast

State of the art: One of the best we have right now
The RNG of choice for simulations

Default RNG in Python, Ruby, Matlab, GNU R

Admittedly, there are even (slightly) better RNGs, cf. TestU01 
paper

Two warnings:
Not suitable for cryptographic applications:
Draw 624 random numbers and you can predict all others!

Can take some time (“warm-up period”) until the stream generates 
good random numbers

• Usually hidden from programmer through library

• If in doubt, discard the first 10,000 drawn numbers
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Mersenne Twister: details

Twisted GFSR (TGFSR)

Matsumoto, Kurita (1992, 1994)

Replace the recurrence of the GFSR by
Yi = Yi–r ⊕ A ∙ Yi–q

where:
• the Yi are ℓ x 1 binary vectors

• A is an ℓ x ℓ binary matrix

Period length = 2qℓ–1 with suitable choices for r, q, A

Mersenne Twister (MT19937)

Matsumoto, Nishimura (1997, 1998)

Clever choice of r, q, A and the first Yi to obtain good 
statistical properties

Period length 219,937–1 = 4.3 ∙ 106001 (Mersenne prime: 2n–1)
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Digression: Period lengths revisited

What period lengths do we actually require?

Estimate #1:
A cluster of 1 million hosts

each of which draws 1,000,000 ∙ 232 per second 
(~1,000,000 times as fast as today’s desktop PCs)

for ten years

will require…

5.6 ∙ 1027 random numbers

(Make the PCs again 106 times faster ⇒ 5.6 ∙ 1033)

Estimate #2: What’s the estimated number of 
electrons within the observable universe (a sphere 
with a radius of ~46.5 billion light years)

About 1080 (± take or leave a few powers of 10)
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Test batteries

A lot of tests, a lot of different RNGs

How to compare them?

Benchmark suites (‘Test batteries’)

that bundle many statistical tests:

TestU01 (L’Ecuyer)

DIEHARD suite (Marsaglia)

NIST test suite (National Institute of Standards 

and Technologies;

≙ Physikalisch-Technische Bundesanstalt)
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Conclusion: Quality tests for RNG

Empirical tests (based on generated samples)
For U(0,1) distribution: χ2 test

For independence: autocorrelation, serial, run-up tests

Theoretical tests (based on generation formula)
Basic idea: test for k-dimensional uniformity

Points of sequence form system of hyperplanes

Computation of distance of hyperplanes for several 
dimensions k

Rather difficult optimization problem

Conclusion
Implement/use only tested random number generators 
from literature, no “home-brewed” generators!

When in doubt, use the Mersenne Twister
(but not for cryptography!)
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RNG: outlook

A wide research field, still somewhat active
Many more algorithms exist

Many more tests for randomness exist

More are being developed

If you are interested in this topic, you might want to 
have a look at this quite readable paper:

L’Ecuyer, Simard
TestU01: a C library for empirical testing of random 
number generators
ACM Transactions on Mathematical Software,
Volume 33, No. 4, 2007

Daniel Bueb
Random Number Generators
Semesterarbeit, EPFL, 2005


