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v6q Structure of this lecture

a Generating U(0,1) random numbers
= Motivation
= Overview on RNG families
0 Linear congruential generators (LCG)
0 Statistical properties, statistical (empirical) tests
= Histogram
= x?2 test for uniformity
= Correlation tests: Runs-up, sequence
0 Theoretical aspects, theoretical tests
= Period length
= Spectral test

a0 RNG that are better than LCG
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gi(.‘ Recall the inversion method

U~u@,1) | A

0 Generate uniformly distributed numbers € 0.0 ... 1.0
0 Compute inverse A-l(t) of PDF A(t)
0 Generate samples




X - - .
vsq Generating U(0,1) random numbers is crucial

a For all random number generation methods, we need
uniformly distributed random numbers from ]0,1]
= U(0,1) random numbers are required
a Mandatory characteristics
» Random (...obviously)
» Uniform (make use of the whole distribution function)
= Uncorrelated (no dependencies): difficult!

= Reproducible (for verification of experiments)
— use pseudo random numbers

= Fast (usually, there is a need for a lot of samples)
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;g'.‘ RNG in simulation vs. RNG in cryptography

a Also need for random numbers in cryptography
= Key generation
» Challenge generation in challenge-response systems

0 Additional requirement:

» Prediction of future “random” values by sampling
previous values must not be possible

» |n simulation: not an issue if there is no real correlation

a Lighter requirement:

» RNs are not used constantly, only in ~start-up phases
= speed is not of much importance

= |n simulation: need lots of numbers
= speed Is very important
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'4'. Generation of U(0,1) random numbers

0 Generation approaches

» “Real”, “natural” random numbers: sampling from
radioactive material or white noise from electronic
circuits, throwing dice, drawing from an urn, ...

e Problems:
— If used online: not reproducible
— Tables: uncomfortable, not enough samples

= Pseudo random numbers: recursive arithmetic formulas
with a given starting value (seed)

¢ in hardware: shift register with feedback (based on primitive
polynomials as feedback patterns)

¢ in software: linear congruential generator (LCG) (Lehmer,
1951), ...
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— X/ s -
vsq Generation of U(0,1) random numbers: overview

Main families:
0 Linear congruential generator (LCG): the simplest
0 General congruential generators
* Quadratic congruential generator
= Multiple recursive generators
o Shift register with feedback (Tausworthe)
» E.g., Mersenne Twister: state-of-the-art
0 Composite generators: output of multiple RNG
* E.g., use one to shuffle (“twist”) the output of the other
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'4'. RNG: alternatives unsuitable for simulation

a Algorithms from cryptography

= For example: counter—AES, counter—SHA1,
counter—MD5, etc.

» Usually way too slow

0o Calculate transcendent numbers (e.g., T or €), view
their digits as random

= E.g.: digits of 100,000t decimal place of m onwards

* Problem: Are they really random? There seems to be
some structure...

0 Physical generators (cf. previous lecture)
* Not reproducible, no seed

0 Tables with pre-computed random numbers

* We need too many random numbers, the tables would
have to be huge...
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'4'. Linear congruential generators

0 Calculate RN from previous RN using some formula
0 Sequence of integers Z,,Z,,... defined by

Z =(a-Z_,+c)(modm)

with modulus M, multiplier a,
increment C, and seed Z,

a c=0: multiplicative LCG
SXAmPIe 7. -16807-2,, (mod 2 -1)
(Lewis, Goodman, Miller, 1969)

a C>0: mixed LCG
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iﬁ".‘ ...but they don’t create floats, but integers > 1?!

a Obviously,
Z; = something mod m
and

something mod m <m

o = Just normalise the result!
» Divide by m? But then, 1.0 cannot be attained.
= Better: Divide by m-1.




v.% Do they really generate uniformly distributed random
»a9 numbers?

Q Test for uniformity:
= Create a number of samples from RNG
» Test if these numbers are uniformly distributed
a A number of statistical tests to do this:
= X2 test (deutsch: Chi-Quadrat-Anpassungstest)
= Kolmogorov-Smirnov test

= ... and a whole lot of others! For example:
e Cramér-von Mises test
¢ Anderson-Darling test

o Graphical examination (not real tests):
» Plot histogram / density / PDF
= Distribution-function-difference plot
= Quantile-quantile plot (Q-Q plot) > (later in course)
» Probability-probability plot (P-P plot) _

~
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ey ..
wq Histogram

a Given a series of n measurements X;

a Partition the domain min{X} ... max{Xj}
into m intervals /,.../

a Count how many X; fall into which interval J,
a Plot it: Hstogram or

ency
100 150 200 250 300

Frequ

50

J W-_.._

Xi

a0 ~discretised density function
0 Recommendation: M= \/ﬁ




;ﬁ"i What the histogram can reveal (1)

Obviously not U(0,1) random variables:

Histogram of RN
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(...okay, we could have calculated min and max)




e

Obviously not U(0,1) random variables:

Histogram of RN
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Looks like a U(0,1) random variable...:

Histogram of RN

2000
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;ﬁ".‘ What the histogram can reveal (3b)

...but obviously not U(0,1) random variables: huge gaps!

Histogram of RN
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ig'.‘ Statistical tests

O Scenario: Given a set of measurements, we want to
check if they conform to a distribution; here: U(0,1)

0 Graphs like presented before are nice indicators,
but not really tangible: “How straight is that line?” etc.

o We want clearer things: Numbers or yes/no decisions

O Statistical tests can do the trick, but...

= Warning #1: Tests only can tell if measurements do not
fit a particular distribution—i.e., no “yes, it fits” proof!
= Warning #2: The result is never absolutely certain, there
Is always an error margin.
= Warning #3: Usually, the input must be fid’:
¢ |Independent
¢ |dentically distributed

» =You never get a ‘proof’, not even with an error margin!
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g X test (Pearson, 1900)

a Input:

= Series of n measurements X, ... X,

= A distribution function f (the ‘theoretical function’)

a Measurements will be tested against the distribution

» ~formal comparison of a histogram with the density
function of the theoretical function

a Null hypothesis HO:
The X; are IID random variables with distribution
function f
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2% x° test: How it works

0 Divide [0...1] into k equal-size intervals

a0 Count how many X: fall into which interval (histogram):

Nj := number of X; in j-th interval [a;, ... a]

a Calculate how many X: would fall into the j-th interval
if they were sampled from the theoretical distribution:

P; = j f (x)dx (f- density of theor. dist.)

o Calculate squared normalised difference between the
observed and the expected:

< (N —np;)°
2 . J J
X =
12:1: np;
o Obviously, if x° is “too large”, the differences are too
large, and we must reject the null hypothesis

o But what is “too large”?
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;ﬁv.“ X2 test: Using the )2 distribution

a x? distribution
= A test distribution
= Parameter: degrees of freedom (short df)
= v2(k=1 df) = [ (Ya(k—1), 2)
» Mathematically: The sum of n independent
squared normal distributions
0 Compare the calculated x? against the x? distribution

= |f we use k intervals, then X2 is distributed
corresponding to the x? distribution with k-1 df

= Let X%,y 1_, De the (1-a) quantile of the distribution

» ¢ is called the confidence level

= Reject HO if X* > X%,_; 4_, (i.e., the X; do not follow the
theoretical distribution function)
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;ﬁv'.‘ X2 test and degrees of freedom

0 X° test can be used to test against any distribution

a Easy in our case: We know the parameters of the
theoretical distribution f —it’s U(0,1)

0 Different in the general case:
* For example, we may know it’s N(¢;, 0) (normal distribution)
but we know neither i/ nor o
» Fitting a distribution: Find parameters for f that make f
fit the measurements X; best

= Topic of a later lecture

a Theoretically:
Have to estimate m parameters = Also have to take

Xi-m-11-o INtO account

0 Practically:
m<2 and large kK = Don’t care...
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VA% - ?
X X2: which parameters

0 How many intervals (k)?
= A difficult problem for the general case

= Warning: A smaller or a greater k may change the
outcome of the test!

= As a general rule, use k>100
= As a general rule, make the intervals equal-sized

= As another general rule, make sure that Vj: np; = 5
(i.e., have enough samples that we expect to have at
least 5 samples in each interval)

0 = As a general rule, you need a lot of measurements!

a What confidence level?

= At most a=0.10 (almost too much);
typical values: 0.001, 0.01, 0.05 [, and 0.10]

= The smaller, the better confidence in the test result
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X .
;i(.‘ Alternatives to test

0 Kolmogorov-Smirnov test (K-S test)
= Another very popular test

= Advantages:
e No grouping into intervals required

¢ Valid for any sample size, not only for large n
e More powerful than x? for a number of distributions

» Disadvantages:
e Applicability more limited than x?

e Difficult to apply to discrete data

e |f distribution needs to be fitted (unknown parameters),
then K-S works only for a number of distributions

0 Anderson-Darling test (A-D test)
» Higher power than K-S for some distributions
Q ...a lot of other tests
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w4q Tests for uniformity: limitations

0 Consider this sequence of drawn “random numbers”:

1.0

@ g g o &)
& % <§ @
3 g & > & 3
i i f 5 2
I B A A
5 > ® T & %5
s .| & y £ &
-E o é%) (%f é? é? (é%
S g 2 2 $ &
~ | & % @% - g
=] £ g % $ 8
® ; $ @ $
g 4 & 0 Q@ 0
0 100 200 300 400

Index (i-th random number)

a They are in U(0,1) ... but do they seem random!?




ey )
sg Recall our requirements for RNG
S\

a0 RNs have to be uncorrelated — how to test this?

0 Statistical tests:
Draw some random numbers and examine them

* Runs-up test

= Serial test

0 Theoretical parameters and theoretical tests:
* |ength of period
= Spectral test




ey,
24 Runs-up test

a Run up := the length of
a contiguous seguence
of monotonically increasing X.

0 Example sequence:
0.86 >
0.11 <0.23 >
0.03<0.13 >
0.06 <0.55<0.64 <0.87 >
0.10

engt
engt
engt
engt
engt

a Calculate r; (number of runs up of length /)

0 Compute a test statistic value R, using the r; and

D D D EED ED )

A AN -

a bestranging zoo of esoteric constants a; and b,
a R will have an approximate x? distribution with 6 df.
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X/ .
V4%
g Serial test

a Find possible correlations between subsequently
drawn values

0 Visual “tests”:

= 2D plot of X; and X_,

= 3D plot of X; and X._; and X,_,
0 Generalisation: Serial test
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LCG examples (3/5)

(
4

/

0, 0 <n <50000

X(n+

1)=(129*X(n)+1) mod 235, X(0)

([1'0] sne weiwiou) (L+u)X
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X(n) (normiert auf [0,1])
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74¢q LCG examples (4/5)

1 X(n+1)=(262145*X(n)+1) mod 235, X(0)=47594188, 0 < n < 10000
S
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(see Law/Kelton: Simulation Modeling and Analysis, 4t edition, Fig. 7.4, p. 413)
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VA%
24 Serial test

“a generalised and formalised version of the plots”

o Consider non-overlapping d-tuples of subsequently
drawn random variables X: :
U, = (X, X5, ... X)) U, = X1 Xgpor oo Xop)

a0 These U;’s are vectors in the d-dimensional space

a If the X are truly iid random variables, then the U, are
truly random iid vectors in the space [0...1]¢
(the d-dimensional hypercube)

a Test for d-dimensional uniformity (rough outline):

* Divide [0...1] into k equal-sized intervals

= Calculate a value x?(d) based on the number of U,
for each possible interval combination

= x2(d) has approximate distribution y2(k9-1 df)

= Rest: same as 2 test above
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4@ RANDU

o A LCG with setup:
Z =65,539 - Z_, mod 2°
a Advantage: It’s fast.
= mod 231 can be calculated with a simple AND operation

= 65,539 is a bit more than 276; thus the multiplication
(=expensive operation) can be replaced by a bit shift of
16 bit plus three additions (=cheap operations)

» Why 65,5397 It’s a prime number.
0 Disadvantage:
= An infamously bad RNG! Never, ever use it!

» d=3: The tuples are clumped into 15 plains (remember
the animated 3D cube? That was RANDU!)

a A lot of simulations in the 1970s used RANDU
= sceptical view on simulation results from that time
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gi(.‘ Theoretical parameters, theoretical tests

Q Tests so far: Based on drawing samples from RNG
0 No absolute certainty!

» Usually, only a small subset of entire period is used
* Remember the x? test

= TOUR OF ACCOUNTING .
R-emember MIME NINE £ ﬁgﬁ, THAT'S THE
Dilbert: OVER HERE MINE MINE 1| sure EQH&FE:H
LE HAVE OUR MIMNE MINE H TaTs -
RANDOM NUMBER - . DOMNESS -
GENERATOR.. :ﬂ:}' inr;E
aﬁ EVE

SURE.

3 )
f?‘{! #5-"5 i.i‘

|

0 Theoretical parameters and tests
= Based directly on the algorithm and its parameters
= No samples to be drawn
» Hard mathematical stuff...
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;ﬁ".‘ Period length

0 After some time, the “random” numbers must repeat
themselves.
Why?
» LCG: Z is entirely determined by Z,_,
* The same Z_, will always produce the same Z,
= There are only finitely many different Z;

* How many?
We take mod m = at most m different values

a Call this the period length




%@ Theorem by Hull and Dobell 1962

a A LCG has full period if and only if the following
three conditions hold:

1. cisrelatively prime tom
(i.e., they do not have a prime factor in common)

2. If m has a prime factor q,
then (@—1) must have a prime factor g, too

3. If mis divisible by 4,
then (@—1) must be divisible by 4, too

a =Prime numbers play an important role

= Remember RANDU?
At least, it used a prime number...

o Multiplicative RNGs (i.e., no increment Z+c) cannot

have period m.
(But period (m—1) is possible if m and a are chosen

carefully.)
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'4'. LCG and period length considerations

o On 32 bit machines, m<23' or m<23? due to efficiency
reasons = period length 4.3 billion

0 Calculating that many random numbers only takes a
couple of seconds on today’s hardware

a Theory suggests to use only 4/ period _length numbers;
that’s only 65,000 random numbers

o How many random numbers do we need?
Example:
» Simulate behaviour of 1,000 Web hosts

= Fach host consumes on average 1 random number per
simulation second

= Result: We can only simulate for one minute!
a We need much longer period lengths

IN2045 - Discrete Event Simulation, SS 2010
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;g'.‘ Spectral test (coarse description)

a ~ The theoretical variant of the serial test
0 Observation by Marsaglia (1968):
“Random numbers fall mainly in planes.”

= Subsequent overlapping (!) tuples U..
fall on a relatively small number of (d-1)-dimensional
hyperplanes within the d-dimensional space

* Note the difference to the serial test! (overlapping)
= ‘| attice’ structure
a Consider hyperplane families that cover all tuples U,

a Calculate the maximum distance between
hyperplanes. Call it 5.

a If 0, Is small, then the generator can ~uniformly fill up
the d-dimensional space

IN2045 - Discrete Event Simulation, SS 2010
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. Spectral test and LCG

a For LCG, it is possible to give a theoretical lower
bound o,

6,206, =1/(yy;m")
Q y, Is a constant whose exact value is only known for
d<8 (dimensions up to 8)
0 LCG do not perform very well in the spectral test:

= All points lie on at most m'/" hyperplanes (Marsaglia’s
theorem)

= Serial test: similar

* There are way better random number generators than
linear congruential generators.
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X/ - .
vsg Discussion of LCGs I
N

o Advantages:
= Easy to implement
= Reproducible
» Simple and fast

0 Disadvantages:

» Period (length of a cycle) depends on
parameters a, ¢, and m

= Distribution and correlation properties of generated
seqguences are not obvious

= A value can occur only once per period (unrealistic!)

* By making a bad choice of parameters, you can
screw up things massively

» Bad performance in serial test / spectral test even for
good choice of parameters

| NeOs-DsorteEvemtSmuaton, SS200 o«




X
24¢ Beyond LCGs

a Why linear?
» Quadratic congruential generator:
Z=@-(Z_)+a-Z_.)modm

/

= Period is still at most m

o Why only use one previous X.?
= Multiple recursive generator:
Zi=@liq+ai,+adi 3+ ... +aL,) modm
= Period can be m9-1 if parameters are chosen properly
a Why not change multiplier a and increment ¢

dynamically, according to some other congruential
formula?

» Seems to work alright
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;X'.‘ Feedback Shift Register Generators (1/2)

a Linear feedback shift register generator (LFSR)
introduced by Tausworthe (1965)

0 Operate on binary numbers (bits), not on integers
a Mathematically, a multiple recursive generator:
b;=(C1b;4 + Cob; 5+ C3b; 3 + ... + Cb,) MOd 2
= ¢ constants that are either O or 1
" c, =1 (why?)

= Observe that + mod 2 is the same as XOR
(makes things faster)

Q In hardware: __ .
— 0(1(1{0|1|0|0(0O|1j1j1|1{0j0]|1}|1

De

™
M

(N
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;f.i Feedback Shift Register Generators (2/2)

a Usually only two cj coefficients are 1, thus:
b, = (b, + b;_,) mod 2
0 LFSR create random bits, not integers
» Concatenate ¢ bits to form an ¢-bit integer:
Wi = b(i—1)£’+‘| b(i—1)£+2 bie
0 Properties

* Period length of the b, = 29—-1 if parameters chosen
accordingly

» Period length of the generated ints accordingly lower?
e Depends on whether ¢ | 29—1 or not—probably not the case
e But there may be some correlation after one period

= Statistical properties not very good
» Combining LFSRs improves statistics and period

IN2045 - Discrete Event Simulation, SS 2010
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%@ Generalised feedback shift register (GFSR)

0 Lewis and Payne (1973)
0 To obtain sequence of £-bit integers Y., Y,, ...:

= Leftmost bit of Y; is filled with LFSR-generated bit b,
= Next bit of Yi is filled with LFSR-generated bit after

some “delay” d: b;, 4

» Repeat that with same delay for remaining bits up to

length ¢
0 Mathematical properties

» Period length can be very large if g is very large, e.g.,
Fushimi (1990): period length = 2°21-1 = 6.86 - 1016

= If £<q, then many Y;’s will repeat during one period run

?
(Is that good or bad?) —
= If two bits (as with LFSR), then Y;=Y,_ @Y,

XOR
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'4'. Mersenne Twister

o Before we go into the mathematical details...
= Very, very long period length: 219.937—1 > 16,000
» Very good statistical properties: OK in 623 dimensions
= Quite fast

o State of the art: One of the best we have right now
= The RNG of choice for simulations
= Default RNG in Python, Ruby, Matlab, GNU R
» Admittedly, there are even (slightly) better RNGs, cf. TestUO1
paper
o Two warnings:

= Not suitable for cryptographic applications:
Draw 624 random numbers and you can predict all others!

» Can take some time (“warm-up period”) until the stream generates
good random numbers
¢ Usually hidden from programmer through library
¢ |f in doubt, discard the first 10,000 drawn numbers
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'4'. Mersenne Twister: details

0 Twisted GFSR (TGFSR)
= Matsumoto, Kurita (1992, 1994)

» Replace the recurrence of the GFSR by
Y=Y, ®A- Yi—q
where:
e the Y; are ¢ x 1 binary vectors
e Ais an ¢ x ¢ binary matrix

= Period length = 29¢—1 with suitable choices forr, g, A
0 Mersenne Twister (MT19937)
» Matsumoto, Nishimura (1997, 1998)

= Clever choice of r, g, A and the first Y, to obtain good
statistical properties

= Period length 2199371 = 4.3 . 105901 (\jersenne prime: 2n-1)
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;g'.‘ Digression: Period lengths revisited

What period lengths do we actually require?

0 Estimate #1:
= A cluster of 1 million hosts

= each of which draws 1,000,000 - 232 per second
(~1,000,000 times as fast as today’s desktop PCs)

= for ten years

will require...

= 5.6 - 102 random numbers

= (Make the PCs again 10° times faster = 5.6 - 1033)
0 Estimate #2: What’s the estimated number of

electrons within the observable universe (a sphere
with a radius of ~46.5 billion light years)

= About 1080 (= take or leave a few powers of 10)
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X -
gi{.‘ Test batteries

a A lot of tests, a lot of different RNGs
0 How to compare them?
0 Benchmark suites (‘Test batteries’)
that bundle many statistical tests:
» TestUO1 (L’Ecuyer)
= DIEHARD suite (Marsaglia)

» NIST test suite (National Institute of Standards
and Technologies;

= Physikalisch-Technische Bundesanstalt)
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;g'.‘ Conclusion: Quality tests for RNG

0 Empirical tests (based on generated samples)
= For U(0,1) distribution: x? test
» For independence: autocorrelation, serial, run-up tests

0 Theoretical tests (based on generation formula)
» Basic idea: test for k-dimensional uniformity
» Points of sequence form system of hyperplanes

» Computation of distance of hyperplanes for several
dimensions k

= Rather difficult optimization problem

0 Conclusion

* Implement/use only tested random number generators
from literature, no “home-brewed” generators!

= \WWhen in doubt, use the Mersenne Twister
(but not for cryptography!)
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'f. RNG: outlook

a A wide research field, still somewhat active

= Many more algorithms exist
» Many more tests for randomness exist

= More are being developed

a If you are interested in this topic, you might want to
have a look at this quite readable paper:
= | ’Ecuyer, Simard
TestUO1: a C library for empirical testing of random

number generators
ACM Transactions on Mathematical Software,

Volume 33, No. 4, 2007
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