

Chair for Network Architectures and Services—Prof. Carle Department of Computer Science TU München

Random number generator algorithms and their quality

Some slides/figures taken from: Oliver Rose Averill Law, David Kelton Wikimedia Commons (user Matt Crypto) Dilbert

- □ Generating U(0,1) random numbers
 - Motivation
 - Overview on RNG families
- □ Linear congruential generators (LCG)
- □ Statistical properties, statistical (empirical) tests
 - Histogram
 - χ^2 test for uniformity
 - Correlation tests: Runs-up, sequence
- Theoretical aspects, theoretical tests
 - Period length
 - Spectral test
- RNG that are better than LCG

□ Generate uniformly distributed numbers ∈ 0.0 ... 1.0
 □ Compute inverse A⁻¹(t) of PDF A(t)

□ Generate samples

Generating U(0,1) random numbers is crucial

- □ For all random number generation methods, we need uniformly distributed random numbers from]0,1[
 ⇒ U(0,1) random numbers are required
- Mandatory characteristics
 - Random (...obviously)
 - Uniform (make use of the whole distribution function)
 - Uncorrelated (no dependencies): difficult!
 - Reproducible (for verification of experiments)
 → use *pseudo* random numbers
 - Fast (usually, there is a need for a lot of samples)

RNG in simulation vs. RNG in cryptography

□ Also need for random numbers in cryptography

- Key generation
- Challenge generation in challenge-response systems
- ...
- Additional requirement:
 - Prediction of future "random" values by sampling previous values must not be possible
 - In simulation: not an issue if there is no real correlation
- Lighter requirement:
 - RNs are not used constantly, only in ~start-up phases
 ⇒ speed is not of much importance
 - In simulation: need lots of numbers
 - ⇒ speed is *very* important

Generation of U(0,1) random numbers

Generation approaches

- "Real", "natural" random numbers: sampling from radioactive material or white noise from electronic circuits, throwing dice, drawing from an urn, ...
 - Problems:
 - If used online: not reproducible
 - Tables: uncomfortable, not enough samples
- Pseudo random numbers: recursive arithmetic formulas with a given starting value (seed)
 - in hardware: shift register with feedback (based on primitive polynomials as feedback patterns)
 - in software: linear congruential generator (LCG) (Lehmer, 1951), ...

Generation of U(0,1) random numbers: overview

Main families:

- □ Linear congruential generator (LCG): the simplest
- General congruential generators
 - Quadratic congruential generator
 - Multiple recursive generators
- Shift register with feedback (Tausworthe)
 - E.g., Mersenne Twister: state-of-the-art
- □ Composite generators: output of multiple RNG
 - E.g., use one to shuffle ("twist") the output of the other

RNG: alternatives unsuitable for simulation

- □ Algorithms from cryptography
 - For example: counter→AES, counter→SHA1, counter→MD5, etc.
 - Usually way too slow
- Calculate transcendent numbers (e.g., π or e), view their digits as random
 - E.g.: digits of 100,000th decimal place of π onwards
 - Problem: Are they really random? There seems to be some structure...
- Physical generators (cf. previous lecture)
 - Not reproducible, no seed
- □ Tables with pre-computed random numbers
 - We need too many random numbers, the tables would have to be huge...

Linear congruential generators

□ Calculate RN from previous RN using some formula □ Sequence of integers $Z_1, Z_2, ...$ defined by

$$Z_i = (a \cdot Z_{i-1} + c) \pmod{m}$$

with modulus m, multiplier a, increment c, and seed Z_0

□ c=0: *multiplicative LCG* Example: $Z_i = 16807 \cdot Z_{i-1} \pmod{2^{31} - 1}$ (Lewis, Goodman, Miller, 1969)

□ *c*>0: *mixed LCG*

• Obviously, $Z_i = something \mod m$ and

something mod *m* < *m*

- $\Box \Rightarrow$ Just normalise the result!
 - Divide by m? But then, 1.0 cannot be attained.
 - Better: Divide by m-1.

Do they really generate uniformly distributed random numbers?

- □ Test for uniformity:
 - Create a number of samples from RNG
 - Test if these numbers are uniformly distributed
- A number of statistical tests to do this:
 - x² test (deutsch: Chi-Quadrat-Anpassungstest)
 - Kolmogorov-Smirnov test
 - ... and a whole lot of others! For example:
 - Cramér-von Mises test
 - Anderson-Darling test
- Graphical examination (not real tests):
 - Plot histogram / density / PDF
 - Distribution-function-difference plot
 - Quantile-quantile plot (Q-Q plot)
 - Probability-probability plot (P-P plot)
- \succ (later in course)

□ Plot it:

- \Box Given a series of *n* measurements X_i
- □ Partition the domain min{ X_i } ... max{ X_i } into *m* intervals $I_1...I_m$
- \Box Count how many X_i fall into which interval I_j

□ ~discretised density function □ Recommendation: $m \approx \sqrt{n}$

Obviously not U(0,1) random variables:

(...okay, we could have calculated min and max)

IN2045 – Discrete Event Simulation, SS 2010

Obviously not U(0,1) random variables:

Looks like a U(0,1) random variable...:

2000 1500 -requency 1000 500 0 0.0 0.2 0.4 0.6 0.8 1.0

Histogram of RN

What the histogram can reveal (3b)

...but obviously not U(0,1) random variables: huge gaps!

Histogram of RN

1000 800 600 Frequency 400 200 0 0.2 0.4 0.6 0.8 1.0

RN

- Scenario: Given a set of measurements, we want to check if they conform to a distribution; here: U(0,1)
- Graphs like presented before are nice indicators, but not really tangible: "How straight is that line?" etc.
- □ We want clearer things: Numbers or yes/no decisions
- Statistical tests can do the trick, but...
 - Warning #1: Tests only can tell if measurements do not fit a particular distribution—i.e., no "yes, it fits" proof!
 - Warning #2: The result is never absolutely certain, there is always an error margin.
 - Warning #3: Usually, the input must be *'iid':*
 - Independent
 - Identically distributed
 - \Rightarrow You never get a 'proof', not even with an error margin!

□ Input:

- Series of *n* measurements $X_1 \dots X_n$
- A distribution function f (the 'theoretical function')
- Measurements will be tested against the distribution
 - ~formal comparison of a histogram with the density function of the theoretical function
- □ Null hypothesis H0:

The X_i are IID random variables with distribution function f

- Divide [0...1] into k equal-size intervals
- □ Count how many X_i fall into which interval (histogram):
 - $N_j :=$ number of X_i in *j*-th interval $[a_{j-1} \dots a_j]$
- □ Calculate how many X_i would fall into the *j*-th interval if they were sampled from the theoretical distribution: $p_j \coloneqq \int_{a_{i-1}}^{a_j} f(x) dx$ (*f:* density of theor. dist.)
- Calculate squared normalised difference between the observed and the expected:

$$\chi^2 \coloneqq \sum_{j=1}^k \frac{(N_j - np_j)^2}{np_j}$$

- □ Obviously, if χ^2 is "too large", the differences are too large, and we must reject the null hypothesis
- But what is "too large"?

$\Box \chi^2$ distribution

- A test distribution
- Parameter: degrees of freedom (short df)
- $\chi^2(k-1 \text{ df}) = \Gamma(\frac{1}{2}(k-1), 2)$ (gamma distribution)
- Mathematically: The sum of *n* independent squared normal distributions

 \Box Compare the calculated χ^2 against the χ^2 distribution

- If we use k intervals, then χ^2 is distributed corresponding to the χ^2 distribution with k–1 df
- Let $\chi^{2}_{k-1,1-\alpha}$ be the $(1-\alpha)$ quantile of the distribution
- α is called the confidence level
- Reject H0 if $\chi^2 > \chi^2_{k-1,1-\alpha}$ (i.e., the X_i do not follow the theoretical distribution function)

χ^2 test and degrees of freedom

- $\Box \chi^2$ test can be used to test against *any* distribution
- □ Easy in our case: We know the parameters of the theoretical distribution *f* − it's U(0,1)
- □ Different in the general case:
 - For example, we may know it's N(μ , σ) (normal distribution) but we know neither μ nor σ
 - Fitting a distribution: Find parameters for *f* that make *f* fit the measurements X_i best
 - Topic of a later lecture
- □ Theoretically:

Have to estimate *m* parameters \Rightarrow Also have to take $\chi^2_{k-m-1,1-\alpha}$ into account

□ Practically:

 $m \leq 2$ and large $k \Rightarrow$ Don't care...

- □ How many intervals (k)?
 - A difficult problem for the general case
 - Warning: A smaller or a greater k may change the outcome of the test!
 - As a general rule, use k>100
 - As a general rule, make the intervals equal-sized
 - As another general rule, make sure that ∀j: np_j ≥ 5 (i.e., have enough samples that we expect to have at least 5 samples in each interval)
- $\Box \Rightarrow As a general rule, you need a lot of measurements!$
- □ What confidence level?
 - At most α=0.10 (almost too much); typical values: 0.001, 0.01, 0.05 [, and 0.10]
 - The smaller, the better confidence in the test result

Kolmogorov-Smirnov test (K-S test)

- Another very popular test
- Advantages:
 - No grouping into intervals required
 - Valid for any sample size, not only for large *n*
 - More powerful than χ^2 for a number of distributions
- Disadvantages:
 - Applicability more limited than χ^2
 - Difficult to apply to discrete data
 - If distribution needs to be fitted (unknown parameters), then K-S works only for a number of distributions
- □ Anderson-Darling test (A-D test)
 - Higher power than K-S for some distributions
- □ ...a lot of other tests

Tests for uniformity: limitations

□ Consider this sequence of drawn "random numbers":

 \Box They are in U(0,1) ... but do they seem random!?

IN2045 – Discrete Event Simulation, SS 2010

Recall our requirements for RNG

- □ RNs have to be *uncorrelated* how to test this?
- □ Statistical tests:

Draw some random numbers and examine them

- Runs-up test
- Autocorrelation function (later in course)

Serial test

- Theoretical parameters and theoretical tests:
 - Length of period
 - Spectral test
 - Lattice test

- Run up := the length of a contiguous sequence of monotonically increasing X_i.
- □ Example sequence:
 - 0.86 > 0.11 < 0.23 > 0.03 < 0.13 > 0.06 < 0.55 < 0.64 < 0.87 > 0.10

- length: 1 length: 2 length: 2 length: 4 length: 1
- □ Calculate r_i (number of runs up of length i)
- Compute a test statistic value R, using the r_i and a bestranging zoo of esoteric constants a_{ii} and b_i
- \square *R* will have an approximate χ^2 distribution with 6 df.

- Find possible correlations between subsequently drawn values
- □ Visual "tests":
 - 2D plot of X_i and X_{i-1}
 - 3D plot of X_i and X_{i-1} and X_{i-2}
- Generalisation: Serial test

$$Z_i = a \cdot Z_{i-1} \pmod{61}$$

IN2045 - Discrete Event Simulation, SS 2010

X(n+1) (normiert auf [0,1])

X(n+1) (normiert auf [0,1])

31

(see Law/Kelton: Simulation Modeling and Analysis, 4th edition, Fig. 7.4, p. 413)

"a generalised and formalised version of the plots"

Consider non-overlapping *d*-tuples of subsequently drawn random variables X_i:

$$U_1 = (X_1, X_2, \dots, X_d)$$
 $U_2 = (X_{d+1}, X_{d+2}, \dots, X_{2d})$...

- \Box These U_i 's are vectors in the *d*-dimensional space
- If the X_i are truly iid random variables, then the U_i are truly random iid vectors in the space [0...1]^d (the d-dimensional hypercube)
- □ Test for d-dimensional uniformity (rough outline):
 - Divide [0...1] into k equal-sized intervals
 - Calculate a value $\chi^2(d)$ based on the number of U_i for each possible interval combination
 - $\chi^2(d)$ has approximate distribution $\chi^2(k^d-1 \text{ df})$
 - Rest: same as χ^2 test above

- □ A LCG with setup: $Z_i = 65,539 \cdot Z_{i-1} \mod 2^{31}$
- □ Advantage: It's fast.
 - mod 2³¹ can be calculated with a simple AND operation
 - 65,539 is a bit more than 2¹⁶; thus the multiplication (=expensive operation) can be replaced by a bit shift of 16 bit plus three additions (=cheap operations)
 - Why 65,539? It's a prime number.
- Disadvantage:
 - An infamously bad RNG! Never, ever use it!
 - *d*≥3: The tuples are clumped into 15 plains (remember the animated 3D cube? That was RANDU!)
- □ A lot of simulations in the 1970s used RANDU
 ⇒ sceptical view on simulation results from that time

Theoretical parameters, theoretical tests

Tests so far: Based on drawing samples from RNG
 No absolute certainty!

- Usually, only a small subset of entire period is used
- Remember the χ^2 test
- Remember [Dilbert:

- Theoretical parameters and tests
 - Based directly on the algorithm and its parameters
 - No samples to be drawn
 - Hard mathematical stuff...

 After some time, the "random" numbers must repeat themselves.

Why?

- LCG: Z_i is entirely determined by Z_{i-1}
- The same Z_{i-1} will always produce the same Z_i
- There are only finitely many different Z_i
- How many? We take mod $m \Rightarrow$ at most m different values
- Call this the period length

Theorem by Hull and Dobell 1962

- A LCG has full period if and only if the following three conditions hold:
 - c is relatively prime to m (i.e., they do not have a prime factor in common)
 - 2. If *m* has a prime factor q, then (a-1) must have a prime factor q, too
 - 3. If *m* is divisible by 4, then (a-1) must be divisible by 4, too
- $\Box \Rightarrow$ Prime numbers play an important role
 - Remember RANDU? At least, it used a prime number...
- Multiplicative RNGs (i.e., no increment Z_i+c) cannot have period m.
 (But period (m-1) is possible if m and a are chosen carefully.)

LCG and period length considerations

- □ On 32 bit machines, *m*≤2³¹ or *m*≤2³² due to efficiency reasons ⇒ period length 4.3 billion
- Calculating that many random numbers only takes a couple of seconds on today's hardware
- □ Theory suggests to use only √*period*_*length* numbers; that's only 65,000 random numbers
- How many random numbers do we need? Example:
 - Simulate behaviour of 1,000 Web hosts
 - Each host consumes on average 1 random number per simulation second
 - Result: We can only simulate for one minute!
- □ We need much longer period lengths

Spectral test (coarse description)

- $\hfill\square$ ~ The theoretical variant of the serial test
- Observation by Marsaglia (1968):
 "Random numbers fall mainly in planes."
 - Subsequent overlapping (!) tuples U_i: U₁=(X₁, X₂, ..., X_d) U₂=(X₂, X₃, ..., X_{d+1}) ... fall on a relatively small number of (d–1)-dimensional hyperplanes within the d-dimensional space
 - Note the difference to the serial test! (overlapping)
 - 'Lattice' structure
- \Box Consider hyperplane families that cover all tuples U_i
- □ Calculate the maximum distance between hyperplanes. Call it δ_d .
- □ If δ_d is small, then the generator can ~uniformly fill up the *d*-dimensional space

□ For LCG, it is possible to give a theoretical lower bound δ_d^* :

 $\delta_d \geq \delta_d^* = 1 / (\gamma_d m^{1/d})$

- □ γ_d is a constant whose exact value is only known for $d \le 8$ (dimensions up to 8)
- □ LCG do not perform very well in the spectral test:
 - All points lie on at most m^{1/n} hyperplanes (Marsaglia's theorem)
 - Serial test: similar
 - There are way better random number generators than linear congruential generators.

- □ Advantages:
 - Easy to implement
 - Reproducible
 - Simple and fast
- Disadvantages:
 - Period (length of a cycle) depends on parameters a, c, and m
 - Distribution and correlation properties of generated sequences are not obvious
 - A value can occur only once per period (unrealistic!)
 - By making a bad choice of parameters, you can screw up things massively
 - Bad performance in serial test / spectral test even for good choice of parameters

- □ Why linear?
 - Quadratic congruential generator:

$$Z_i = (a \cdot (Z_{i-1})^2 + a' \cdot Z_{i-1}) \mod m$$

- Period is still at most m
- \square Why only use one previous X_i ?
 - Multiple recursive generator:

 $Z_i = (a_1 Z_{i-1} + a_2 Z_{i-2} + a_3 Z_{i-3} + \dots + a_q Z_q) \mod m$

- Period can be m^q-1 if parameters are chosen properly
- Why not change multiplier a and increment c dynamically, according to some other congruential formula?
 - Seems to work alright

\mathbf{X}

Feedback Shift Register Generators (1/2)

- Linear feedback shift register generator (LFSR) introduced by Tausworthe (1965)
- Operate on binary numbers (bits), not on integers
- □ Mathematically, a multiple recursive generator:

$$b_i = (c_1b_{i-1} + c_2b_{i-2} + c_3b_{i-3} + \dots + c_qb_q) \mod 2$$

c_i: constants that are either 0 or 1

 Observe that + mod 2 is the same as XOR (makes things faster)

In hardware:

□ Usually only two cj coefficients are 1, thus: $b_i = (b_{i-r} + b_{i-q}) \mod 2$

LFSR create random bits, not integers

• Concatenate ℓ bits to form an ℓ -bit integer:

$$W_i = b_{(i-1)\ell+1} \ b_{(i-1)\ell+2} \ \dots \ b_{i\ell}$$

Properties

- Period length of the b_i = 2^q-1 if parameters chosen accordingly (weird maths involved: characteristic polynomial has to be primitive over Galois field \$\mathcal{F}_2\$...)
- Period length of the generated ints accordingly lower?
 - Depends on whether $\ell \mid 2^q-1$ or not—probably not the case
 - But there may be some correlation after one period
- Statistical properties not very good
- Combining LFSRs improves statistics and period

Generalised feedback shift register (GFSR)

- □ Lewis and Payne (1973)
- □ To obtain sequence of ℓ -bit integers $Y_1, Y_2, ...$:
 - Leftmost bit of Y_i is filled with LFSR-generated bit b_i
 - Next bit of Yi is filled with LFSR-generated bit after some "delay" d: b_{i+d}
 - Repeat that with same delay for remaining bits up to length ℓ
- Mathematical properties
 - Period length can be very large if q is very large, e.g.,
 Fushimi (1990): period length = 2⁵²¹-1 = 6.86 · 10¹⁵⁶
 - If l<q, then many Y's will repeat during one period run (Is that good or bad?)
 - If two bits (as with LFSR), then $Y_i = Y_{i-r} \oplus Y_{i-q}$

- □ Before we go into the mathematical details...
 - Very, very long period length: 2^{19,937}−1 > 10^{6,000}
 - Very good statistical properties: OK in 623 dimensions
 - Quite fast
- □ State of the art: One of the best we have right now
 - The RNG of choice for simulations
 - Default RNG in Python, Ruby, Matlab, GNU R
 - Admittedly, there are even (slightly) better RNGs, cf. TestU01 paper
- □ Two warnings:
 - Not suitable for cryptographic applications: Draw 624 random numbers and you can predict all others!
 - Can take some time ("warm-up period") until the stream generates good random numbers
 - Usually hidden from programmer through library
 - If in doubt, discard the first 10,000 drawn numbers

□ Twisted GFSR (TGFSR)

- Matsumoto, Kurita (1992, 1994)
- Replace the recurrence of the GFSR by

 $Y_i = Y_{i-r} \oplus A \cdot Y_{i-q}$

where:

- the Y_i are $\ell \ge 1$ binary vectors
- A is an $\ell \ge \ell$ binary matrix
- Period length = $2^{q\ell}$ -1 with suitable choices for *r*, *q*, *A*

□ Mersenne Twister (MT19937)

- Matsumoto, Nishimura (1997, 1998)
- Clever choice of r, q, A and the first Y_i to obtain good statistical properties
- Period length $2^{19,937}-1 = 4.3 \cdot 10^{6001}$ (Mersenne prime: $2^{n}-1$)

Digression: Period lengths revisited

What period lengths do we actually require?

- A cluster of 1 million hosts
- each of which draws 1,000,000 · 2³² per second (~1,000,000 times as fast as today's desktop PCs)
- for ten years

will require...

- 5.6 · 10²⁷ random numbers
- (Make the PCs again 10^6 times faster $\Rightarrow 5.6 \cdot 10^{33}$)
- Estimate #2: What's the estimated number of electrons within the observable universe (a sphere with a radius of ~46.5 billion light years)
 - About 10⁸⁰ (± take or leave a few powers of 10)

- A lot of tests, a lot of different RNGs
- □ How to compare them?
- Benchmark suites ('Test batteries')
 that bundle many statistical tests:
 - TestU01 (L'Ecuyer)
 - DIEHARD suite (Marsaglia)
 - NIST test suite (National Institute of Standards and Technologies;
 - = Physikalisch-Technische Bundesanstalt)

Conclusion: Quality tests for RNG

□ Empirical tests (based on generated samples)

- For U(0,1) distribution: χ^2 test
- For independence: autocorrelation, serial, run-up tests
- □ **Theoretical tests** (based on generation formula)
 - Basic idea: test for k-dimensional uniformity
 - Points of sequence form system of hyperplanes
 - Computation of distance of hyperplanes for several dimensions k
 - Rather difficult optimization problem

Conclusion

- Implement/use only tested random number generators from literature, no "home-brewed" generators!
- When in doubt, use the Mersenne Twister (but not for cryptography!)

□ A wide research field, still somewhat active

- Many more algorithms exist
- Many more tests for randomness exist
- More are being developed
- If you are interested in this topic, you might want to have a look at this quite readable paper:
 - L'Ecuyer, Simard TestU01: a C library for empirical testing of random number generators ACM Transactions on Mathematical Software, Volume 33, No. 4, 2007
 - Daniel Bueb Random Number Generators Semesterarbeit, EPFL, 2005