
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

NET 2019-06-1Network Architectures and Services

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Winter Semester 2018/2019 July 20, 2018 – February 17, 2019

Munich, Germany

Georg Carle, Stephan Günther, Benedikt JaegerEditors

Chair of Network Architectures and ServicesPublisher

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Winter Semester 2018/2019

Munich, July 20, 2018 – February 17, 2019

Editors: Georg Carle, Stephan Günther, Benedikt Jaeger

Network Architectures
and Services
NET 2019-06-1

Proceedings of the Seminar
Innovative Internet Technologies and Mobile Communications (IITM)
Winter Semester 2018/2019

Editors:

Georg Carle
Chair of Network Architectures and Services (I8)
Technical University of Munich
85748 Garching b. München, Germany
E-mail: carle@net.in.tum.de
Internet: https://net.in.tum.de/~carle/

Stephan Günther
Chair of Network Architectures and Services (I8)
E-mail: guenther@net.in.tum.de
Internet: https://net.in.tum.de/~guenther/

Benedikt Jaeger
Chair of Network Architectures and Services (I8)
E-mail: jaeger@net.in.tum.de
Internet: https://net.in.tum.de/~jaeger/

Cataloging-in-Publication Data

Seminar IITM WS 18/19
Proceedings of the Seminar Innovative Internet Technologies and Mobile Communications (IITM)
Munich, Germany, July 20, 2018 – February 17, 2019
ISBN: 978-3-937201-64-1

ISSN: 1868-2634 (print)
ISSN: 1868-2642 (electronic)
DOI: 10.2313/NET-2019-06-1
Innovative Internet Technologies and Mobile Communications (IITM) NET 2019-06-1
Series Editor: Georg Carle, Technical University of Munich, Germany
c© 2019, Technical University of Munich, Germany

II

https://net.in.tum.de/~carle/
https://net.in.tum.de/~guenther/
https://net.in.tum.de/~jaeger/

Preface

We are pleased to present you the proceedings of the Seminar Innovative Internet Technologies and Mobile
Communications (IITM) during the Winter Semester 2018/2019. Each semester, the seminar takes place
in two different ways: once as a block seminar during the semester break and once in the course of the
semester. Both seminars share the same contents and differ only in their duration.

In the context of the seminar, each student individually works on a relevant topic in the domain of computer
networks supervised by one or more advisors. Advisors are staff members working at the Chair of Network
Architectures and Services at the Technical University of Munich. As part of the seminar, the students
write a scientific paper about their topic and afterwards present the results to the other course participants.
To improve the quality of the papers we conduct a peer review process in which each paper is reviewed by
at least two other seminar participants and the advisors.

Among all participants of each seminar we award one with the Best Paper Award. For this semester the
arwards where given to Daniel Meint with the paper From FIFO to Predictive Cache Replacement and
Jonas Andre with the paper Open vSwitch Configuration for Separation of KVM/ libvirt VMs.

Some of the talks were recorded and published on our media portal https://media.net.in.tum.de.

We hope that you appreciate the contributions of these seminars. If you are interested in further information
about our work, please visit our homepage https://net.in.tum.de.

Munich, May 2019

Georg Carle Stephan Günther Benedikt Jaeger

III

https://media.net.in.tum.de
https://net.in.tum.de

IV

Seminar Organization

Chair Holder

Georg Carle, Technical University of Munich, Germany

Technical Program Committee

Stephan Günther, Technical University of Munich, Germany
Benedikt Jaeger, Technical University of Munich, Germany

Advisors

Simon Bauer (bauersi@net.in.tum.de)
Technical University of Munich

Paul Emmerich (emmericp@net.in.tum.de)
Technical University of Munich

Fabien Geyer (fgeyer@net.in.tum.de)
Technical University of Munich

Stephan Günther (guenther@tum.de)
Technical University of Munich

Benedikt Jaeger (jaeger@net.in.tum.de)
Technical University of Munich

Jonas Jelten (jelten@net.in.tum.de)
Technical University of Munich

Holger Kinkelin (kinkelin@net.in.tum.de)
Technical University of Munich

Stefan Liebald (liebald@net.in.tum.de)
Technical University of Munich

Johannes Naab (naab@net.in.tum.de)
Technical University of Munich

Cora Perner (clperner@net.in.tum.de)
Technical University of Munich

Minoo Rouhi (rouhi@net.in.tum.de)
Technical University of Munich

Dominik Scholz (scholz@net.in.tum.de)
Technical University of Munich

Marcel von Maltitz (maltitz@net.in.tum.de)
Technical University of Munich

Seminar Homepage
https://net.in.tum.de/teaching/ws1819/seminars/

V

https://net.in.tum.de/teaching/ws1819/seminars/

Contents

Block Seminar

Case Study and Practical Assessment of BPMN with Camunda . 1
Vincent Bode (Advisor: Marcel von Maltitz, Holger Kinkelin)

Performance of Secure Multiparty Computation . 5
Ludwig Dickmanns (Advisor: Marcel von Maltitz)

Overview of TCP Congestion Control Algorithms . 11
Moritz Michael Geist (Advisor: Benedikt Jaeger)

Robustness of Scanner Exams with TUMexam . 17
Simon Kassahun (Advisor: Stephan Günther)

Network Resource Management for Virtual Networks with Learning Algorithms 21
Anton Mai (Advisor: Cora Perner)

From FIFO to Predictive Cache Replacement . 25
Daniel Meint (Advisor: Stefan Liebald)

Time Sensitive Networking for Wireless Networks – A State of the Art Analysis 33
Alexander Mildner (Advisor: Fabien Geyer)

Measuring TCP Performance Metrics with Bro . 39
Leonhard Josef Stemplinger (Advisor: Simon Bauer)

Seminar

Open vSwitch Configuration for Separation of KVM/libvirt VMs 43
Jonas Andre (Advisor: Johannes Naab)

Networking in MirageOS . 47
Fabian Bonk (Advisor: Paul Emmerich)

Bot-based IT Troubleshooting . 53
Benjamin Braun (Advisor: Jonas Jelten, Simon Bauer)

Client Monitoring with HTTPS . 59
Felix Hartmond (Advisor: Simon Bauer)

Caching with Relation . 63
Mohamad Nour Moazzen (Advisor: Stefan Liebald)

Investigating TCP SYN Flood Mitigation Techniques in the Wild 67
Julian Villing (Advisor: Minoo Rouhi, Dominik Scholz)

Networking in Biscuit . 71
Sebastian Voit (Advisor: Paul Emmerich)

Recent Progress on the QUIC Protocol . 77
Mehdi Yosofie (Advisor: Benedikt Jaeger)

VI

Case Study and Practical Assessment of BPMN with Camunda

Vincent Bode, Marcel von Maltitz∗, Holger Kinkelin∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: vincent.bode@tum.de, vonmaltitz@net.in.tum.de, kinkelin@net.in.tum.de

Abstract—Processes are a sequence of activities designed to
reach a targeted outcome. In this general form, processes
are an essential component of many types of systems. Pro-
cess modeling is a technique that formalizes processes by
documenting them using abstract notation. It can be used
to improve a running system by optimizing the modeled
process. Using a case study process of scheduling an ap-
pointment with a professor, we elicit some requirements and
discuss the benefits and drawbacks of using Business Process
Model and Notation (BPMN), a widespread standardized
notation for modeling processes [5], for implementing this
process. We observe that the formal BPMN process is a viable
alternative to less formalized solutions, that it has potential
for automation and a reduction of errors, but it can incur
higher maintenance effort than an informal version. The
applicability of BPMN therefore varies across use cases.

Index Terms—process modeling, bpmn, camunda

1. Introduction

Processes are “a series of actions or operations con-
ducing to an end” [1] found in many systems. Whether
they are defined explicitly or implicitly, achieving a target
goal is always driven by a process. They can be catego-
rized according to specific traits such as their run-time,
execution frequency or whether the process is mainly
human or machine based. Ensuring that frequent and
time-intensive processes are implemented efficiently and
effectively can have a positive impact on the system’s
performance. This is the field of process modeling, where
the interactions between participants, tasks and commu-
nication events are analyzed and optimized with the goal
of improving certain aspects of the system, such as pro-
cessing speed, fault-tolerance or reliability.

The rest of the paper is divided into the following
sections. Section 2 motivates process modeling. The case
study is introduced in Section 3 and some requirements
are stated. Section 4 introduces BPMN and Camunda used
for reimplementing the process in a formalized manner. A
review of the benefits and challenges encountered during
the implementation is presented in Section 5. Finally, the
solution is evaluated in Section 6.

2. Reasons for Process Modeling

Implicit processes are loosely defined and can consist
of nothing more than a state and a target outcome, while
explicit processes are fixed in documentation or formal-
ized interaction. Making processes explicit has several

U
ni

ve
rs

ity
 C

ha
ir

A
dv

is
or

P
ro

fe
ss

o
r

O
th

er
 P

ar
tic

ip
an

ts

Suggest date

Acknowledge
date

Finalize meeting

Acknowledge
date

Figure 1. A schematic of the current scheduling of a meeting process. It
shows the best-case scenario, where each participant is available at the
suggested date and all communication is error free.

advantages. For one, it allows an analyst to gain insight
to complex workflows, allowing them to analyze “the
sequence of steps involved in moving from the beginning
to the end of a working process” [1] and making the
process observable. This allows the analyst to perform
studies that measure the workflow’s performance and com-
pare it to different variations, allowing them to improve
the process incrementally. A second advantage is that
the process model is also a way of documenting how a
process works, allowing for standardization, repeatability,
simpler knowledge transfer and increased transparency.
One disadvantage is that a process model is also an artifact
that needs to be kept up to date. To learn about the impact
of formalizing processes, we wish to examine a specific
problem involving human and machine participants.

3. Case study

Throughout this work, a case study will be used to
evaluate the practical effects of using process modeling on
a process to improve its performance. We will examine the
scheduling of an appointment with a professor and mul-
tiple other participants at a university chair. A schematic
of this process may be seen in Figure 1. Table 1 shows
multiple issues that affect the performance of the current
process. To support our modeling and implementation, a
workflow management system will be used. Such a system
can administer formalized processes and track the state
and history of any process running inside of it. The case
study focuses on how the current problems can be solved
by introducing such a system and which new ones may
arise.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

1 doi: 10.2313/NET-2019-06-1_01

Issue Consequence

Inspectability At any given point in the process, it is hard for a
participating party to judge the state of the process
and whether available information is up to date due
to the lack of a centralized source of information.

Multiple
iterations

When schedules are packed, the chance of a sug-
gested date being available decreases. Many requests
may be necessary before a valid appointment is
found, increasing the chance of human error for each
additional request.

Mailbox
issues

The flexibility offered by email also allows for many
possibilities of small, hard to trace mistakes with
larger consequence. For example, a recipient might
be forgotten by accident, an error that is hard to
discover but can have large impact.

TABLE 1. ISSUES WITH THE CURRENT SCHEDULING PROCESS

3.1. Requirements

The new process should fulfill the following require-
ments to improve on problems in the current implemen-
tation.
1) Reduced consumption of resources is one possible

goal when exchanging processes for improved ver-
sions. One resource to minimize is the participant’s
time, which can be measured by the average process
execution time. The solution should therefore not in-
crease this average.

2) Runtime flexibility is key. The improved process
should prevent error prone or otherwise unwanted
methods of reaching the goal while retaining desirable
approaches in order to efficiently reach the target. A
process that is too restrictive can face user acceptance
issues, while a process that allows for too many options
may be hard to maintain.

3) Transparency and accountability is necessary to en-
sure that any given task has a responsible participant.
The current mail-based process is tracked by the par-
ticipant’s mailbox, the new process should also offer a
way to view task responsibilities.

4) Eliminating repetitive or tedious tasks achieves in-
creased user satisfaction and reliability. These are tasks
where automation is usually viable, leading to further
reduced error rates and operator strain. The feasibility
of automation using BPMN machine tasks should be
considered for each activity.

5) Maintainability is an important factor, as processes
are not static and will need to be adapted over time.
A solution should account for this and implement the
necessary paradigms to ensure it can be maintained.
Fulfilling these requirements will improve the work-

flow’s performance, increasing efficiency and effectivity.

4. BPMN and Camunda

The Business Process Model and Notation (BPMN)
is a standardized notation for process modeling at a high
level. BPMN was built to model the interaction between
human and machine tasks in diagrams. We will use a
BPMN toolset to implement the new solution [5]. A
typical setup consists of an analyst, a modeling tool, a
process engine as well as external actors and systems
which interact with the process (Figure 2). One advantage
of BPMN being a standardized, XML-based notation is

Analyst
Create process Deploy process

Users

External systems

Start process

Execute task

Monitor performanceImprove process

Figure 2. UML use case diagram of a generic BPMN system. An analyst
maintains the process in the modeling tool and monitors it in the process
engine while users and external systems interact with it.

that the format is vendor-independent. This allows com-
ponents such as the modeling tool and the process engine
to be chosen individually. One of these providers for a
modeling tool as well as a process engine is Camunda. It
was chosen due to its open source implementation as well
as its suitability for fulfilling the requirements.

Three parts make up the process engine. The “Cock-
pit” is used for monitoring by the analysts, the task list
for completing human tasks, and the administration for
configuring the system. The Camunda process engine pro-
vides both user and group task lists containing activities,
each of which can be assigned automatically or manually.
Each activity can contain a form that allows humans
to interact with data in the process. For machine tasks,
the process engine can execute Java code, call REST
APIs, execute scripts or simpler Java Unified Expression
Language (JUEL) expressions.

The Camunda modeler is another useful part of the
ecosystem, as it serves as an abstraction layer between
the analyst and the XML Notation, which can be verbose.
Editing a visual representation of the process will come
more naturally to the analyst, especially since they might
not have a technical background. The modeler also sup-
ports some Camunda specific extensions, such as forms
and scripts, to simplify configuration.

5. Implementation

During the implementation, we were able to make use
of some benefits provided by the BPMN and Camunda
platform. However, there were also some pitfalls leading
to implementation challenges.

5.1. Advantages

BPMN and Camunda are a powerful toolset for pro-
cess modeling. During the implementation, the following
features were found to be particularly useful.

5.1.1. Forms. A useful extension by Camunda to the
BPMN specification is the ability to add forms. It allows
the analyst to append HTML forms to tasks, providing
a simple way to interact with the user. Variables used
inside the BPMN process can be directly made available to
the user for viewing or modification. There is no coding
required to set up these forms since all the configura-
tion works inside the modeler and there are no external

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

2 doi: 10.2313/NET-2019-06-1_01

systems required for providing user interaction. If the
analyst decides they need something more sophisticated,
it is possible to embed custom HTML forms to further
improve end user experience. All the user interaction in
the scheduling process, such as asking the user to specify
and approve dates, was implemented using these forms.

5.1.2. Script Execution. Another useful feature offered
by Camunda is that it can run scripts embedded in the
BPMN diagram directly on the process engine. This al-
lows uncomplicated interfacing with other systems and
the developer is free to script parts of the system with
the tools of their choice. This is a plus for automation as
well, since small repetitive tasks that would otherwise be
executed manually can now be scripted with a little time
investment. The scheduling process used this feature for
implementing logic that would have been hard to read in a
BPMN diagram, such as detecting when there is no more
viable date at which all parties can attend. It was also
used for communicating with the email service to send
notifications to the individual users.

5.2. Challenges

While the in-built functionalities included in Camunda
make it suitable for many use cases, using BPMN and
Camunda to implement a simple process is less straight-
forward than one might expect. This is illustrated by some
problems encountered below.

5.2.1. Deployment. After having modeled a process in
the modeler, it is time to deploy it to the process engine.
This can be achieved through the modeler’s user inter-
face, but not without quirks. One problem a user might
encounter is a misleading status message when trying to
deploy BPMN diagrams, stating that the deployment was
successful. Searching the Camunda Cockpit, it is possible
that the just deployed process is nowhere to be found. This
can be due to syntax or semantic errors in the BPMN
diagram. Unfortunately, the user does not receive any
feedback as to what went wrong and the documentation
does not offer help on how to troubleshoot this problem.
Instead, the only method of finding errors related to the
BPMN diagram we were able to find is to search the
logs of the Apache Tomcat instance in which Camunda
runs. The encountered error will be listed inside a Java
exception and refers to the position of the error in the
BPMN XML notation. This in turn can help the user track
down the error in the visual representation of the diagram
to fix it in the local diagram and attempt redeployment.

While users can certainly get used to this method of
error tracing, it violates some usability guidelines such
as Shneidermann’s “8 Golden Rules of User Interface
Design” [6]. Rule two states that feedback should be
instant and precise. Rule five states that errors should be
prevented where possible and that help should be offered
where not. Both of these rules are not well implemented,
decreasing overall usability. Another problem is that the
only group of users who are likely to check any log
files are programmers. Since BPMN is designed to be
used by both developers and business users as a way
of collaborating, this solution ignores the needs of the
less technically skilled users. Additionally, it is likely that

Type of Seminar
Bachelor Ignore

invitation
No

Let secretary
schedule

< 1 week away

Master

Yes

Let secretary
schedule

Notify
Professor
directly

< 1 week away

No

Yes

Figure 3. The BPMN equivalent of spaghetti code. Each new decision
makes the number of activities double, causing the diagram to quickly
increase in size. Complex decision-making should be avoided in BPMN
in favor of comprehensibility, since complexity cannot be hidden by the
usual object-oriented concepts such as inheritance. Instead, it is possible
to externalize decisions to tools such as DMN, a notation specifically
designed for decision-making [4].

users are working in a business environment where they
do not have access to the logs for security reasons, which
could prevent them from getting any assistance at all.

5.2.2. Utilizing BPMN to the appropriate Degree.
Another issue that users will encounter while using BPMN
is ensuring that the level of detail which is used for process
diagrams is appropriate. Too little detail will mean that
changing a process to fit new requirements is inflexible,
as large parts of the process are black-box activities. Too
much detail, and it will become hard to interpret and mod-
ify process diagrams accordingly (see Figure 3). In this
case, it would be preferable to encapsulate the decision-
making in an activity and implement it somewhere else
in order to hide complexity. Experience is required to be
able to judge whether a given set of activities should be
modeled within BPMN or whether an implementation in
other tools is more appropriate.

5.2.3. Testing and Debugging. Since BPMN has simi-
larities with programming languages, it is worth taking
a look at how processes are tested and debugged within
Camunda. One nice feature offered is allowing the user
to view variables inside of a running process. This fea-
ture represents the basis for debugging a process, as it
makes its internal state observable. Unfortunately, this is
where the built-in tools for testing and debugging end.
Therefore, the testing framework lacks some functionality
one might expect of a programming language, such as
automated testing or setting breakpoints. One particular
tedious problem is when processes require a large amount
of user input. Getting the process into a certain state for
testing can require lots of manual interaction and this setup
needs to be repeated every time a test is run. Some help
is offered by the Camunda REST API, which allows the
automation of human input tasks by calling appropriate
API endpoints instead of entering form data manually.

6. Evaluation of Solution

In order to review the solution that was implemented,
the process will now be evaluated against the previous set
of requirements. A simplified view of the resulting BPMN
workflow can be seen in Figure 4.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

3 doi: 10.2313/NET-2019-06-1_01

U
ni

ve
rs

ity
 C

ha
ir

Pr
oc

es
s

En
gi

ne
O

th
er

 P
ar

tic
ip

an
ts

Pr
of

es
so

r
M

ai
n

A
dv

is
or

Review
suggestions

Submit
suggestions

Pick �nal
suggestion

Review
suggestions

Review
suggestions

Send result
noti�cation

Restart

Figure 4. An extract of the final seminar scheduling BPMN process.
It includes error handling and sub-processes (thick border activity) to
build reusable parts of the process. Notice how the overall structure of
the workflow has nevertheless stayed the same.

6.1. Review of Requirements

1) Reduced consumption of resources is one of the re-
quirements specified earlier. Whether the newly imple-
mented process is faster than the existing one depends
on the probability that all participants are available for
the requested appointment. A high probability causes
the mail-based solution to be faster, however each
retry increases the chance for error and slows down
the mail process. This is where relative improvement
can be observed with the BPMN-based process. Since
the BPMN process is closely based upon the existing
process, the number of tasks a user receives stays the
same. This requirement is therefore partially fulfilled.

2) Runtime flexibility was maintained where appropriate.
While there is a strict sequence of activities, it is
possible for the advisor to cancel or restart the process
at any time should the conditions change.

3) Transparency and accountability have been im-
proved from the existing solution. At any given state,
it is possible for participants to view the internal state
of the process as well as who is responsible for the
current activity. A history of previous activities is also
provided. This requirement is therefore fully fulfilled.

4) Eliminating repetitive or tedious tasks was another
previously stated goal. This was achieved by automat-
ing tasks suitable for machine processing, such as
sending result notifications to participants and publish-
ing the agreed date on the chair’s website. This lessens
the potential for error and increases user satisfaction.

5) Maintainability was a technical requirement. Some
common techniques such as call activities (the BPMN
equivalent of procedures and procedure calls) were
used to reduce duplication.

6.2. User study

To further gain qualitative feedback on the new im-
plementation, a small user base was asked to test the
process. Some responses are shown in Table 2. It shows
some things that were not considered in the design, and
some potentially unwanted mechanics that were missed

Topic Response

Communication “The scheduler should provide a means of com-
municating with the others. Otherwise, I need to
use email for communication in addition to this
scheduler.”

Disappearing
tasks

“Sometimes tasks disappear from the task list
without an apparent reason.” (Later, it was found
this happens when other people submit their
review in parallel and there are no more viable
suggestions)

Information
flow

“It does a good job tracking what needs to be
done with multiple running requests.”

TABLE 2. USER’S FEEDBACK AFTER TESTING THE BPMN PROCESS.

in testing. These provide a good basis for the analyst to
continue improving the process.

The newly introduced process is therefore a viable
alternative to the e-mail based solution. While there are
other known solutions to the scheduling problem, this case
study was useful to examine some benefits and drawbacks
of BPMN based process modeling in relation to academic
processes.

7. Conclusion

Processes are part of many systems and managing
them can help improve their performance. The effects
of using process modeling were examined using a case
study of a process at the university chair. Some problems
with the current process and requirements for an improved
version were determined. A new solution was then im-
plemented using BPMN and Camunda, which was later
evaluated against the previous requirements. We showed
that both the email-based solution and the BPMN-based
solution each have their advantages and disadvantages.
While the email-based solution is less maintenance in-
tensive, its complexity and error rate increase with a
decreased probability of all participants being available
at a given request. On the other hand, while the BPMN
implementation offered good accountability, it reduced
the overall flexibility. With a small user study, some
additional feedback was collected and some minor issues
found. Overall, the new solution was deemed a viable
alternative. When applied to the right processes with the
right requirements, BPMN and Camunda can help achieve
significant improvement in efficiency and effectivity.

References

[1] Merriam-Webster, “Dictionary”, https://www.merriam-webster.
com/dictionary/. Accessed 25 Sept. 2018.

[2] camunda services GmbH, “BPMN 2.0 Symbol Reference”, https:
//camunda.com/bpmn/reference/. Accessed 02 Sept. 2018.

[3] camunda services GmbH, “Best Practices for creating BPMN
2.0 process diagrams”, https://camunda.com/bpmn/examples/. Ac-
cessed 25 Sept. 2018.

[4] camunda services GmbH, “DMN Tutorial”, https://camunda.com/
dmn/. Accessed 25 Sept. 2018.

[5] Object Management Group (OMG), “Business Process Model and
Notation (BPMN)”, https://www.omg.org/spec/BPMN/2.0.2/PDF,
December 2013

[6] Dr. O. N. N. Fernando and Dr. Y. He, “Human Computer Interac-
tion”, NTU School of Computer Science and Engineering, January
2018

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

4 doi: 10.2313/NET-2019-06-1_01

Performance of Secure Multiparty Computation

Ludwig Dickmanns, Marcel von Maltitz∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ludwig.dickmanns@outlook.de, vonmaltitz@net.in.tum.de

Abstract—With the recent advancements in modern com-
puter technology secure multiparty computation (SMC)
evolved from a mere theoretical approach to a number of
actively developed software projects. A major advantage of
SMC is that it allows a set of parties to jointly calculate a
function without any party revealing it’s input.
In our study we evaluated the influence of network param-
eters on the performance of a SMC framework, in order to
derive an outlook for the feasibility of SMC applications in
the future. For the evaluation the following parameters and
the corresponding measurements were chosen: The impact
of increasing the number of peers on execution time and
protocol invocations and the effect of added network latency
and decreased bandwidth on the execution time.
Our results indicate that SMC is a feasible option, especially
in setups with a high bandwidth, low network latency and
a limited number of peers. Linear increase in peers led to
a linear increase in execution time and protocol invocations.
The execution time increased drastically for a transmission
rate of 10 MBit/s or lower. However, added network latency
had the most significant negative impact.

Index Terms—secure multiparty computation, performance,
measurement

1. Introduction

The main goal of Secure Multiparty Computation is
to allow several parties calculating a joint function. The
corresponding inputs of each party are kept private and no
Trusted Third Party should be required for the calculation.

The most prevalent example for SMC is Yao’s
Millionaires’ Problem: Two millionaires wish to
determine whom of both is wealthier – without either one
of them revealing their credit balance. As mentioned in the
beginning, no Trusted Third Party should be required. In
his paper "Protocols for Secure Computation" from 1982,
aforementioned A. C. Yao proposes a solution to this
problem, which satisfies the above mentioned criteria.
Furthermore, the researcher describes a generalized
approach for similar problems with more than two parties
calculating a collective function without revealing their
inputs, e.g. "Mental Poker" [1]. However, at this point
in time a practical implementation was not feasible
due to lack in computational power. Fortunately – with
the advancement of technology over the recent years –
computers are now capable of performing such tasks in an
appropriate amount of time and thus SMC-Frameworks

are emerging [2] [3].

Besides computational power there is another impor-
tant point to consider when answering the feasibility ques-
tion: Network performance. The purpose of this paper is to
investigate in and help answering the following question:
How do network parameters influence the performance of
SMC? Hence, measurements were carried out examining
the influence of the following parameter:

• Number of peers
• Network latency
• Transmission rate

Only for the first one, number of peers, we identified the
impact on the amount of evaluated protocols, because the
other two parameters are not influencing it. For all three of
them execution time measurements were carried out. This
is the most important factor in the context of usability
because the application should be able to operate in an
user-acceptable amount of time.

The remainder of this paper is structured as follows:
After identifying related work in Section 2, there will be
information about our testing setup in Section 3 divided
in two parts: Testbed (3.1) and the SMC framework of
choice and our adjustments to it (3.2). Then, the results
of the measurements are shown in Section 4 and in Sec-
tion 5 those results and the corresponding consequences
are discussed. In the last Section (6) we draw a conclusion
regarding our results and provide an outlook for future
research.

2. Related Work

Firstly – as discussed in the introduction – the
theoretical foundation for SMC was layed out in 1982
by A. C. Yao [1]. Secondly several SMC frameworks
were implemented. Hence, the third step is to evaluate
the performance of such applications in order to discuss
whether the technology is applicable.

One publication investigating on this topic is "A per-
formance and resource consumption assessment of secure
multiparty computation" by Marcel von Maltitz and Georg
Carle [4]. Here, the researchers analyzed the following
parameters:

• Number of peers
• Network latency
• Transmission rate
• Packet loss

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

5 doi: 10.2313/NET-2019-06-1_02

• Input data parallelization
With the purpose of examining data about their impact on
the following performance indicators:

• Execution time
• CPU cycles
• Heap memory consumption
• Transmitted bytes
Their research work resulted in a promising outlook

for SMC in the future. Intranet applications can already
be considered feasible, however for Internet and mobile
Internet applications the main bottleneck is network
latency. A difference to this paper is the SMC protocol
(BGW) used by the software under test. BGW will not
be explained in this paper, however, in Section 3.2.1
there is a short introduction to SPDZ, which is the SMC
protocol used by the software we tested.

In this paper there will be an analysis of three of
the above five parameters. We used the same network
setup in order to either validate the thesis by delivering
a similar outcome or providing room for discussion by
showing different results. However, we did not analyze
packet loss and input data parallelization as this would
exceed the frame of this study. Furthermore, we did not
investigate CPU cycles, heap memory consumption and
transmitted bytes, for the same reason.

Further measurements were taken in [5] [6].

3. Test Setup

The setup, in which the time measurements were
carried out, consists of two parts. The first of which is
the testbed, i.e. the hardware the test and measurement
software was ran on. The second part is the SMC frame-
work software – namely FRESCO – and our adjustments
to it. Firstly, general information on FRESCO is given.
Then, the tested application is introduced. Afterwards, we
explain how the measurements were taken.

3.1. Testbed

For our tests we used a range of three to 17 physical
peers in order to derive the influence factor of adding
additional peers to the network. The hardware for each
host was equal: A four core Intel Xeon CPU running
at 2.50GHz with 8192KB of cache and 16GB RAM.
All hosts were connected to each other with an 1 GBit
networking interface and the default link latency is around
0.18ms. The network is organized in a star topology: A
central switch in the middle is connected to three other
switches. The ladder are connected to five to six hosts. As
the operating system of choice on each machine Debian
Stretch (9.4) was used with a 4.9 Linux kernel.

3.2. FRESCO

In this subsection we introduce the secure multiparty
computation framework, which we used for our tests.
Then software under test is introduced. Here, we adjusted
an demo application, which is part of the framework, and
those adjustments are explained. Afterwards, the method-
ology for the measurements is introduced.

3.2.1. General. The FRamework for Efficient Secure
COmputation (FRESCO) is developed by the Alexan-
dra Institute in Denmark. It is licensed under the open
source MIT license. According to their documentation [7],
the framework is already prototypically in usage, e.g. to
evaluate surveys without revealing the answers of the
participants. The code is written in Java, which helps
with platform independence. Summarizing, the main goals
of FRESCO are providing an infrastructure for uncom-
plicated SMC application development, with an easily
adjustable design. Earlier mentioned protocols are defined
in a protocol suite and represent the base functions of
it. Hence, applications are built using protocols. Batches
contain a certain number of protocols, which are eval-
uated in parallel. In addition, the effort for developing
an individual protocol suite is reduced by contributing
a framework of reusable patters. A central feature of
FRESCO is an extra abstraction layer, in order to separate
algorithm/application development from the mathemati-
cal realization of the underlying SMC protocol. Finally,
FRESCO tackles scalability issues by supporting pre-
processing and parallel execution. FRESCO is actively
developed and maintained. The SMC protocol used by
FRESCO is SPDZ, which allows secure arithmetic calcu-
lations for multiple parties via secret sharing [8]. A great
example to explain and illustrate arithmetic operations
with secret sharing is the addition with multiple parties.
In this case, n parties wish to collaboratively calculate the
sum of their inputs, here integer values. Party i contributes
the input xi. Each party splits it’s inputs into n randomly
sized parts (xi

1, ..., x
i
n) – so called shares – in a way that

adding up all of the shares results in the input (xi). E.g.
for the input xi this means

∑
j x

i
j = xi. In the next

step, the shares are exchanged between the parties: Party
j receives share j of each party (x1

j , ..., x
n
j). Then, Party j

calculates partial sum rj of the received shares. In the last
step all partial results are exchanged allowing each party
to calculate the total sum [9]. The previously cited article
and its follow-ups provide further insights to arithmetic
operations with secret sharing and SPDZ.

3.2.2. Tested Application. For our studies we used ver-
sion 1.1.2 of FRESCO [2], which contains demo appli-
cations. In one of those three parties are collaboratively
calculating the sum of an integer array, which is the input
of party one. Parties two and three initially had no inputs.
In order to make this example more realistic, however,
we adjusted it in order to allow more than three parties,
with each of them contributing their own input array.
Instead of the sum, the application calculates the mean
and the variance of all of the inputs. Previously the input
was hard coded inside the FRESCO code, but in our
example the inputs are now read in from a CSV file. With
those adjustments the example was made more versatile
for testing as this allows to draw a conclusion about the
impact of adding extra peers.

3.2.3. Measurements. As mentioned in the beginning of
this paper, measurements were taken on the evaluated
protocols and the corresponding batches and execution
time. When running the FRESCO application, each peer
produces an individual log file, where data about the
last run are stored. Both evaluated performance indicators

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

6 doi: 10.2313/NET-2019-06-1_02

were extracted from those files and the collected data is
illustrated in the figures of this paper in Section 4. Each
measurement was carried out ten times and the median of
those measurements was used for the illustrations.

4. Results

Separated by the input parameters – namely number
of peers (4.1), network latency (4.2) and transmission rate
(4.3) – this section addresses the results of this study.
Hence, interpreting the impact of the above parameters
on the execution time and the amount of transferred data
is the content of this chapter.

4.1. Number of Peers

For our tests we used a range of three to 17 peers
in order to investigate in the change in execution time
(4.1.1) and protocol invocations (4.1.2) with an increasing
amount of peers.

4.1.1. Execution Time. The effect of an increasing num-
ber of peers on the execution time is demonstrated in
Figure 1. The x axis shows the number of peers, whereas
on the y axis the execution time can be seen. A higher
amount of peers leads to more input for computation as
well as an increase in communication between the peers.
Both of these factors result in an extended execution time.
In addition, the figure illustrates a linear behavior, which
can be considered positive as e.g. quadratic behavior
would be much worse.

4 6 8 10 12 14 16
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Number of peers

E
xe

cu
tio

n
tim

e
[s

]

Figure 1. The execution time depending on the number of participating
peers.

4.1.2. Protocols and Batches. Besides the execution
time, the amount of protocol invocations and the number
of corresponding batches was measured. As shown in Fig-
ure 2 an increase in peers led to more protocol invocations
in an higher amount of batches. Both measured indicators
seem to follow linear behavior – as the execution time
does – in relation to the number of peers. While the
quantity of batches grows relatively slowly, the number
of protocol invocations increased faster in comparison.
However, as both numbers are increasing linearely, this
example provides an argument in favor of the feasibility

question. For very large applications this still remains a
point to consider, but even here (and from the execution
time standpoint) linear increase is by far more acceptable
in contrast to e.g. quadratic or cubic behavior.

3
pe

er
s

4
pe

er
s

5
pe

er
s

6
pe

er
s

7
pe

er
s

8
pe

er
s

9
pe

er
s

10
pe

er
s

11
pe

er
s

12
pe

er
s

13
pe

er
s

14
pe

er
s

15
pe

er
s

16
pe

er
s

17
pe

er
s

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2
·104

Protocol invocations
Batches

Figure 2. The amount of native protocol invocations and the number of
batches in which they have been executed depending on the number of
participating peers.

4.2. Network Latency

Another parameter evaluated in the study for this paper
is network latency and how it affects the execution time
of the application. In order to add latency tc was used.
Figure 3 illustrates how additional network latency affects
the execution time for the range of three to 17 peers
connected to each other with a bandwidth of 1000 MBit/s.
The increase in execution time in relation to network
latency behaves similar to a root function. However, the
growth in run time increases significantly. As an example,
the execution time without additional latency is approx-
imately under five seconds for the range of three to 17
peers, whereas a delay of 10ms results in an factor five
to 17 growth in execution time for the corresponding
number of peers. After this strong increase the slope
flattens. Increasing added network latency from 10ms to
50ms (factor five) results in an approximately factor two
increase in execution time.
Inferentially, it has to be stated that the network latency
can result in a problem for SMC. Especially for mobile
and Internet use cases this imposes a problem and possible
limitations as in those cases a latency of 10ms is already
quite optimistic. Hence, for such applications, latency can
lead to an significant increase in execution time.

4.3. Transmission Rate

The last parameter we analyzed for this study was the
transmission rate. In order to decrease the bandwidth from
a maximum of 1000 MBit/s to a minimum of 1 MBit/s
the same tool as in Section 4.2 was used (tc). Equal
to the other measurements, the experiments were made
with three to 17 hosts. Execution time was measured in
the aforementioned range for 1 MBit/s, 10 MBit/s, 100
MBit/s and 1000 MBit/s. Figure 4 illustrates that there
is no significant change in execution time between 1000

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

7 doi: 10.2313/NET-2019-06-1_02

0 10 20 30 40 50
0
25
50
75

100
125
150
175
200

Network latency [ms]

E
xe

cu
tio

n
tim

e
[s

]

3 peers 4 peers 5 peers
6 peers 7 peers 8 peers
9 peers 10 peers 11 peers
12 peers 13 peers 14 peers
15 peers 16 peers 17 peers

Figure 3. The execution time of the secure computation depending on
the number of peers and on the network latency of the network. The
latency highly influences computation time irrespective of the available
transmission rate.

MBit/s and 100 MBit/s. However, from 100 MBit/s to 10
MBit/s there is a slight increase in time for execution. In
the last interval, from 10 MBit/s to 1 MBit/s, the increase
in execution time is much steeper, especially when the
lower bandwidth is combined with a large number of
participating peers. This behavior can be interpreted as
follows: With 10 MBit/s and lower the transmission rate
constitutes a bottleneck, but as soon as this threshold is
exceeded there are only slight improvements in execution
time.
Therefore, this may result in problems for large scale
applications with a huge amount of hosts and some peers
having lower bandwidths, e.g. mobile apps and Internet
applications. However, for smaller networks with a high
transmission rate between the peers, for example an in-
tranet setup, the SMC approach remains more feasible.

100 101 102 103
0

10

20

30

40

50

60

Transmission rate [MBit]

E
xe

cu
tio

n
tim

e
[s

]

3 peers 4 peers 5 peers
6 peers 7 peers 8 peers
9 peers 10 peers 11 peers
12 peers 13 peers 14 peers
15 peers 16 peers 17 peers

Figure 4. The execution time of the secure computation depending on
the transmission rate. The shown case has no additional network latency.

5. Discussion

The purpose of this Section is to put the results from
Section 4 in context and – as mentioned in Section 2
– compare them to the results of "A performance and
resource consumption assessment of secure multiparty
computation" [4].
As discussed in Section 4.1, the execution time increases
linearly with an increasing number of peers in our case.
The previously mentioned study came to the same results,
which strengthens the thesis of having linear behavior.
For protocol invocations no comparable measurements
were taken. In our case, we were able to also identify
linear correlation between number of peers and protocol
invocations.
Transmission rate can be considered a smaller problem.
Both studies came to the result that a relatively low
bandwidth of 1 MBit/s significantly increases the
execution time, but even an increase to 10 MBit/s
reduces time of execution drastically. Further increase in
transmission rate only has a small effect.
In our study network latency constitutes the most
important factor, as it had the largest absolute impact
on the execution time. The related study supplies equal
results, which strengthens this thesis.

Hence, for intranet applications, which are mostly con-
nected with broad and fast connections, secure multiparty
computation can be considered a viable option. Under the
described circumstances, it is possible to keep execution
time acceptably low. However, for applications with a
less powerful network infrastructure, for example mobile
apps, this can result in a high execution time, as the
factors combine, i.e. a low transmission rate (EDGE: 384
KBit/s, 3G: 7.2 MBit/s (HSPA) [10]) and a higher network
latency(EDGE: 200-450ms [11], 3G: 100-350ms [12]).

6. Conclusion

Summarizing, SMC provides a great software solution
when several parties wish to collaboratively calculate a
function, without either of them revealing their input. The
theoretical concept already existed over 35 years ago, but
recent advancements in computer and network technology
allow practical implementations. However, there are still
considerable limitations to secure multiparty computation.
With state-of-the art technology and networks, intranet
applications can already be considered feasible due to a
limited amount of peers, low network latency and a high
transmission rate. In such setups an acceptable execution
time seems realistic. However, in use cases with less
optimal circumstances there is a significant increase in
execution time. While a decrease in transmission rate leads
to an increase of up to approximately factor five, the
influence of the amount of peers was at factor three from
three to 17 participants. The greatest absolute increase in
execution time came from the network latency. Even a
small delay of 50ms increased the time of execution with
up to a factor of over 100. With those limitations real-time
or close to real-time applications are unfeasible at the mo-
ment. However, for use cases with softer time restrictions
or faster infrastructure, secure multiparty computation can
be feasible. With further advances in internet and network

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

8 doi: 10.2313/NET-2019-06-1_02

technology – increasing bandwidth in combination with
lower network latency – SMC can exceed the limitations
of today. Hence, it remains an interesting topic for further
research and investigation.

References

[1] A. C. Yao. Protocols for Secure Computations. Proceedings of
the 23nd Annual Symposium of Foundations of Computer Science,
Washington, DC, USA: IEEE, pp. 1-5, 1982.

[2] A FRamework for Efficient Secure COmputation. https://www.
github.com/aicis/fresco. 2018.

[3] Sharemind MPC. https://sharemind.cyber.ee/sharemind-mpc/.

[4] Marcel von Maltitz and Georg Carle. A performance and resource
consumption assessment of secure multiparty computation. CoRR,
abs/1804.03548, 2018.

[5] M. Burkhart, M. Strasser, D. Many and X. Dimitropoulos. SEPIA:
Privacy-preserving Aggregation of Multi-domain Network Events

and Statistics. Proceedings of the 19th USENIX Conference on
Security, p. 15, 2010.

[6] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework
for fast privacy-preserving computations. IACR Cryptology ePrint
Archive. Springer, 2008, no. October, p 289.

[7] FRESCO Documentation. https://fresco.readthedocs.io. 2018.

[8] I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multiparty
computation from somewhat homomorphic encryption. Lecture
Notes in Computer Science, vol. 7417, 2012, pp. 643–662.

[9] Bristol Cryptography Blog. https://bristolcrypto.blogspot.com/
2016/10/what-is-spdz-part-1-mpc-circuit.html. 2016.

[10] Mobiles Internet. https://de.wikipedia.org/wiki/Mobiles_Internet.
2018.

[11] Alles zum Thema edge. https://www.onlinekosten.de/
mobiles-internet/edge/.

[12] 3G/4G Ping Times/Latency. https://www.evdoinfo.com/content/
view/4818/64/.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

9 doi: 10.2313/NET-2019-06-1_02

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

10

Overview of TCP Congestion Control Algorithms

Moritz Geist, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: moritz.geist@tum.de, jaeger@net.in.tum.de

Abstract—The current set of congestion control algorithms
is split into three primary groups regarding their function
and can easily be categorized and therefore characterized.
This paper compares these different classes in compliance
with their respective advantages and disadvantages. Each
algorithm on its own is well researched, however, it is difficult
to predict how they perform when used together in the
Internet due to the unpredictable behaviour of it.

Index Terms—tcp, congestion control algorithm, measure-
ment, high-speed networks

1. Introduction

With the world being more and more connected
through the Internet, the underlying network has to work
increasingly efficient to achieve a high-performing and
stable connection all the time. That is a very difficult goal
to achieve without the help of the transmitting computers.
If every computer connected to the Internet would just
send packets as fast as possible, the slowest links or most
utilized networks would get overloaded to the point of
routers dropping packets instead of passing them on to
the next node. This leads to a severe performance hit
for Internet applications due to the whole stream having
to wait for the packet to be retransmitted. To avoid this
and keep a high throughput, while not losing packets,
computer scientists have come up with several congestion
avoidance algorithms. These algorithms work by control-
ling the size of the congestion window. The congestion
window limits the number of packets that can be inflight,
meaning waiting for acknowledgement, at any time and is
created for every TCP connection. As long as there are less
packets inflight than the size of the congestion window,
new packets will be sent out and transmitted. The packets
get removed from the congestion window as soon as they
are acknowledged, which allows for the next packet to be
sent. By this definition, the optimal congestion window
size is equal to the Bandwith Delay Product (BDP). The
BDP is calculated using BDP = bandwith · RTT . The
bandwith to be used is the total usable bandwith of the
slowest link on the path, and RTT is the total round trip
time of the stream. This is due to the nature of routers be-
tween the sender and the receiver: Internally, they operate
a packet queue that incoming packets will be appended
on. The packet at the head of the queue will be processed
and transmitted to the next node. If it happens that more
packets come in than the number of packets that get sent
out, the packet queue will grow until a certain limit. If
the limit is reached, packets will be dropped until there

is new space in the queue. If the sender just continues
to send out packets as fast as possible, all packets would
get dropped on that link. Instead, the congestion control
algorithm reduces the congestion windows size until no
more packets are lost on their way. The result of a higher
congestion window than BDP is therefore a queue filling
up at the slowest link, while a smaller congestion window
decreases the size of the queue gradually.
The primary difference in congestion avoidance algo-
rithms is how they detect an overloaded link in between
them and how they increase and decrease the congestion
window. This paper will compare different methods of
detecting and handling the size based on some existing
algorithms.
This paper will first explain the different techniques on
how a congestion control algorithm can operate in Sec-
tion 2, followed by examples that highlight each of the
different approaches in Section 3. In Section 4, the algo-
rithms will be discussed in how they perform compared to
each other and especially while active as parallel streams
in a network.

2. Background

In this section, we compare how different congestion
avoidance algorithms detect an overloaded link on their
path. While it is most common to utilize only one of
these three strategies, some algorithms use combinations
of them. As Lefteris Mamatas et al. specify in [1], the
algorithms can be classified into three distinct groups:
black box algorithms that do not rely on any state informa-
tion about the network and only rely on binary feedback;
gray box algorithms that do active measurements to "esti-
mate available bandwidth, level of contention or even the
temporary characteristics of congestion" [1]. Third, green
box algorithms do have exact knowledge about the state
of every (or most) part of the network, either by being
implemented in every part of it or every link reporting its
status to the sender.

2.1. Loss-based Algorithms

One of the most common ways of detecting an over-
loaded link is by reacting to packet loss. This is considered
a black box method, as it only relies on the binary input
of a packet being lost or not. In case a packet is not
acknowledged after a certain time, called the retransmis-
sion timeout, or after receiving three duplicate ACKs [2],
it is considered missing and will be retransmitted. This
also indicates to the congestion avoidance algorithm to

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

11 doi: 10.2313/NET-2019-06-1_03

0 2 4 6 8 10 12 14 16 18 20

50

100

150

200

100

Time [s]

W
in
d
ow

S
iz
e Congestion Window

Lost packets

Figure 1. Congestion window resize after a lost packet in TCP Reno

shrink the congestion window, so less packets are sent
out. In the most simple algorithm, called TCP Reno (seen
in Figure 1), the congestion control begins with a phase
called "slow-start" up to t = 1s [3]. In that, it the window
size is increased by one for each acknowledged packet
resulting in an exponential growth, until the first lost
packet is registered. After that, the congestion window
is halved on loss, and will be increased steadily, but
in a linear way. This results in a sawtooth-like graph
for the congestion window size like in Figure 1. Loss-
based congestion avoidance algorithms only need to be
implemented by the sender, making them exceptionally
easy to deploy. The receiver, who also is a sender by at
least sending out acknowledgements, can use a totally dif-
ferent congestion avoidance algorithm. The problem with
these algorithms is that packets can get lost for reasons
other than an overloaded link, for example, if an actually
broken, or a less reliable link is used on the way. This
results not only in a bad performance due to retransmits,
also the congestion window is decreased without any need
making it smaller than the BDP and therefore decrease
effective throughput. Even if packets are only lost due to
overloaded links, these algorithms can never be perfect:
The window size is increased as long as there is no packet
loss, which in turn means that there always will be at least
one lost packet every so often, as seen in Figure 1. This
can lead to problems with applications that require near-
real-time communications, like Voice-Over-Ip or online
games. Algorithms based on packet loss are therefore the
easiest to implement, while also theoretically most limited
considering accurate functionality.

2.2. Delay-based Algorithms

Another way of detecting an overloaded link is by
measuring the delay in which acknowledgements arrive,
also known as the round trip time (RTT). By the crite-
rion listed in Section 2, these algorithms are grey box
algorithms, as they use more advanced measurements to
examine and monitor the status of the network. Especially
by monitoring changes in RTT, these algorithms can react
to a congestion earlier than purely loss-based algorithms,
as most of the time the RTT increases gradually before a
packet is actually lost. The queue fills up like explained in
Section 1 when the congestion window is bigger than the
BDP. A nonempty queue means that packets have to wait
in line to be sent on, leading to a higher RTT. Only when
the queue size reaches he maximum buffer size, packets
are dropped instead of being queued. This has the follow-
ing advantages: Delay-based algorithms can react sooner
to congestion, maybe even before the first packet is lost at

all, which can have a positive impact on the performance
of some applications. Also, instead of having to cut down
the congestion window in half, it can gradually shrink the
congestion window relative to measured increase in RTT.
This can lead to an improvement in throughput compared
to other black box algorithms in isolated environments.
A very basic implementation of a delay-based algorithm
is TCP Vegas [4]. An example of this behaviour can be
seen in Figure 2. As soon as the network gets congested
at t=10, the buffer of the overloaded link starts to fill
up, resulting in the average RTT increasing. The sender
reduces the congestion window to prevent any packet
losses.

4 6 8 10 12 14 16 18
0

50

100

150

200

100

Time [s]

Avg RTT in ms
Congestion Window

Figure 2. Decrease of Congestion Window Size

While a delay-based algorithm is alone in a network,
it is able to adjust its congestion window to a perfect
size: Maximum throughput combined with no packet loss
and minimum RTT. It gets difficult as soon as another
connection uses the same link that is more aggressive,
like a loss-based algorithm mentioned in Section 2.1. As
these will enforce one or more lost packets from time to
time, this affects the delay-based stream as well because
of the increased queueing delay, leading to it reducing
the congestion window to an absolute minimum. Also,
delay-based algorithms can react to loss similar to loss-
based algorithms as well, as seen in Section 3.2. How the
detection technologies work together will be described in
Section 4.

2.3. Signal-based algorithms

As the definition in [1] states, with green boxes "the
network communicates its state to the transport layer".
This is achieved through signal bits, with which an over-
loaded link notifies the sender of its state. The actual
implementation of this can vary. The TCP protocol header
contains six unused bits that are reserved for future use as
well as an option field that can carry more complex infor-
mation [5].The advantage of this algorithms is obvious:
With complete knowledge of the status of the network,
it becomes a matter of algorithmic design of how the
sender should adjust its congestion windows size. It is
even possible to prioritize different streams of data without
exceeding the load on a link, making sure it does never
get actually overloaded and incur high delays or drop
packets. A shortcoming of this method is illustrated in
Figure 3. The link between the router and the receiver is
slower than the link between the sender and the router,
which means it will be overloaded at some point. The
router detects this as soon as the internal buffer starts

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

12 doi: 10.2313/NET-2019-06-1_03

to fill up, and will set signal-bits or options in the next
packet it forwards to the receiver accordingly. The receiver
will then acknowledge the packet and adopt the extra
information in the corresponding acknowledge-packet.

Sender Router
Receiver10 MB s−1 5 MB s−1

Figure 3. Path of the signal

As visible in Figure 3, the information about the in-
creased load needs to travel at least three hops, depending
on the network layout. It follows the dotted lines back to
the sender. Therefore, the information takes at least half of
one round trip time to reach the sender. The big disadvan-
tage of signal-based algorithms or green box algorithms is
that they need to be deployed on all parts of the network,
including the receiver and every router. This makes it
practically impossible to use them in the open Internet,
so they are only useful in closed networks like offices
or data centers where each of the network components is
controlled by a single instance. Loss-based 2.1 and delay-
based 2.2 algorithms do not require this.

3. Implementation

This section will showcase some more- and less pop-
ular congestion avoidance algorithms and highlight their
benefits and shortcomings. It will cover all of the before
mentioned types of detection from Section 2.

3.1. TCP Cubic

TCP Cubic is the current default congestion avoidance
algorithm in the current Linux kernel, which makes it one
of the most used algorithms. It has been developed by
Sangtae Ha et al. in 2008 and the specification is made
available here [6].
TCP Cubic is completely loss-based and therefore a black
box algorithm. It can be viewed as an improvement over
TCP Reno described in Section 2.1 and Figure 1. After
the same slow-start-phase that is present in TCP Reno it
behaves similarly when receiving a lost packet. The main
and only difference is how it increases the congestion
window. Instead of increasing it with a constant (or at least
linear depending on the current RTT) function it splits
the increase function into two phases that are illustrated
in Figure 4: First, it will increase the congestion window
based on a concave cubic function (right curved) until
it reaches a value called W_max at t = 8. This is the
size the congestion window had when the last congestion
event (packet loss) occurred. After reaching that point
again, the function begins to increase slowly at first, but
with increasing speed later on (convex, left curved). This
method of growth causes the congestion window and
therefore sending rate to stay close to the last known
highest value as long as possible, while still be able to
go beyond that. Consequently, TCP Cubic behaves very
similar to TCP Reno while being able to faster recover
from a loss and slower run into the next one.

6 8 10 12 14 16
80

100

120

140

Time [s]

C
o
n
ge
st
io
n
W

in
d
ow

Congestion Window
Lost packets

Figure 4. TCP Cubic Congestion Window Size

3.2. LEDBAT

Low Extra Delay Background Transport (LEDBAT) is
a delay-based congestion control algorithm that has been
technically documented in 2012 [7]. It can be seen as
a grey box algorithm, as it measures the time a packet
travels from sender to receiver, not just the round trip time.
To do this, a timestamp is appended to every outgoing
packet that the receiver then subtracts from his local time
and responds the one-way delay to the original sender
using the acknowledgement packet. The sending side then
considers the difference in delay over time, so clocks
do not need to be synchronized. LEDBAT purposefully
only uses the one-way delay for its calculations, as it is
designed for primarily one way bulk-transfer applications
like file-sharing and software updates. Its goal is to reduce
the impact on contending other streams while still being as
fast as possible. As seen in [7], LEDBAT is, in general,
less aggressive than TCP Reno or Cubic due to it also
halving the congestion window on loss in addition to
shrinking with increasing delay. The ramp-up function is
never faster than TCP Reno, therefore it will not interfere
too much with other traffic. As a result, LEDBAT is
very useful for data transfers that do not require real-time
information processing but instead just need to get done
in some amount of time. Currently LEDBAT is used by
the BitTorrent system [8] as well as for updates in some
operating systems.

3.3. TCP Westwood

TCP Westwood (and TCP Westwood+) is a com-
bination of a loss- and delay-based congestion control
algorithm [9]. They have been developed to improve
efficiency in paths with a large bandwith-delay product
and a potential packet loss such as long wireless links.
In general, it behaves similarly to TCP Reno in that it
features equal slow-start and congestion avoidance phases.
The difference is how it handles congestion events or
packet losses. Instead of halving the congestion window,
Westwood uses an algorithm to estimate the real end-
to-end bandwidth with which it then adaptively sets the
slow-start threshold and congestion window. Due to the
bandwidth esitamtion Westwood works fine in a network
with more streams, unlike TCP Vegas as will be explained
in Section 4. TCP Westwood+ works similar, but employs
a different algorithm to estimate bandwidth, as the original
algorithm was found to be flawed [10] due to compression
of acknowledgement packets.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

13 doi: 10.2313/NET-2019-06-1_03

3.4. TCP MaxNet

TCP MaxNet is a green-box algorithm from 2002 that
features active feedback about the status of the network
to the sender [11], [12], [13]. The routers on the way
each calculate a price using an active queue management
algorithm (AQM). These calculations factor in a demand
function, the next links capacity and utilization. Given
equal demand functions, there is max-min fairness [11].
By scaling this function, it is possible to prioitize a
stream (weighted fairness). The calculated price is then
transported back to the sender along the links using the
max() Function 1 with pi being the individual price value
of the router at position i.

price = max
pi

(1)

A detailed definition of the price can be seen in [13]. The
client will then adjust its congestion window according to
the determined price, so the effective sending rate adjusts
to the slowest link in the network. It therefore is easy
to define and predict how the network behaves, as long
as there are no competing streams that do not use TCP
MaxNet.

4. Evaluation

An important consideration when developing a new
congestion control algorithm is how it behaves in real-
world scenarios, where overloaded links are hit with dif-
ferent streams at once, and therefore with several different
rates, and different congestion avoidance mechanisms. For
example, a delay-based stream will reduce its congestion
window way before a competing loss-based stream ob-
serves a lost packet. An example of this is seen in Figure 2,
where the congestion window of a TCP Vegas stream is
visible. TCP Vegas is solely delay-based and shrinks the
congestion window when the RTT increases [14]. The
effect can be seen by also measuring the throughput at
the congested link, which is plotted in Figure 5, showing
the same timeframe as in Figure 2. As soon as the Reno
stream starts at t = 10, it immediately congests the link
in the slow-start phase, to which TCP Vegas reacts with
reducing the congestion window drastically. Reno will
then keep the link congested regularly with a congestion
window similar to Figure 1, leading to TCP Vegas never
increasing its congestion window again.

4 6 8 10 12 14 16 18
0

5

10

Time [s]

T
h
ro
u
gh

p
u
t
[M

b
it

s

]

TCP Vegas
TCP Reno
Fairness

0

0.5

1

F
ai
rn
es
s

Figure 5. Throughput at the congested link

This can be calculated using a fairness measurement,
a value that describes how well the total throughput is
shared among all streams. One way to calculate such a
value is by using an equation developed by Raj Jain [15].

It produces values ranging from 1
n (not fair), where n is

the number of streams, to 1 (fair). For the above example,
the index is of value 1 until t = 10, and then drops to
about 0.5. Therefore, this example showcases a worst-case
scenario in terms of fairness. Other delay-based algorithms
try to improve on that shortcoming, for example, West-
wood and Westwood+ behave better in the same scenario
with fairness values of around 0.8 on average, while still
being outperformed by TCP Reno in terms of effective
throughput. Generally, tt would be best if everyone would
be using the same algorithm, just like a green-box algo-
rithm like MaxNet (see Section 3.4) encourages. These do
then accomplish MaxMin fairness, meaning equal share
for every stream with a fully saturated but not overloaded
link.

5. Related Work

The idea of increasing the overall efficiency of the In-
ternet is quite interesting, therefore a lot of people already
tried their best at developing a new, best congestion con-
trol algorithm to the point that a "Yet Another Highspeed
TCP"-algorithm "YeAH-TCP" [16] exists. Other newly
introduced alforithms include BBR developed by Neal
Cardwell et al. that tries to determine the actual level
of congestion using active probing of the network [17]
and PCC Vivace by Mo Dong et al that utilizes machine
learning to improve network efficiency [18]. There is also
research that compares the performance of algorithms
like L. Grieco does in [19]. The paper The macroscopic
behavior of the TCP congestion avoidance algorithm. [20]
explains how TCP congestions can affect the real Internet.

6. Conclusion and Future Work

While there are many congestion control algorithms
that each have their pros and cons, it is very difficult to
have them existing next to each other, unless it is the
design goal (like with LEDBAT in section 3.2) to have
a lower-priority stream. The existing methods for judging
fairness work well to calculate the fairness afterwards, but
with the chaotic nature of the Internet it is very difficult
to predict the behaviuor of the packets. All the algorithms
more or less expect that every packet travels through the
same links every time, which is not guaranteed in any way.
There are even projects that try to increase throughput and
failure handling by explicitly using different interfaces and
links like MultiPath TCP [21]. In future work, it would
be interesting to look at the performance if algorithms in
changing network environments and how fast they adapt
to big variations in maximum throughput and RTT.

References

[1] L. Mamatas, T. Harks, and V. Tsaoussidis, “Approaches to conges-
tion control in packet networks,” Journal of Internet Engineering,
vol. 1, no. 1, 2007.

[2] W. R. Stevens, “Tcp slow start, congestion avoidance, fast retrans-
mit, and fast recovery algorithms,” 1997.

[3] M. Allman, V. Paxson, and E. Blanton, “Tcp congestion control,”
Tech. Rep., 2009.

[4] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, TCP Vegas:
New techniques for congestion detection and avoidance. ACM,
1994, vol. 24, no. 4.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

14 doi: 10.2313/NET-2019-06-1_03

[5] P. SPECIFICATION, “Transmission control protocol,” 1981.

[6] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed
tcp variant,” ACM SIGOPS operating systems review, vol. 42, no. 5,
pp. 64–74, 2008.

[7] M. Kuehlewind, G. Hazel, S. Shalunov, and J. Iyengar, “Low extra
delay background transport (ledbat),” 2012.

[8] D. Rossi, C. Testa, S. Valenti, and L. Muscariello, “Ledbat: the
new bittorrent congestion control protocol,” in Computer Com-
munications and Networks (ICCCN), 2010 Proceedings of 19th
International Conference on. IEEE, 2010, pp. 1–6.

[9] L. Grieco and S. Mascolo, “End-to-end bandwidth estimation
algorithms for westwood tcp congestion control,” in Information
Technology Interfaces, 2003. ITI 2003. Proceedings of the 25th
International Conference on. IEEE, 2003, pp. 563–568.

[10] R. Ferorelli, L. A. Grieco, S. Mascolo, G. Piscitelli, and P. Ca-
marda, “Live internet measurements using westwood+ tcp conges-
tion control,” in GLOBECOM, vol. 2, 2002, pp. 2583–2587.

[11] B. Wydrowski and M. Zukerman, “Maxnet: a congestion control
architecture,” IEEE Communications Letters, vol. 6, no. 11, pp.
512–514, 2002.

[12] B. Wydrowski, L. L. Andrew, and M. Zukerman, “Maxnet: A
congestion control architecture for scalable networks,” IEEE Com-
munications Letters, vol. 7, no. 10, pp. 511–513, 2003.

[13] L. L. Andrew, K. Jacobsson, S. H. Low, M. Suchara, R. Witt, and
B. P. Wydrowski, “Maxnet: Theory and implementation,” WAN-in-
Lab project, pp1-11, 2006.

[14] R. J. La, J. Walrand, and V. Anantharam, Issues in TCP vegas.
Electronics Research Laboratory, College of Engineering, Univer-
sity of California, 1999.

[15] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative mea-
sure of fairness and discrimination,” Eastern Research Laboratory,
Digital Equipment Corporation, Hudson, MA, 1984.

[16] A. Baiocchi, A. P. Castellani, and F. Vacirca, “Yeah-tcp: yet another
highspeed tcp,” in Proc. PFLDnet, vol. 7, 2007, pp. 37–42.

[17] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacob-
son, “Bbr: Congestion-based congestion control,” Queue, vol. 14,
no. 5, p. 50, 2016.

[18] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira,
“Pcc: Re-architecting congestion control for consistent high per-
formance.” in NSDI, vol. 1, no. 2.3, 2015, p. 2.

[19] L. A. Grieco and S. Mascolo, “Performance evaluation and compar-
ison of westwood+, new reno, and vegas tcp congestion control,”
ACM SIGCOMM Computer Communication Review, vol. 34, no. 2,
pp. 25–38, 2004.

[20] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic
behavior of the tcp congestion avoidance algorithm,” ACM SIG-
COMM Computer Communication Review, vol. 27, no. 3, pp. 67–
82, 1997.

[21] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness
with multipath tcp,” in ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4. ACM, 2011, pp. 266–277.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

15 doi: 10.2313/NET-2019-06-1_03

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

16

Robustness of Scanner Exams with TUMexam

Simon Y. Kassahun, Stephan Günther∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: simon.kassahun@tum.de, guenther@tum.de

Abstract—Analysing the optimization possibilities for exams
This paper reports on the opportunities to facilitate the

conventional exam evaluation process by using scanner-based
evaluation software such as TUMexam. It closely analyses
the time cost and error probability for evaluating a regular
exam to estimate the potential improvements of automated
systems based on empirical data from a previously written
exam.

Index Terms—TUMexam, exam evaluation

1. Introduction

Exams are essential to most educational institution
but are often very time consuming and messy. Many
institutions rely on the conventional method of manually
creating and evaluating exams. These require a lot of time
from the faculty to be reviewed and also leaves students
waiting for potentially weeks until they can find out their
result. Manually calculating the test scores also carries the
risk of making mistakes, which are not only annoying for
the reviewers but can also potentially negatively impact
a student’s credit score. There is now a variety of com-
mercial evaluation products available with many different
approaches and scopes such as for example EvaExam1

or eSystem2. With the intention to address the afore-
mentioned problems, the Chair of Network Architectures
and Services from the Department of Informatics at the
Technical University of Munich began developing their
own software called TUMexam3. TUMexam has been
developed since 2015 with the aim to provide solutions
ranging from templates and attendance records to facil-
itating the preparation for the evaluation and correction.
Exams are currently still being manually corrected but
each problem has boxes representing the amount of points
awarded for a correct answer. Instead of writing down a
number, the examiner ticks the corresponding checkboxes.
After that step, all exams are scanned and then digitally
analysed to count the collective score as well as calculate
the final grade. The software is also being offered to other
chairs. However, the decisive factor for most potential
users is whether a switch to the new evaluation system
brings a significant improvement to the processing time.
This will be the main focus of this paper.

1. EvaExam - https://www.evasys.de/evaexam.html
2. eSystem - https://www.speedwellsoftware.com/exam-software/
3. TUMexam https://www.tumexam.de/

2. Methodology

To evaluate the robustness of scanner exams, it is
compared to the conventional method, specifically to how
often mistakes are made in a conventional exam eval-
uation and how much time could potentially be saved.
One example for a conventional exam and one which
uses TUMexam can be seen in Figure 1. The final
exam from 2012 uses one box with two sectors for each
(sub)problem. The two sectors are needed for the two
correction passes. In contrast the final exam from 2017
which uses TUMexam has several boxes forming a table.
The two columns are used for the two correction passes
and each line represents 0.5 credits.

1 Name:

Aufgabe 1 Rahmenfehlerwahrscheinlichkeit (9 Punkte)
9Wir betrachten einekabelloseVerbindung zwischen zwei Computern A und B (s. Abbildung 1.1). Wir

nehmen vereinfachend an, dass Bitfehler unabhängig voneinander mit Wahrscheinlichkeit 0 < p< 1
auftreten. Ein Rahmen der Längexbit ist genau dann korrekt übertragen, wenn er keinen Bitfehler
aufweist. DieWahrscheinlichkeit f (x,p) für einen erfolgreich übertragenen Rahmen hängt daher von
der Rahmenlängex und der Bitfehlerwahrscheinlichkeit p ab.

A B

Abbildung 1.1: Netztopologie

1a)* Bestimmen SiedieWahrscheinlichkeit f (x,p), dass ein Rahmen erfolgreich übertragen wird.

Wird ein Rahmen korrekt übertragen, so entspricht dies x erfolgreich übertragenen Bits. Ist hingegen
mind. ein Bitfehler aufgetreten, somuss der gesamteRahmen wiederholt werden, was dementsprechend
0 erfolgreich übertragenen Bits entspricht.

1b) Bestimmen SiediedurchschnittlicheAnzahl g(x,p) erfolgreich übertragener Bits pro Rahmen.

2c) Bestimmen SiedieoptimaleRahmenlängex∗, so dass g(x,p) maximiert wird.
H inweis: d

dx (c
x) = ln(c)cx, ∀c> 0.

Grundlagen Rechnernetzeund VerteilteSysteme– SoSe2012

0

1

0

1

2

0

1

0

1

2

0

1

2

Aufgabe1 Kurzaufgaben (14Punkte)

a)* Beschreiben Sie kurz ein Netzwerk aus mindestens drei Hosts, bei demBroadcast- und Kollisions-
Domäne identisch sind.

b)*Erläutern Sie denUnterschied zwischen Kanalkodierung (Schicht1) und Checksummen (Schicht2).

c)*Was verstehtman unter „well-known ports“?

d)*Nennen Sie die Schichten des ISO/OSI-Modells in absteigender Reihenfolge.

e)*Gegeben sei die IP-Adresse 10.35.238.193. Es ist bekannt, dass das die Adresse enthaltende Subnetz
2046 nutzbare Adressen enthält. Bestimmen Sie Netz- und Broadcast-Adresse des Subnetz.

– Seite 2 / 16 –

Figure 1. A sample page of the final exam GRNVS 2012 (left) and the
the final exam GRNVS 2017 (right) [1]

Exams are normally corrected in two separated ses-
sions. During the first correction pass the various subprob-
lems are evaluated and given a score. In the conventional
way, all these scores are manually summed up, for the
most part by mental arithmetic, to give each problem a
score. Finally all scores for each problem are summed up
to calculate the total score but a calculator is used at this
stage. The final score is listed on the cover along with
the results of the individual problems which determine
it. Since the final score is calculated from these summed
up values, any previous error from one of the subtotals
also affects the final score. During the second review, all
subproblems are re-evaluated and the sums recalculated.
In the case that all subproblems were given the same score,
all sums should stay the same as well. If theses do not
match, one of the two sums must be incorrect.

The significance of the aforementioned factors are
assessed by repeating the counting process for a previous
exam. That means counting all credits for each problem

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

17 doi: 10.2313/NET-2019-06-1_04

separately, once for the first correction pass and once for
the second correction pass. The timer is started as soon
as the correct page is opened to solely record the time
spent on summing up credits. After each step the time
is measured and it is noted whether an error occurred.
During the first review the timer is stopped as soon as
a result has been calculated. It is also recorded whether
an error occurred or not but this is only done for eval-
uation purposes. The timespan for marking an error is
not included in the noted time as it would normally be
impossible to tell if the first correction pass was free
of errors without a second correction pass. When such
a deviation between the summed up credits and the score
listed on the exam is found, it is noted which of these
two numbers are incorrect and and by what margin. The
second pass is very similar but the timer continues until
it is clear which score is correct. Since a calculator is
usually used to calculate the final score on the cover, a
calculator is also used for that specific part.

There are two types of errors which are counted and
evaluated in this paper. An exam error describes the case,
where the score written on the original exam is incorrect.
A counting error describes the case, where the calculated
score is wrong.

TUMexam automates the process of counting scores
and calculating the grade. Because exams are specifically
designed for TUMexam, the software only needs to dis-
tinguish between a ticked box and an empty one. It also
flags unclear marks for later review. Since no case is
known so far where TUMexam calculated an incorrect
score, number of counting errors is here assumed to be
zero.

3. Implementation

The exam used for this test was a final exam with
a time frame of 90 minutes. It is the final exam from
the year 2011 of the course Introduction to Computer
Networking and Distributed Systems. The exam has 5
different problems, each of which includes multiple sub-
problems making up the combined score for that problem.
192 individual exam sheets were reviewed for this paper.

3.1. Errors

Errors are to be expected and can be very troublesome
for the correctors as well as the students. Since they can
lead to much time being spent on finding the mistake up
to potentially lowering a student’s credits score when they
go unnoticed, it is very desirable to keep the amount of
errors and their impact as low as possible.

When calculating the credit score 2112 times (11
scores are calculated per exam), 81 individual errors were
found in total. This group consists of 24 deviations in
which the score written on the exam is false and 57 cases
in which the deviation is a counting error. The difference
between the wrong score and the actual score when an
error occurred is very similar between the two type of
errors. On average, errors on the exam differ from the
correct score by 1.27 credits, while counting errors are
off by 1.07 credits.

Also noteworthy is the overall distribution of the er-
rors. As can be seen in Figure 2, almost no errors occurred

when summing up credits in Section 4. This is explained
by the fact that the fourth problem is the shortest one (see
Figure 3), has the lowest attainable score, and consisted
of only one double page.

0

2

4

6

8

10

12

Section 1 Section 2 Section 3 Section 4 Section 5

N
u

m
b

er
 o

f
er

ro
rs

Exam Errors during the First Correction Pass

Exam Errors during the Second Correction Pass

Counting Errors during the First Correction Pass

Counting Errors during the Second Correction Pass

Figure 2. The number of errors per problem and type

3.1.1. Exam Errors. Out of the 24 cases where an exam
had an incorrect score listed on it, 10 errors were found
on the second correction pass. This effectively means that
0.86% of all problems have an incorrect score. In the worst
case scenario, as many as 5.2% of the exams could have
an incorrect credit score. The other 14 errors were made
during the first correction pass.

3.1.2. Counting Errors. Counting errors did not occur
consistently across the test. Only 19 errors were made
during the first correction. Another 28 errors happened
during the second correction and 10 when counting the
combined scores on the cover.

3.2. Time

As the second key factor for an efficient and success-
ful exam evaluation, a large time frame has probably a
more noticeable impact and could potentially be greatly
improved with automation. To find out how much time
could be saved in the future, each part of a single exam
sheet is measured individually and compared to the same
part of the other correction pass and other exam sheets
different. The results are shown in Figure 3. The dark
blue graph represents the first pass and the light blue
graph represents the second pass. The results are grouped
together to improve visibility.

3.2.1. First correction pass. During the first correction
pass the time needed to sum up credits solely relies on how
long it takes the corrector to calculate a result. Since there
is not any comparable credit score to verify the result,
there is no need to recalculate the result again and rather
helps identify errors for the second correctors when credit
scores do not match. This influencing factor of needing
to recalculate a score can also be observed in the small
standard deviation of 5.1 s in relation to the entire first
correction pass.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

18 doi: 10.2313/NET-2019-06-1_04

Figure 3. Comparison of the time spent on the two correction passes per
section

Figure 4. Box plot of the time spent per problem during the first
correction pass

3.2.2. Second correction pass. The key difference of
the second correction pass from the previous one it that
errors made when summing up credits are noticeable to the
corrector. The time spent on noticing such errors, finding
the cause, and deciding which score is ultimately correct
are now included in the measured time. When comparing
these new results, we can see a significant increase of the
variance. The median itself has not changed much.

Looking at the box plots (Figure 4 and 5), the indi-
vidual problems have a very similar pattern but there are
far more extreme outliers.

Figure 5. Box plot of the time spent per problem during the second
correction pass

3.3. Estimations for an entire exam

The exam cover has two rows for both correction
passes, however since they are distinct from each other,
unlike the other parts of the exam, only the second cor-
rection pass was counted and then doubled when calcu-

lating the total time. Not taking any other factors, such
as interruptions or navigating to the correct page, into
account, a single exam takes on average 131.8 s. All 192
exams combined take 25 294 s, or approximately 7 h of
pure counting time.

Figure 6. The time spent per exam

To put the calulated time for summing up all scores
into perspective, it is compared to the time spent evalu-
ating the same exam sheets. Since all records were saved
along with their time stamps, it is possible to loosely
reconstruct a more realistic time frame for procedures
where exams need to be opened first and also takes other
short interruptions into account. To make sure no major
events affect this result, all breaks of longer than 10 min
have been excluded. With these measurements an entire
exam can take vaguely between 14 h and 15 h, slightly
more than double the time it took to sum up credits. Figure
6 shows how the times compare for an invidiual sample.

3.4. Impact of errors on the time

To further analyse how big the impact of counting
errors is, they are compared to the majority of samples
where no error was made. Since errors do not have any
affect on the first correction pass timewise, they are not
included in this part. However, all errors which happened
during the second correction pass are relevant but regard-
less of the type of error because both require more time.
Both error types are therefore included. Figure 7 shows

Figure 7. Box plot of the time spent per error relative to the average
time spent on a sample of that problem where no error occurred

all cases where a errors was made and how much time
they consumed relative to an average case of the same
section when no errors was made. It shows that a case
where an error occurs will on average take 246 % the time

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

19 doi: 10.2313/NET-2019-06-1_04

it would have taken if no error occured. The median is
224 %. Using the average time for a case without an error
as a baseline, it is possible to calculate an estimate for the
time all problems (without the cover) would require if the
second correction pass was without any errors. The entire
second pass consumed 3.1 h. Without and errors it would
be around 2.9 h, saving approximately 12 min.

4. Conclusion and future work
An average 90 min exam with 192 participants and 5

problems takes under ideal circumstances require 7 hours
to sum up all credits and calculate a final score. This
number can be considered a rather low estimate and is
very likely to increase a lot when including other factors.
In a more realistic scenario you also have to factor in
breaks, distraction and other interruptions. Depending on
the workflow the time needed can increase to double the
length or more. In this test only the time it takes to open
the exam, note the test results and ordinary interruptions
were factored in. Even though no breaks longer than 10
minutes were included, it raised the time required for the
same exam evaluation significantly, to around 14 to 15
hours. While this is not an insignificant amount of time,
it does also heavily depend on the number of participants
as well as the scope of the exam.

0.86% of all problems had an incorrect score listed
for the second correction pass. While this number might
not seem significant, it is when put into the context of the
entire exam. If each error occurred on a different exam,
this would result in 5.2% of all exams having an incorrect
score. None of the scores on the cover were calculated
incorrectly (which does not include subsequent errors
caused by incorrect scores from one of the problems).

This is probably explained by the fact that a calculator
is usually used for this part. One possible conclusion
from this fact could be that using a calculator will likely
decrease the number of errors. However using a calculator
is also not risk free, as seen by the 10 counting errors
which occurred when recounting the final score. Assuming
all exam problems have a comparable credit score, a
calculator also will not reduce the time by a significant
margin as seen in Section 3.4

It is also worth mentioning that these evaluations are
limited to the time consumed solely by summing up the
credits. Streamlining other parts of the evaluation process,
for instance by using software to automatically evaluate
exercises and assist with the preparation of an exam, can
also have huge advantages.

Conclusively, since TUMexam produces virtually no
errors when summing up credits, there can be significant
benefits to optimizing a conventional exam evaluation
process in both time and error probability. It is likely that
much smaller exams do not benefit from automation in a
significant amount and even larger exams can expect to
see much better results. However, this is out of the scope
of this paper and could be evaluated in the future. Another
possible direction could be to analyse other parts of the
exam preparation and evaluation process, for example
creating the exam problems, and how much time could
then be saved by utilizing software.

References

[1] Archive of previous exams for the course "Introduction to
Computer Networking and Distributed Systems at TUM",
https://grnvs.net.in.tum.de/altklausuren/

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

20 doi: 10.2313/NET-2019-06-1_04

Network Resource Management for Virtual Networks with Learning Algorithms

Anton Mai, Advisor: Cora Perner∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: anton.mai@tum.de, clperner@net.in.tum.de

Abstract—
Network virtualization is a technique to have multi-

ple virtual networks share resources of multiple substrate
networks. This allows virtual networks to be decoupled
from underlying hardware and leads to more flexibility.
A big challenge of network virtualization is to efficiently
manage network resources. There are various algorithms
to allocate network resources to virtual networks. Recently,
machine learning algorithms are proposed to manage net-
work resources. This paper presents nonlearning algorithms
and learning algorithms. Important aspects of both type of
algorithm are discussed and compared. Many aspects show
that learning algorithms can be more efficient in the long-
term.

Index Terms—network virtualization, virtual network em-
bedding, dynamic resource allocation, resource management,
machine learning

1. Introduction

The structure of the internet is dependant on the
underlying physical infrastructure. Changing the structure
is connected with high costs since hardware has to be
replaced and added. Therefore the physical infrastructure
is fixed. Network virtualization is a possible solution to
the ossification of the internet. To increase the flexibility
of the internet and networks in general, multiple virtual
networks are mapped to substrate networks. The virtual
networks share the resources of the substrate networks.
Virtual network embedding is the process of efficiently
embedding virtual networks to substrate networks with
limited resources (Figure 1). There has been a lot of
research on virtual network embedding. Embedding vir-
tual networks is known to be NP-hard [21]. Another
part of network virtualization is to dynamically allocate
resources. Dynamic resource allocation is the process of
allocating resources to different virtual networks during
its runtime. Dynamically allocating resources requires the
knowledge of multiple virtual networks to efficiently allo-
cate resources without affecting the Quality of Service that
the virtual networks provide. This leads to the need for
monitoring the multiple virtual networks which requires
more calculation and decreases the effiency of the whole
system if the reward of the dynamic allocation is not
high enough. Therefore past research had a higher focus
on virtual network embedding than on dynamic resource
allocation. However, recently there is research on dynamic
resource allocation as it is becoming more interesting and
efficient due to the use of machine learning. Machine

learning became more popular in many different fields of
computer science because of its nature of increasing its
performance over time and its wide range of application
cases, e.g. face recognition, language processing, finding
the fastest path with consideration to the traffic. Machine
learning is a technique based on the human ability to
learn through experience. Machines simulate the learning
ability of humans to learn by repeating certain actions
and evaluating the reward of their actions. They gradually
learn and improve over a long period of time until they are
optimized. Recent works like [13] and [18] show many
possible approaches to network virtualization by using
learning algorithms to efficiently manage resources.

Figure 1: Virtual Network Resource Allocation, Figure 1
of [13]. The substrate network (hardware) consisting of
nodes (A-G) and links is fixed. To be more flexible, virtual
networks consisting of virtual nodes (P-S, X-Z) and links
are mapped on the substrate network. Network users have
access to the virtual networks without knowing about the
underlying infrastructure of the substrate network.

This paper presents both nonlearning algorithms and
learning algorithms for network virtualization and shows
different aspects of both kind of algorithms. The high
potential of learning algorithms, what possibilities they
present and how their limitations can be remedied are
shown in this paper. The rest of the paper is structured as
follows. In section II different approaches to nonlearning
algorithms and their characteristics are presented, in sec-
tion III recent learning algorithms are presented. In section
IV the aspects of nonlearning and learning algorithms are
compared. Section V discusses the results of section V
and summarizes the results of this paper.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

21 doi: 10.2313/NET-2019-06-1_05

2. Nonlearning Algorithms

Virtual network embedding has been a well known
problem. There are various approaches to the virtual net-
work embedding problem.
Policy-based: Miyamura, Kamamura and Shiomoto [1]
propose a policy-based approach to resource management
with each virtual network having its own reserved re-
sources. If needed, a virtual network could get access to
resources that are shared between them.
Divide and conquer: Zhang et al. [3] propose an ap-
proach to divide substrate networks into many partitions
to deal with large-scale networks.
Distributed multi-agent architecture: Soares and
Madeira [4] developed a dynamic, distributed multi-agent
architecture where each agent is located in the substrate
network nodes. This leads to less complexity as actions
are performed locally and automatic actions by agents in
the form of self-management and self-healing.
Cognitive: Han et al. [5] propose a cognitive manage-
ment scheme for managing virtual network resources that
focuses on the topology and centrality.
Hierarchical Katayama et al. [6] use a hierarchical ap-
proach to the virtual network embedding problem. Sub-
managers are used, which manage multiple substrate net-
work nodes to reduce complexity.
Sharing-based: Mao et al. [8] propose a sharing based
network embedding algorithm where network resources
are divided into equal time slots before starting with the
embedding process.
Prediction-based

The nonlearning approaches are often based on as-
sumptions that the demand of resources from the virtual
networks do not change much. Therefore it is rather
unflexible, limiting these algorithms to having to know
the amount of allocated resources beforehand. As stated
by Mijjumbi et al. [13] most of the approaches are static
and focus on embedding virtual networks. The allocated
resources are not changing during the lifetime of the
virtual network. There is no dynamic allocation of re-
sources, in some cases there is a possible migration of the
virtual links between the virtual nodes, but the allocated
resources are fixed. Reconfiguring the mapping of virtual
networks to substrate networks is not available or only
in case of failures. But if the demand of resources is not
changing much during its lifetime, nonlearning approaches
are fitting for the virtual network.

3. Learning Algorithms

Recently there have been many approaches to virtual
network resource management that use machine learning
to allocate network resources from substrate networks
to virtual networks. Most of the learning algorithms are
based on reinforcement learning and neural networks.
Reinforcement learning is a method to make an agent learn
based only on rewards it gets for its actions. Based on
past actions, a utility function is approximated, showing
the utility of each action in each state. Q-Learning is a
reinforcement learning technique.
Q-Learning: Mijumbi et al. [13] proposed an approach to
use Q-learning to dynamically manage resources after em-
bedding the virtual network. An agent chooses an action

based on the Q-values Q(s,a) of each action in that state.
The action is chosen random, but actions with a higher Q-
value have a higher probability to be chosen. After each
learning episode, the Q-values are updated based on the
received reward. The Q-values are updated based on the
Q-learning rule in (1).

Q(sp, ap)← (1−α)∗Q(sp, ap)+α

rp + λmaxQ(sn, a)

a ∈ A

(1)
The parameter sp represents the present state, ap the

present action, sn the next state and rp the immediate
reward for taking the action ap. The updated Q-values are
comprised of the past Q-value and the new reward. The
parameter 0 ≤ α ≤ 1 determines how fast the agent is
learning. Having a learning rate of α closer to 1 makes
the agent learn more from new experiences but also past
experiences get less important. Therefore α is often set
near 0 to make the agent learn slowly but steadily. The
discount factor λ determines whether immediate rewards
or future rewards are more important. A discount factor of
λ closer to 1 gives more important to future rewards. With
each learning episode, the Q-values converge towards an
optimal solution.
Mijumbi et al. used 8 different values to describe the per-
centage of used resources. Each state is represented by the
percentage resource allocation, the percentage of unused
virtual resources and the percentage of unused substrate
resources. So there are 8 * 8 * 8 = 512 different states.
They used 9 different actions to change the percentage
of used resources, so there are 9 * 512 = 4608 different
state-action pairs and Q-values.
Autonomic and distributed: Mijumbi et al. [11] propose
an autonomic and distributed way to manage resources
in virtual networks. Each virtual network is managed
by an autonomous agent. The agents use reinforcement
learning and they cooperate with each other to automat-
ically manage the resources. These virtual networks can
heal, configure, protect and optimize themselves through
reinforcement learning. Ant colony optimization: Cao et
al. [7] propose an ant colony optimization algorithm to
optimize virtual network embedding. The ant colony op-
timization algorithm mimics ants that follow pheromones
secreted by other ants to get to their food. Paths that are
more frequently used contain more pheromones, so by
following paths with stronger scents of pheromones, the
ants are improving their effiency until it is optimal.
Neuro-fuzzy: Mijumbi et al. [12] propose a neuro-fuzzy
approach to manage network resources. It is an reinforce-
ment based approach that is distributed and dynamically
allocates resources to the virtual networks.
Autonomous neural network Mijumbi et al. [14] also
proposed an autonomous neural network based resource
allocation management.
Statistical Learning: Li [15] developed a dynamic re-
source management approach based on statistical learning
that guarantees no violation of the Quality of Service of
the virtual networks.
Radial basis function neural network: Zhang et al. [18]
use a radial basis function neural network to embed the
virtual networks. By using training samples they simulate

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

22 doi: 10.2313/NET-2019-06-1_05

an embedded virtual network and learn with the simu-
lation. After the learning period the virtual network is
embedded based on the expected usage of resources.

Learning algorithms are mainly used to dynamically
allocate resources throughout the runtime of the virtual
network and to improve the network. Also as seen in case
of [18], radial basis function neural networks can be used
to simulate the training process, presenting the possibility
to apply learning algorithm on the embedding of virtual
networks. Learning algorithms have high potential as they
approach nearly optimal solutions after enough learning
time. Learning algorithm are probabilistic so they can try
other steps and possibly learn through these experiences.
That leads to the problem that learning algorithm can
never be optimized as there is always some probability
that it does not follow the optimal strategy. Another big
problem of learning algorithms is their initialization. At
the time of initialization the virtual networks have no
knowledge as they had no time to learn. The period of
time or number of test samples that is needed to learn
an sufficient efficient strategy can be quite big. So at
the beginning learning algorithms are bound to fail a lot.
Having a virtual networks that is expected to fail at the
start could become a problem.

4. Comparison of nonlearning and learning
algorithms

Most nonlearning algorithms are focused on the em-
bedding of the virtual network. There is less focus on
dynamically reallocating virtual network resources during
the runtime of the virtual network while learning algo-
rithms are mainly used to dynamically allocate resources
during the runtime. Nonlearning algorithms are based on
assumptions. If the assumptions are right and do not
change significantly during the runtime of the network,
then nonlearning algorithms are efficient. Learning al-
gorithms are more dynamic and flexible in comparison
to nonlearning algorithms, so for changing demands of
resources they are more fit. Also being able to predict
changing demand of resources and proactively adjusting
to changes is a big advantage of using learning algorithms.
As shown by Mijumbi et al. in [13] the number of
accepted networks is much larger with dynamic learning
algorithms than with static nonlearning algorithms (Figure
2). The biggest disadvantage of learning algorithms in
comparison to nonlearning algorithms is their bad per-
formance at the initialization state and the large period
of time needed to become as efficient as nonlearning
algorithms. Also shown in [13], for the packet drop rate,
dynamic learning algorithms need some time to learn to be
as efficient as static approaches (Figure 3). Another minor
disadvantage of learning algorithm is that while learning
there is some minor work put in learning, in comparison
to nonlearning algorithms which do not work proactively.
Mijumbi et al. in [14] compared their artificial neural
network with a dynamic approach based on reinforcement
learning and two static approaches (Figure 4). Simulations
showed that artificial neural networks are significantly bet-
ter that the other approaches. Also, the dynamic approach
based on reinforcement learning showed better results than
both static approaches.

Figure 2: Number of Accepted Networks, Figure 9 of [13]

Figure 3: Node Packet Drop Rate Variation, Figure 10 of
[13]

Figure 4: Acceptance ratio, Figure 3 of [14]. The two
dynamic approaches D-ANN (Dynamic, based on Arti-
ficial Neural Networks) and D-RL (Dynamic, based on
Reinforcement Learning) were compared to two static
approaches S-CNMMCF (Static, Coordinated Node Map-
ping and MCF for link mapping) and S-OS (Static, link
based optimal one shot Virtual Network Embedding). It is
visible that the dynamic approaches perform much better
than the static ones.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

23 doi: 10.2313/NET-2019-06-1_05

5. Conclusion and Future Work

In this paper various approaches to managing re-
sources in network virtualization were presented. First
traditional nonlearning algorithms to solve virtual net-
work embedding were explained, then recent research
on the topic learning algorithms was presented. Both
types of algorithms showed potential in managing net-
work resources, but in comparison learning algorithms are
more useful in most cases and promise more potential in
effiency.
Nonlearning algorithms have a short-term advantage over
learning algorithm because of the weak performance of
learning algorithms at the initialization state. Also in
networks without significant changes in network resource
demand, nonlearning algorithms perform well from the
start. However for most networks, especially for the future
internet the ability to dynamically reallocate resources will
be essential. Learning algorithms show great potential to
improve efficiency and flexibility. Mijumbi et al. adress
in [16] the disadvantage of learning algorithms at the
start and suggest following solution: Initiating an offline
learning step to let the learning algorithm improve first.
This solution would remedy the bad performance of learn-
ing algorithm at the start. This solution is similar to the
approach of Zhang et al. in [18], to use other virtual net-
works as test samples to nurture their radial basis function
network algorithm in a first step before embedding the
virtual networks. Therefore learning algorithms would be
advantegeous to nonlearning algorithms in most cases, if a
first learning step is introduced. For future work it would
be interesting to research if there are different patterns
of agents using learning algorithms. This could shorten
the time needed to learn as different evaluations for each
action can be implemented from the start. Also, it would
be interesting to research how to optimize using learning
algorithms on networks with human users. Maybe learning
algorithms could also be used to predict the usage of the
network of different people based on their past usage.

References

[1] T. Miyamura, S. Kamamura, K. Shiomoto, “Policy-based resource
management in virtual network environment”, in 2010 International
Conference on Network and Service Management (CNSM)

[2] S. Xiaochuan, C. Hongyan, C. Jianya, L. Yunjie, “IDP-VRMA: An
intelligent and distributed virtual resource management architecture
based on prediction for future networks”, in 2011 International
Conference on Advanced Intelligence and Awareness Internet
(AIAI)

[3] S. Zhang, X. Qiu, L. Meng, “Virtual network mapping algorithm
for large-scale network environment”, in 2011 6th International
ICST Conference on Communications and Networking in China
(CHINACOM)

[4] M. A. Soares, E.R.M. Madeira, “A multi-agent architecture for au-
tonomic management of virtual networks”, in 2011 IEEE Network
Operations and Management Symposium

[5] Y. Han, Z. Wang, H. Tang, S. Ci, “A novel cognitive management
scheme for the virtual network resources”, in 2012 IEEE Globecom
Workshops

[6] Y. Katayama, K. Yamada, K. Shimano, A. Nakao, “Hierarchical
resource management system on network virtualization platform
for reduction of virtual network embedding calculation”, in 2012
15th Asia-Pacific Network Operations and Management Sympo-
sium (APNOMS)

[7] Cao W., Wang H., Liu L. (2014) An Ant Colony Optimization
Algorithm for Virtual Network Embedding. In: Sun X. et al. (eds)
Algorithms and Architectures for Parallel Processing. ICA3PP
2014. Lecture Notes in Computer Science, vol 8630. Springer,
Cham

[8] Y. Mao, Y. Guo, H. Hu, Z. Wang, T. Ma, “Sharing Based Virtual
Network Embedding Algorithm With Dynamic Resource Block
Generation”, in 2015 IEEE Communication Letters (Volume 19,
Issue 12)

[9] J. Li, Y. Wang, Z. Wu, S. Feng, X. Qiu, “A prediction-based
dynamic resource management approach for network virtualiza-
tion”, in 2017 13th International Conference on Network Service
Management (CNSM)

[10] M. Lu, Y. Lian, Y. Cheng, M. Li, “Collaborative Dynamic Virtual
Network Embedding Algorithm Based on Resource Importance
Measures”, in 2018 IEEE Access

[11] R. Mijumbi, J. Serrat, J. Gorricho, “Autonomic Resource Manage-
ment in Virtual Networks”, in arXiv:1503.04576 [cs.NI]

[12] R. Mijumbi, J. Gorricho, J. Serrat, M. Shen, K. Xu, K. Yang,
“A neuro-fuzzy approach to self-management of virtual network
resources”, in Expert Systems with Applications (Volume 42, Issue
3)

[13] R. Mijjumbi, J. Gorricho, J. Serrat, M. Claeys, F. Turck, S. La-
tré, “Design and evaluation of learning algorithms for dynamic
resource management in virtual networks”, in 2014 IEEE Network
Operations and Management Symposium (NOMS)

[14] R. Mijumbi, J. Gorricho, J. Serrat, M. Claeys, J. Famaey, F.
Turck, “Neural network-based autonomous allocation of resources
in virtual networks”, in 2014 European Conference on Networks
and Communications (EuCNC)

[15] Y. K. Li, “QoS-Aware Dynamic Virtual Resource Management in
the Cloud“, in Applied Mechanics and Materials, Vols. 556-562,
pp. 5809-5812, 2014

[16] R. Mijumbi, J. Serrat, J. Gorricho, “Self-managed resources in net-
work virtualisation environments”, in 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM)

[17] A. Blenk, P. Kalmbach, P. Smagt, W. Kellerer, “Boost online virtual
network embedding: Using neural networks for admission control”,
in 2016 12th International Conference on Network and Service
Management (CNSM)

[18] H. Zhang, X. Zheng, J. Tian, Q. Xue, “A Virtual Network Embed-
ding Algorithm Based on RBF Neural Network”, in 2017 IEEE
International Conference on Computational Science and Engineer-
ing (CSE) and IEEE International Conference on Embedded and
Ubiquitous Computing (EUC)

[19] T. Miyazawa, V. P. Kafle, H. Harai, “Reinforcement learning
based dynamic resource migration for virtual networks”, in 2017
IFIP/IEEE Symposium on Integrated Network and Service Man-
agement (IM)

[20] He, M., Zhuang, L., Tian, S. et al. J Wireless Com Network (2018)
2018: 150. https://doi.org/10.1186/s13638-018-1170-x

[21] A. Fischer, J. Botero, M. Beck, H. Meer, X. Hesselbach, “Virtual
Network Embedding: A Survey”, 2013 IEEE Communications
Surveys & Tutorials

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

24 doi: 10.2313/NET-2019-06-1_05

From FIFO to Predictive Cache Replacement

Daniel Meint, Stefan Liebald∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: d.meint@tum.de, liebald@net.in.tum.de

Abstract—Caching is an important technique to accelerate
data reads in various hardware and software systems. The
choice of a replacement policy to decide which item to evict
in order to make space for newly requested data is at the
core of every cache design. A vast number of heuristics have
been proposed in the literature. This paper gives an overview
of some of the most popular replacement mechanisms. The
strategies are classified and described. An exhaustive taxon-
omy of traditional strategies is proposed and explained. The
paper also presents the Adaptive Replacement Cache and
a predictive cache replacement strategy that was designed
specifically with multimedia Web traffic characteristics in
mind. Further, techniques that are closely related to the
cache replacement issue, especially in Web caching, are
discussed.

Index Terms—cache replacement strategies, network
caching, adaptive replacement cache, predictive cache
replacement, multimedia content delivery

1. Introduction

Caches are employed to localize traffic by temporarily
storing data close to the consumer and, today, they are
ubiquitous in multiple areas of computing. Hardware-
managed caches are used by the CPU and the GPU, for
example. Software caching is found in database systems
and on the Web. Generally, cached information can be
retrieved significantly faster than if the origin storage
would have to be consulted. However, cache capacity
is typically limited and only a fraction of the existing
resources can be stored at any point in time.

When data is requested, the cache client, such as a
Web browser or a CPU, checks its closest cache first. If
the information is available in the cache, we refer to this as
a cache hit. If not, a cache miss occurs and data has to be
read from lower-level memory. This lower-level memory
can either be the original location of the resource, like a
Web server, or, in case of a hierarchy of caches, a different,
lower-tier cache.

When missing information needs to be brought into the
cache and the cache is already full, old objects must be re-
moved. The “victim” can be drawn randomly or chosen in
a deterministic process. The respective heuristic is called
the cache replacement strategy (also cache replacement
policy, eviction policy or removal policy [6]) and is a
central component of every caching scheme.

This paper provides an overview of extensively re-
searched cache replacement strategies and further de-

scribes limitations and challenges of caching large ob-
jects, like multimedia content. The focus is hereby drawn
towards Web caching.

The next section describes how cache replacement
strategies can be evaluated and compared. Subsequently,
some simple cache replacement approaches that partly
originated from traditional disciplines of computing are
discussed. Section 4 then presents the Adaptive Replace-
ment Cache, a more recent proposal to cope with dynamic
access patterns. Finally, Section 5 addresses the challenges
of caching multimedia content on the Web and outlines
how prediction-based replacement can be particularly ef-
fective to tackle these challenges.

2. Evaluation of Cache Replacement Policies

Mathematical models exist to evaluate the perfor-
mance of cache replacement algorithms [1], [11]. Compet-
itive Analysis compares the performance of an algorithm
with the best possible performance [24]. The resulting
competitive ratio corresponds to “the maximum ratio of
the algorithms cost to the optimal offline algorithm’s
cost over all possible request sequences” [1]. An offline
algorithm knows the entire request stream from the very
start and can always make the best possible decision. It,
therefore, only serves as a theoretical upper bound on the
achievable performance by any online policy. Competitive
Analysis merely studies worst-case scenarios and is dif-
ficult, especially when documents can be of variable size
[8].

It is more common to conduct experimental studies to
compare different replacement strategies. An established
method is to run a trace-driven simulation. Performance
is hereby studied on realistic cache traces, which often
gives more practical insights than theoretical upper and
lower bounds [8]. The following metrics are amongst the
most commonly reported measures:

• Hit Ratio (HR): The fraction of all client-
requested objects that could be served from cache,
e.g. a hit rate of 10% means that one out of every
ten requests resulted in a cache hit.

• Byte Hit Ratio (BHR): The fraction of all client-
requested bytes that could be served from cache.
Sometimes this value is also referred to as a
“weighted” hit ratio [6]. Because it takes object
size into account, BHR indicates bandwidth sav-
ings better than HR.

• Delay Savings Ratio (DSR): DSR reports the re-
duction of client-perceived latency. Its calculation

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

25 doi: 10.2313/NET-2019-06-1_06

is subject to external factors, like network con-
gestion and server stability. Precise measurement
of download delays is difficult and results often
fluctuate [7].

The performance of policies in trace-driven simula-
tions is sensitive to the character of the employed trace.
Wong [11] notes that inconsistent, and even contradictory
results have been reported in the literature.

3. Traditional Cache Replacement

This section describes some conventional approaches
to cache replacement. First, we name factors that may
influence the replacement decision. Then we present some
example strategies. For the purpose of this paper, tradi-
tional strategies are divided into the following groups:

• Key-Based Strategies sort objects upon a primary
key. Ties are broken using secondary, tertiary or
even more keys.

• Function-Based Strategies incorporate multiple
weighted factors, in no sequential order but con-
currently in a specific function that calculates the
value of every object. The weighting parameters
may be fixed or dynamically adapting to the prop-
erties of the access stream [8].

• Randomized Strategies use nondeterministic al-
gorithms to remove entries. Randomized policies
typically perform worst in most scenarios [11] but
also require the least resources. They are therefore
primarily used in systems with severely limited
processing power. Since randomized policies do
not keep meaningful state information, we con-
sider this brief introduction to be sufficient and
will not discuss them any further.

Among the key-based policies, we further distinguish
strategies according to which keys they actually consider.
This taxonomy roughly follows and combines the pro-
posals made by Wang in [2], Podlipnig and Boszormenyi
in [7], and Balamash and Krunz in [8]. Various other
classifications have been used in related work, for example
in [9], [38], [54].

3.1. Influencing Factors

The following keys are universally used in cache
replacement to characterize cached items and determine
their utility [7]:

• Arrival: When was an object admitted to the
cache? Typically, new items are favored to stay
in the cache.

• Recency: When was the last request for an object?
Recently accessed items are favored.

• Frequency: How often has an object been re-
quested? Frequently accessed items are favored.

Network traffic has certain characteristics that suggest
incorporating additional keys for replacement decisions
in Web caching. CPU and disk caches are typically con-
cerned with the management of uniformly sized blocks
known as pages. In contrast, resources from the Web are
stored as whole Web documents and can vary greatly in

size [1], [35]. Certain items may, therefore, take up a
disproportional percentage of the cache’s total capacity,
which should be considered by the replacement mech-
anism. Further, the effort of obtaining information over
a network is not only correlated to the data volume, but
other dependencies, such as bandwidth and distance, make
the calculation of a cost factor more complex. Finally,
cached information can also become outdated. Especially
HTML resources of popular websites are updated rela-
tively frequently [8]. The following additional keys can
help Web cache replacement algorithms make more in-
formed decisions:

• Size: How much space does an object occupy?
Small files are favored.

• Cost: How expensive would it be to re-fetch an
object? Possible metrics include hop count and
bandwidth along the delivery path, expected la-
tency, and monetary cost. Expensive items are
favored.

• Expiration: When is an object presumably going
to become stale? Items with a long validity are
favored.

3.2. Key-based Policies

Key-based policies sort their candidates upon a pri-
mary key. If the primary key does not guarantee to deter-
mine a single clear winner, i.e., multiple objects can have
identical values, a secondary key is necessary to break
ties. If objects could tie on the second factor as well, a
tertiary key is consulted, and so on.

First In, First Out (FIFO) is the simplest arrival-based
strategy. Objects leave a queue in the order in which they
arrive. Hence, this basic approach always evicts the oldest
object from the cache. FIFO can easily be implemented
with constant computational and optimal space overhead,
and is, therefore, suitable for systems with strictly limited
computational power or storage capacity. FIFO completely
ignores both recency and frequency of access when mak-
ing decisions. Generally, in practical applications, FIFO
is significantly outperformed by policies that take these
factors into account [17], [18].

The SIZE [6] strategy evicts the largest objects first
with the intent to make space for multiple smaller files.
Favoring small files results in a higher number of total
files cached and, thus, a good file hit ratio but decreased
byte hit ratio [11], [35], [53]. As mentioned earlier, BHR
is closely related to bandwidth savings, so if the cache’s
goal is to minimize download volume from the Internet,
for example, this behavior is undesirable. With a priority
queue based on object size, eviction can be performed in
logarithmic time.

Because the subsequent discussion of ARC in Section
4 builds on a thorough understanding of recency- and
frequency-based policies, we discuss these concepts in the
following dedicated subsections.

3.2.1. Recency-based Policies. Recency-based policies
sort objects according to how recently they were re-
quested. The underlying rationale is that recently accessed
information is more likely to be demanded again in the
near future and should, therefore, be retained in the cache.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

26 doi: 10.2313/NET-2019-06-1_06

Information that has not been useful for the longest time
is accordingly regarded as least valuable and should be
evicted first.

For this rationale to hold, access streams need to
exhibit temporal locality, i.e., the past and the future
must not be independent, but resources become “hot”
(accessed frequently) and cool down again [7], [20]. Jin
and Bestavros find that temporal correlations are present
in Web traffic and exist most dominantly in the short-term
[37], [38]. Recency-based strategies are therefore most
effective in caches of small sizes and high activity [11].

Caches may form a multi-level hierarchy. Rajan and
Ramaswamy describe how temporal locality is inherent
to first-level caches but decreases throughout a storage
hierarchy in [26]. The most recently accessed files are
assumed to be served from the first-level cache anyway
and so, for lower-tier caches further down the delivery
path, e.g. in root-level proxies, locality features are al-
ready “filtered out”. Here, other heuristics can perform
better than recency. Busari and Williamson demonstrate
that size-sensitive policies are more effective in root-level
caches in [53].

The Least Recently Used (LRU) strategy can be seen
as the originator of recency-based replacement. It simply
evicts the object that was not accessed for the longest
time. Assuming requests are processed sequentially, every
request has a unique timestamp. Hence, we do not need
additional tie-breaker keys. LRU can be implemented
with a linked-list data structure supported by a hashing
mechanism for lookup. Its simplicity and constant time
complexity make LRU particularly attractive for hardware
caches.

LRU’s biggest threats are large sequential reads of data
that is only needed once and then never accessed again.
Since LRU only takes recency into account, it degenerates
to FIFO and these “scan” sequences quickly flush out
potentially more valuable items and pollute the cache.

Many variants of LRU have been proposed. One strat-
egy proposed by Pitkow and Recker [25] uses a different
time granularity. The authors observe that client interests
change on a daily basis. As a consequence, they suggest
using the number of full days since the last request as
a primary factor. If there are no objects older than one
day, size serves as a secondary key. The largest files are
replaced first.

LRU-Threshold [27] rejects files larger than a specified
threshold before they can even get into the cache. It could,
therefore, be argued that the primary key is size. When
cached files need to be removed, the victim is determined
according to LRU. Hence, we consider the actual re-
placement process to be recency-based. This classification
agrees with the suggestions made in [11].

Other recency-based strategies include LRU* [28],
LRU-Hot [29], Segmented LRU (SLRU) [30] and HLRU
[32].

3.2.2. Frequency-based Policies. Frequency-based poli-
cies sort objects according to how often they have been
requested in the past. The underlying rationale is that some
data is consistently more popular than other data, i.e.,
exhibits long-term popularity, and information that was
frequently requested in the past will keep being accessed
a lot in the future. Tiebreaker policies are unavoidable be-

cause multiple objects can easily have identical frequency
values.

Among Web documents, popularity distribution fol-
lows Zipf’s law [4], [33]. This means that only a small set
of very popular items accounts for a significant fraction of
the overall traffic. Keeping the “hottest” items in the cache
should be sufficient to satisfy most requests. However,
when the set of popular data changes abruptly, frequency-
based strategies cannot adapt as quickly as recency-based
strategies [11]. Frequency-based heuristics perform best
in environments with static popularity characteristics, i.e.,
popular data stays popular and unpopular data stays un-
popular [7].

Frequency-based strategies are normally implemented
with a priority queue [7] offering logarithmic time com-
plexity per operation.

The Least Frequently Used (LFU) strategy always
evicts the item with the lowest frequency count. Podlipnig
and Boszormenyi distinguish between two forms in [7].

• Perfect LFU keeps track of all requests to objects
ever recorded. This form is of theoretical value,
but unbound space overhead makes its implemen-
tation infeasible.

• In-Cache LFU keeps track of requests to currently
cached objects only. Once an item is removed, the
count is forgotten. This form has imperfect infor-
mation, but the space overhead stays manageable.

Unlike LRU, LFU is scan-resistant. Frequency is of rel-
evance, so sequentially accessed items only replace each
other.

However, especially In-Cache LFU suffers from a dif-
ferent cache pollution problem. Objects that were popular
at one point in the past, and have accumulated high
reference counts, hardly get flushed out, even if they
are currently unpopular. Newer, potentially more useful
(hotter) items have a hard time to stay in the cache because
they start off with the lowest possible score. Again, this
suggests that LFU performs best in systems where the
demand for an object stays at a constant level.

More versatile alternatives avoid the cache pollution
problem by also incorporating recency into the decision-
making process. So-called aging mechanisms effectively
decrease an object’s value when it has not been requested
for a certain amount of time. Recently accessed items are
consequently regarded as more valuable and remain in
the cache. LFU with Dynamic Aging (LFU-DA) [31] is
an example of a hybrid strategy that combines frequency
and recency aspects.

3.3. Function-based Policies

Function-based removal policies consider multiple at-
tributes at once and not separately. So there are no more
primary and secondary keys but instead a single, usually
nonnegative value H associated with each cached object
i.

One popular member of this category is the
GreedyDual-Size (GD-Size or GDS) algorithm [1]. When
an item enters the cache, its value is initialized as follows.

Hi = costi/sizei

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

27 doi: 10.2313/NET-2019-06-1_06

When the cache has filled up, the item with the lowest
value Hmin = minj∈cacheHj is removed. Subsequently,
the values of all remaining items get reduced by Hmin:

∀i : Hi ← Hi −Hmin

So their scores shrink over time. On a cache hit, the value
of the re-requested item gets reset to its original one.

The cost parameter can be defined in various ways,
depending on the objective of the caching system [8], [34].
For example, setting costi = 1 uniformly for all objects
means an item’s initial H value corresponds to 1/sizei.
Due to this direct inverse correlation of value and size,
the largest files are regarded as least sustainable and get
removed in favor of multiple smaller files. Consequently,
this definition of cost maximizes the total number of files
cached and, therefore, results in the best hit rate [35].

Depending on the environment, other cost definitions
are possible. For network caching, GD-Size might instead
define cost as the number of packets involved in a re-
trieval, the expected latency increase or the number of
hops between the cache and the origin server [10].

The GreedyDual-Size policy is an extension of the
original GreedyDual algorithm introduced by Young [36].
Today, an entire range of algorithms, referred to as the
“GreedyDual-family” [10] exists. Members include GD-
Frequency, GD-Size-Frequency [31], and GD*, an adap-
tive generalization of GD-Size [38].

Some function-based policies allow parameters to
adapt to workload characteristics [7]. This means that
when requests are observed to have high temporal cor-
relations, for example, recency should be weight heavier
than other factors. If the access stream indicates that
popularity levels are rather steady, on the other hand,
the underlying function should put more emphasis on fre-
quency counts. The downside of this adaptive functionality
is increased computational complexity [7], which could
hurt performance overall, especially when adaptiveness is
unnecessary.

4. Adaptive Cache Replacement

This section presents the Adaptive Replacement Cache
(ARC) [12]. ARC neither associates H values with entries
like function-based approaches nor should it be catego-
rized as key-based in the traditional sense as presented
above, since it does not apply a fixed sequence of primary
key, secondary key, etc. Instead, it constantly reacts to
changes in the character of the processed requests to
balance recency and frequency aspects in a self-tuning
manner, i.e., there are no parameters that need to be set
manually.

ARC cleverly combines two LRU-lists of varying size
and a history of recently evicted items to make removal
decisions.

When an item enters the cache, it is placed at the most
recently used (MRU) position of the recency-ordered list
L1. L1 is therefore considered to contain recently required
items. If the item gets requested a second time, while
cached, it is considered to be frequently accessed, and
“promoted” to a second list L2, again, entering at the
MRU position.

Both lists are further split into a “top” and “bottom”
part, that is, L1 consists of two sublists T1 and B1 and
L2 is the union of T2 and B2.

The top sections form the main cache and store full
objects that can be returned as expected.

The bottom sections form the ghost cache and only
store identifiers, i.e., metadata, for the objects that once
were in the main cache, but got flushed out. The ghost
cache merely serves a history function. It cannot provide
the resource data to answer client requests.

Now, the lists T1 containing items that have been
accessed once recently and T2 containing items that were
requested at least twice compete for cache capacity. De-
pending on the workload attributes they grow and shrink
constantly. As the full-fledged balancing process is fairly
complex, we will only explain the basic idea underlying
ARC’s adaptability and refer to [12] for a detailed de-
scription. Intuitively, when a request reaches the cache,
the following events influence ARC’s behavior.

If the requested item is not contained in the main
cache, but a “ghost hit” in B1 occurs, ARC concludes
that recency features are currently important. The request
cannot be satisfied from cache directly because the item
was pushed out of T1 into the ghost section, only retaining
metadata. If T1 was granted more capacity, the request
might have resulted in a “real” cache hit. Therefore, T1

grows and T2 shrinks, i.e., the least recently used item in
L2 will be evicted next.

If the request hits the B2 ghost cache, ARC considers
frequency aspects to currently be neglected. Ghost hits in
B2 therefore let T2 grow at the expense of T1, i.e., the
least recently used item in L1 will be evicted next.

MRULRU LRU

B1 T1 T2 B2

L1 L2

Figure 1. Simplified ARC cache directory visualized in a balanced state.
The inner rectangle represents the actual cache, which is fixed in size but
can freely move across the history sections. Items enter the cache at the
center and get gradually pushed outwards unless they are re-accessed.

ARC is considered scan-resistant since the separation
of items that have been accessed only once (L1) and
items that have been accessed at least twice recently (L2)
protects the latter section of being flooded by single-access
streams.

It was reported to reliably and substantially outper-
form established mechanisms like LRU in trace-driven
simulations [12], [13]. ARC does not require significantly
more space than LRU and has the same, constant time
complexity.

Since 2006, IBM holds a patent for the Adaptive
Replacement Cache [15], which has complicated its de-
ployment for third parties [16].

5. Predictive Cache Replacement for Web-
Based Video Content

The above-described algorithms were mostly designed
as general-purpose policies. LRU and GDS have been

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

28 doi: 10.2313/NET-2019-06-1_06

titled “good enough” or “champion” algorithms [1], [34]
because they perform sufficiently well on the basic per-
formance metrics for caches of various sizes and environ-
ments. Wong states that cache replacement in its general
form is a “solved topic” [11] and further research would
only lead to marginal improvements.

However, more recently, authors have also depicted
that “the network environment is dynamic and uncertain”
[34] and future requirements may very well overwhelm
the identified “good enough” algorithms. Podlipnig and
Boszormenyi say, their sufficiency for managing multi-
media content is “questionable” [7].

This section presents a more specialized caching ap-
proach to cope with the challenges of serving multimedia
data on the World Wide Web. Video streaming is arguably
the most extreme cases. It combines audio and imagery,
requiring storage volumes and retrieval bandwidths mul-
tiple magnitudes greater than ordinary text and small
graphics. The focus of this section is, therefore, on Video-
on-Demand (VoD) services. First, the unique properties
of video data and its consumption are described. The
second subsection then presents a novel cache replacement
proposal by Famaey et al. [51] that predicts the future
popularity of multimedia content.

5.1. Multimedia Caching

From a storage perspective, multimedia files differ
from text-based data most notably in volume. Cached
objects are significantly larger in size, as compared to
when cached information is text-based [11], [39]. Thus,
we expect space for storage and bandwidth for transport to
be the critical factors for multimedia applications. Further,
caching mechanisms need to guarantee continuous deliv-
ery of video without stutters for enjoyable consumption.
Dan and Sitaram conclude that traditional replacement is
insufficient for video caching requirements [39].

On the other hand, multimedia data offers the possibil-
ity of significantly reducing volume “without sacrificing
too much quality” [7]. Text files typically need to be com-
pressed lossless to allow perfect reconstruction. In video
compression, inter-frame techniques eliminate redundancy
without compromising quality [41]. Even noticeable qual-
ity losses may sometimes be acceptable when this results
in a smoother presentation.

Converting files from one representation to another,
e.g. format conversion or compression, is called transcod-
ing [42]. On the Web, transcoding proxy servers [42], [45]
take these options into account. A proxy on the delivery
path somewhere between the client and the origin Web
server temporarily stores requested objects locally and acts
as a cache for future requests. The so-called Soft Caching
[44] approach allows for modification of these resources.
Specifically, it allows the proxy to recode images to lower
resolution versions and discard original files to save space.
Upon a request, the proxy cache might then initially serve
the transcoded object with lower image resolution until the
original version becomes available.

This possibility adds another level of complexity to
the replacement process because a replacement policy
no longer only makes a binary decision on whether to
completely evict an object or not, but now also needs to
evaluate, if storing a copy with reduced quality instead of

the original file is beneficial to the overall user experience
[7], which is refered to as a soft decision [44].

So far, we assumed data to only ever be cached-in
when it is demanded and not already in the cache. Under
this demand fetching model, the replacement policy is
the only algorithm of interest [14]. Studies have reported
that, due to many single-access requests, the cache hit
rate is bound to approximately 50%, even if replacement
decisions would always be made optimally by some hy-
pothetical omniscient policy [2], [27].

To lift this bound, document requests must be antici-
pated and files loaded into the cache before they are even-
tually demanded. We refer to this as anticipatory fetching
or prefetching. The prediction of future requests should
be done accurately and prudently because fetching un-
necessary data that will never be needed can significantly
increase network traffic and thereby introduce delays [45].
Trace-driven simulations have shown that prefetching data
from Web servers into client caches can reduce user-
perceived latency by up to 45%, but also doubles the
total load on the network [46]. Prefetching is not a cache
replacement issue, but the two mechanisms are closely
related and cooperatively manage the cache content. When
streaming video content over the Internet, preloading se-
quences that are about to be shown is essential to prevent
disruptions in playback. The term “buffering” is often
used synonymously to prefetching in the context of VoD
applications [39], [40], [47].

Long videos, e.g. movies, are typically consumed lin-
early from beginning to end, which makes predicting the
next requested frames relatively straightforward. The most
critical data are, therefore, the early frames of videos. The
beginnings of videos are also overall the most popular
parts [48], [51]. Sen et al. [47] propose that proxy caches
should store a prefix of every audio or video stream,
instead of storing the entire object.

Multimedia content popularity is highly dynamic [51],
but researchers have identified access patterns that make
its prediction feasible. VoD customers are more likely
to consume full-length movies in the evening and on
the weekend, for example, creating exploitable patterns
repeating on a daily and weekly basis [51]. Other research
suggests that on video-sharing platforms such as YouTube,
popularity patterns differ among categories. Copyright
protected material, e.g. a music video, gets a significantly
higher percentage of the total views on its first days online,
as compared to uncopyrighted videos, e.g. user-generated
video blogs, that show steadier request rates on average
[49].

5.2. Predictive Least Frequently Used

The traditional LFU policy was presented in Section
3.2.2 and evicts the item that was accessed least of-
ten in the past. This section describes Predictive Least
Frequently Used (P-LFU). P-LFU evicts the item with
the lowest predicted number of requests within a speci-
fiable prediction window. For P-LFU to perform well,
accurate prediction values are vital. Prediction happens
in a separate phase, prior to the actual eviction phase.
Famaey, Iterbeke, Wauters and De Turck propose a generic
popularity prediction algorithm and find that Web objects
can be grouped according to how their popularity evolves

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

29 doi: 10.2313/NET-2019-06-1_06

over time. Only four distributions are needed to cover the
majority of request patterns for these items [51].

• Constant models steady access rates, e.g. for per-
manently unpopular items.

• Power-Law models abrupt steep changes in pop-
ularity often seen in multimedia systems.

• Exponential models slower changes than power-
law and has shown to give the most accurate
predictions out of the four distributions when ap-
plicable [51], [52].

• Gaussian models S-shaped request patterns. Start-
ing off constant, a sudden significant change in
popularity appears and then returns to a constant
access rate.

Finding the best parameters to fit these four models to
the history is a non-linear optimization problem. The
authors use the Levenberg-Marquardt algorithm [50] for
this purpose. Finally, the distribution with the “best fit”,
e.g. the one with the smallest mean squared error (MSE),
is selected and used to make a projection on future request
rates.

Famaey et al. conducted simulations on the request
traces of the “VoD service of a leading European telecom
operator” [51]. 75013 requests were recorded for 4971
different movies. The results indicate that P-LFU can
realistically perform approximately 10% better than tradi-
tional LFU in terms of hit rate. For accurate predictions,
the number of historical data points should not be smaller
than 10, however [51].

Further, the algorithm predicted accesses to unpopular
movies with significantly higher accuracy than requests
for popular items [51].

6. Conclusion and Future Work

There exist plenty of cache replacement proposals
beyond what is covered in this paper. Section 3 looked
at traditional cache replacement approaches and classified
them based on some commonly used factors of cacheable
items, like recency and frequency of access that influence
the removal process. The Adaptive Replacement Cache
(ARC) was presented in Section 4 to demonstrate that
improvement over LRU is possible, even without intro-
ducing unreasonable overhead. Section 5 described how
multimedia Web traffic could pose difficulties for so-
called “good enough” replacement strategies in the future.
Some unique characteristics of multimedia content were
explained and, finally, a prediction-based variant of the
LFU scheme that was designed to cope with the challenges
of multimedia caching was depicted.

Section 5.1 already touched upon the possibility of
prefetching data into the cache before it is actually needed.
Prefetching and similar mechanisms should be studied
further in the context of Web caching to investigate latency
reductions beyond what pure replacement strategies can
achieve. Further, transcoding techniques for data reduction
might render especially helpful for environments where
caches are of smaller size, e.g. mobile systems. How to
optimally handle the trade-off between quality and speed
that transcoding caches have to deal with is another open
issue to be researched.

References

[1] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching Algo-
rithms,” Proc. 1997 USENIX Symp. Internet Tech. and Sys., 1997,
pp. 193–206.

[2] J. Wang, “A Survey of Web Caching Schemes for the Internet,”
ACM Comp. Commun. Review, vol. 29, no. 5, Oct. 1999, pp. 36–
46.

[3] A. Tanenbaum, “Modern Operating Systems, Third Edition,” Pren-
tice Hall, Inc, 2009.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. IEEE INFOCOM Conf., 1999, pp. 126–34.

[5] H. Bahn, K. Koh, S.H. Noh, and S.M. Lyul, “Efficient Replacement
of Nonuniform Objects in Web Caches,” IEEE Comp., June 2002,
pp. 65–73.

[6] S. Williams, M. Abrams, C.R. Standridge, G. Abdulla, and E.A.
Fox, “Removal Policies in Network Caches for World Wide Web
Documents,” Proc. ACM SIGCOMM Conf., Stanford University,
Aug. 1996, pp. 293–305.

[7] S. Podlipnig and L. Boszormenyi, “A Survey of Web Cache Re-
placement Strategies,” ACM Comp. Surveys, vol. 35, no. 4, Dec.
2003, pp. 374–98.

[8] A. Balamash and M. Krunz, “An Overview of Web Caching
Replacement Algorithms,” IEEE Commun. Surveys & Tutorials,
vol. 6, no. 2, 2004.

[9] C. Aggarwal, J. Wolf, and P. Fellow, “Caching on the World Wide
Web,” IEEE Trans. Knowledge and Data Eng., vol. 11, no. 1,
Jan./Feb. 1999, pp. 94–107.

[10] G. Kastaniotis, E. Maragos, V. Dimitsas, C. Douligeris, and D.K.
Despotis, “Web Proxy Caching Object Replacement: Frontier Anal-
ysis to Discover the ’Good-Enough’ Algorithms,” Proc. IEEE 15th
International Symp. on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2007, pp. 132–137.

[11] A.K.Y. Wong, “Web Cache Replacement Policies: A Pragmatic
Approach,” IEEE Network magazine, vol. 20, no. 1, 2006, pp. 28–
34.

[12] N. Megiddo and D.S. Modha, “ARC: A Self-Tuning, Low Over-
head Replacement Cache,” Proc. Usenix Conf. File and Storage
Technologies (FAST 2003), Usenix, 2003, pp. 115–130.

[13] N. Megiddo and D. Modha, “Outperforming LRU with an adaptive
replacement cache algorithm” Computer, vol. 37, no. 4, 2004, pp.
58–65.

[14] N. Megiddo and D. Modha, “One up on LRU,” login – The
Magazine of the USENIX Association, vol. 28, 2003, pp. 7–11.

[15] N. Megiddo and D. Modha, “System and Method for Implementing
an Adaptive Replacement Cache Policy,” US Patent 6,996,676, Feb.
2006.

[16] E. Mustain, “The Saga of the ARC Algorithm and Patent,” Post-
gresql General Bits, 2005, http://www.varlena.com/GeneralBits/96.
php (accessed September 27, 2018).

[17] M. Chrobak and J. Noga, “LRU is Better than FIFO,” Algorithmica,
vol. 23, no. 2, 199, pp. 18—185.

[18] G. Rexha, E. Elmazi, and I. Tafa, “A Comparison of Three Page
Replacement Algorithms: FIFO, LRU and Optimal,” Academic
Journal of Interdisciplinary Studies, vol. 4, no. 2, 2015, p. 56.

[19] S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-Reference
Recency Set Replacement Policy to Improve Buffer Cache Perfor-
mance,” Proc. ACM Sigmetrics Conf., ACM Press, 2002.

[20] T. Johnson and D. Shasha, “2Q: A Low Overhead High-
Performance Buffer Management Replacement Algorithm,” Proc.
VLDB Conf., Morgan Kaufmann, 1994, pp. 297–306.

[21] D. Lee, J. Choi, J.H. Kim, S.H. Noh, S.L. Min, Y. Cho, and C.S.
Kim, “LRFU: A Spectrum of Policies that Subsumes the Least
Recently Used and Least Frequently Used Policies,” IEEE Trans.
Computers, vol. 50, no. 12, 2001, pp. 1352–1360.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

30 doi: 10.2313/NET-2019-06-1_06

[22] T. Saemundsson, “An Experimental Comparison of Cache Algo-
rithms,” 2012.

[23] B.D. Davison, “A Web Caching Primer,” IEEE Internet Comput.
5, no. 4, 2001, pp. 38–45.

[24] D. Sleator and R.E. Tarjan, “Amortized Efficiency of List Update
and Paging Rules,” Communications of the ACM, vol. 28, no. 2,
1985, pp. 202–208.

[25] J.E. Pitkow and M. Recker, “A Simple yet Robust Caching Algo-
rithm Based on Dynamic Access Patterns,” Proc. 2nd International
World Wide Web Conf., 1994, pp. 1039–1046.

[26] K. Rajan and G. Ramaswamy, “Emulating Optimal Replacement
with a Shepherd Cache,” Proc. 40th International Symp. on Mi-
croarchitecture, 2007.

[27] M. Abrams, C.R. Standbridge, G. Abdulla, S. Williams, and E.A.
Fox, “Caching Proxies: Limitations and Potentials,” Proc. 4th
International International World Wide Web Conf., 1995.

[28] C.-Y. Chang, T. McGregor, and G. Holmes, “The LRU* WWW
Proxy Cache Document Replacement Algorithm,” Proc. Asia Pa-
cific Web Conf., 1999.

[29] J.-M. Menaud, V. Issarny, and M. Banatre, “Improving Effective-
ness of Web Caching,” Recent Advances in Distributed Systems,
2000.

[30] M. Arlitt, R. Friedrich, and T. Jin, “Performance Evaluation of Web
Proxy Cache Replacement Policies,” Tech. Rep. HPL-98-97(R.1),
Hewlett-Packard Company, 1999.

[31] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evalu-
ating content management techniques for web proxy caches,” ACM
SIGMETRICS Performance Evaluation Reviews, vol. 27, no. 4, pp.
3–11, March 2000.

[32] A.I. Vakali, “LRU-based Algorithms for Web Cache Replacement,”
International Conf. on Electronic Commerce and Web Technolo-
gies, 2000.

[33] E. Friedlander and V. Aggarwal, “Generalization of LRU Cache
Replacement Policy with Applications to Video Streaming,” 2018.

[34] J. Du, S. Gao, J. Lv, Q. Li, and S. Ma, “A Web Cache Replacement
Strategy for Safety-Critical Systems,” Tehnicki Vjesnik, vol. 25, no.
3, 2018, pp. 820–830.

[35] L. Cherkasova and G. Ciardo, “Role of Aging, Frequency, and Size
in Web Cache Replacement Policies,” International Conf. on High-
Performance Computing and Networking, 2001, pp. 114–123.

[36] N. Young, “On-line caching as cache size varies,” 2nd Annual
ACM-SIAM Symp. on Discrete Algorithms, 1991, pp. 241–250.

[37] S. Jin and A. Bestavros, “Sources and Characteristics of Web Tem-
poral Locality,” Proc. IEEE 8th International Symp. on Modeling,
Analysis, and Simulation of Computer and Telecommunication
Systems, 2000, pp. 28–35.

[38] S. Jin and A. Bestavros, “GreedyDual* Web Caching Algorithm:
Exploiting the Two Sources of Temporal Locality in Web Request
Streams,” Proc. 5th International Web Caching and Content Deliv-
ery Workshop, 2000.

[39] A. Dan and D. Sitaram, “Multimedia Caching Strategies for Het-
erogeneous Application and Server Environments,” Multimedia
Tools and Applications, vol. 4, no. 3, 1997, pp. 279–312.

[40] A. Dan, D. Dias, R. Mukherjee, D. Sitaram, and R. Tewari,
“Buffering and caching in large scale video servers,” Proc. IEEE
CompCon, 1995, pp. 217–224.

[41] Wikipedia contributors, “Data compression,” Wikipedia, The Free
Encyclopedia, https://en.wikipedia.org/w/index.php?title=Data_
compression&oldid=860709233 (accessed September 27, 2018).

[42] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, and J.
Rubas, “Dynamic Adaptation in an Image Transcoding Proxy For
Mobile Web Browsing,” IEEE Personal Communications, vol. 5,
no. 6, 1998, pp. 8–17.

[43] K.H. Yeung, C.C. Wong, and K.Y. Wong, “A Cache Replacement
Policy for Transcoding Proxy,” IEICE Trans. Commun., vol. E87-
B, no. 1, 2004, pp. 209–11.

[44] J. Kangasharju, Y.G. Kwon, and A. Ortega, “Design and Imple-
mentation of a Soft Caching Proxy,” Computer Networks and ISDN
Systems, vol. 30, no. 22-23, 1998, pp. 2113–2121.

[45] M. Crovella and P. Batford, “The Network Effects of Prefetching,”
Proc. Infocom’98.

[46] V.N. Padmanabhan and J.C. Mogul, “Using Predictive Prefetching
to Improve World Wide Web Latency,” ACM SIGCOMM Com-
puter Communication Review, vol. 26, no. 3, 1996, pp. 22–36.

[47] S. Sen, J. Rexford, and D. Towsley, “Proxy Prefix Caching for
Multimedia Streams,” Proc. Infocom’99.

[48] H. Guo, G. Shen, Z. Wang, and S. Li, “Optimized Streaming Media
Proxy and its Applications”, Journal of Network and Computer
Applications, vol. 30, no. 1, 2007, pp. 265–281.

[49] F. Figueiredo, F. Benevenuto, and J.M. Almeida, “The Tube Over
Time: Characterizing Popularity Growth of YouTube Videos,”
Fourth ACM International Conf. on Web Search and Data Mining,
2011, pp. 745–754.

[50] K. Levenberg, “A Method for the Solution of Certain Non-Linear
Problems in Least Squares,” Quarterly Journal of Applied Math-
matics, vol. 2, no. 2, 1944, pp. 164–168.

[51] J. Famaey, F. Iterbeke, T. Wauters, F. DeTurck, “Towards a Predic-
tive Cache Replacement Strategy for Multimedia Content,” Journal
of Network and Computer Applications, vol. 36, no. 1, 2013, pp.
21–227.

[52] A. Tatar, M.D. de Amorim, S. Fdida, and P. Antoniadis, “A Survey
on Predicting the Popularity of Web Content,” Springer J. Internet
Services and Applications, vol. 5, no. 1, 2014, pp. 1–20.

[53] M. Busari and C. Williamson, “On the Sensitivity of Web Proxy
Cache Performance to Workload Characteristics,” Proc. IEEE IN-
FOCOM, vol. 3, 2001, pp. 1225–34.

[54] B Krishnamurthy and J. Rexford, “Web Protocols and Practice:
HTTP/1.1, Networking Protocols, Caching, and Traffic Measure-
ment, ” Addison-Wesley Professional, 2001.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

31 doi: 10.2313/NET-2019-06-1_06

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

32

Time Sensitive Networking for Wireless Networks - A State of the Art Analysis

Alexander Mildner∗
Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Advisor: Fabien Geyer†

Email: mildner@in.tum.de∗, fgeyer@net.in.tum.de†

Abstract—The trend towards using wireless networking de-
vices for real-time applications is growing, due to the in-
creased flexibility and better cost-efficiency in contrast to
wired devices. In this paper we take a closer look at the
status of recent research and developments towards enabling
Time-Sensitive Networking (TSN) for wireless communica-
tion networks. First we provide a brief introduction to
the already defined TSN technologies for wired networks.
We then discuss some of the main challenges and gaps to
overcome, in order to provide a common set of standards for
reaching out towards deterministic networking on wireless
media. Specifically, we will take a look at some approaches
towards accurate clock synchronization via wireless links,
including IEEE 802.1AS, which is a key requirement for
TSN, in particular for Time Based Scheduling. We will
also present some recent efforts on providing determin-
istic/bounded latencies for various wireless link protocols,
e.g IEEE 802.11. Furthermore, we will have a look at
different existing solutions, that can enhance reliability and
redundancy, by e.g. using additional redundant links, and
techniques for managing resource allocation on the End-to-
End (E2E) network path.

Index Terms—time sensitive networking, wireless networks,
latency, determinism, reliability, 802.1Qbv, 802.1AS, 802.1Q

1. Introduction

The emerging need for deterministic real-time com-
munication in the industrial automation, automotive and
audio/video sectors has pushed recent research and de-
velopments in the field of real-time communication and
low latency deterministic networks. Today’s industrial
networks are often dominated by specialized or semi-
proprietary wired media fieldbus communication, e.g.
ProfiBUS, EtherCAT, CAN-BUS, Ethernet/IP and many
more [1]. Although, most of these modern industrial
grade Ethernet networks are fundamentally based on the
Ethernet standard IEEE 802.3, they are usually closed
systems, which differ from vendor to vendor and thus are
in most cases not interoperable with each other or common
Ethernet networks. A clear downside of these technologies
is the lack of flexibility and interoperability capabilities,
like the ones provided by the IEEE 802.3 Ethernet or
wireless network standards. Especially wireless network
infrastructure has advantages in certain deployment sce-
narios, where wired networks may not be suitable or

more expensive to deploy. This results in the need of en-
abling real-time capabilities and guaranteed deterministic
performance bounds, tied into already existing wireless
standards, in order to meet the requirements for real-time
network applications and furthermore provide an open and
common network standardization.

The Institute of Electronics and Electrical Engineers
(IEEE), the Internet Engineering Task Force (IETF) and
the International Electrotechincal Commission (IEC) have
recently proposed new standards in order to introduce de-
terministic networking to the Ethernet standard. The IEEE
Time-Sensitive Networking (TSN) Task Group (TG), for-
merly named the IEEE Audio/Video Bridging (AVB) TG,
has been working on proposing and defining new stan-
dardizations and also extending and enhancing already
existing ones like IEEE 802.1Q [2] for Quality of Ser-
vice (QoS), the IEEE 1588v2 Precision Time Protocol
(PTP) [3] and IEEE 802.1AS-2011 [4] for accurate clock
synchronization in a generalized and optimized manner.
With these specifications for a time sensitive, real-time
capable and open Ethernet standard, the IEEE TSN TG
has defined a set of standards.

In contrast to wired Ethernet based communication,
wireless links introduce unreliability, asymmetric channels
and latencies, channel interference and signal distortion to
the communication path, which makes it hard to provide
guarantees for performance characteristics. Thus, wireless
links are not suitable for real-time critical and ultra low
latency applications by default. Some of the TSN stan-
dards already include proposed solutions to solve certain
challenges for enabling TSN for wireless networks like
adoptions to the IEEE 802.1AS standard, which uses
IEEE 802.11 Timing Measurement (TM) [5] for accurate
time synchronization over 802.11. Most of the described
techniques in the IEEE TSN standards have been defined
generically, without further specification on the actual
layer 2 network protocol. This allows to extend and adapt
the work, by specific requirements or methods to be
used on common wireless network protocol standards,
such as IEEE 802.11, IEEE 802.15.4 for Wireless Sensor
Networks (WSN) and even the upcoming 5G standard. In
this paper we take a closer look at the current research
on enabling TSN for wireless networks and the main
challenges, which need to be resolved.

The remainder of this paper is structured as follows:
We first present and refer to some of the most inter-
esting related works on TSN for wireless networks in
Section 2. We then provide the current status of the
defined TSN standards of the IEEE TSN TG and present

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

33 doi: 10.2313/NET-2019-06-1_07

a brief overview of the technologies and methodologies
being used in Section 3. After that, we define the most
interesting challenges for TSN over wireless networks in
Section 4, and furthermore we present the current research
efforts and first proposed solutions in order to overcome
these problems. We will conclude and summarize the most
important findings and give an outlook for future work in
Section 5.

2. Related Work

In this section we introduce some recent research
studies, which pave the way towards TSN for wireless
networks. As this is an ongoing research area, not all
remaining challenges have already been approached, thus
leaving a lot of open topics for current and future works.

There have been recent efforts in order to define some
of the key challenges towards TSN for wireless networks
by the Avnu Alliance. The Avnu Alliance is a consortium
consisting of professional, automotive, consumer elec-
tronics and industrial manufacturing companies, working
on defining a common certification for iteroperable TSN
standards. The white paper by Steven F. Bush et al. [6],
published in January 2018, explores next steps for im-
plementing and deploying TSN methods for industrial
wireless networks as a Request for Comments (RFC).
The paper covers a proposed roadmap for a seamless
integration of Wireless TSN technologies into existing In-
dustrial networks and defines a set of transition phases. It
defines characteristical problems of the unreliable wireless
networking technologies, which need to be considered,
when defining a common Wireless TSN standard. Within
each of these transition phases, the author concludes the
current status with raising questions regarding open issues,
which need to be addressed for the specific underlying
radio technology.

The case study of A. Mahmood et al. [7] from April
2017 presented several different approaches for method-
ologies and protocols for accurate clock synchronization
used on IEEE 802.11 wireless networks. The authors
examine different existing synchronization methods, e.g.
relative vs. absolute synchronization, Hard- vs. Software
timestamping methods, built-in 802.11 vs. wired protocols
etc., and they are compared against their use on 802.11
based networks. Depending on the use-case, and thus e.g.
on the required synchronization accuracy and minimal
jitter, the paper suggests to use the PTP protocol with
Hardware timestamping for the most accurate method with
some additional protocol overhead. Another paper, which
has been published in 2011, by A.Mahmood et al. [8]
also provided an approach for an implementation of an
accurate clock synchronization using PTP with software
timestamping for IEEE 802.11 networks. The proposed
solution achieved a synchronization accuracy of a few
microseconds and jitter below 1µs, by also reducing the
protocol overhead by using 802.11 Beacon Frames for
timestamp transmission.

Another scientific work, published by A. Nasrallah et
al. [9], presented a detailed study on recent developments
in Ultra-Low Latency (ULL) networks. This comprehen-
sive case study provides a sophisticated overview of the
current efforts on IEEE TSN, IETF Deterministic Net-
works (DetNet) and 5G technologies for providing real-

TABLE 1. IEEE 802.1 TSN STANDARDS DEFINED IN [2] WITH TS =
TIME SYNCHRONIZATION, BLL = BOUNDED LOW LATENCY, UR =

ULTRA RELIABILITY AND RM = RESOURCE MANAGEMENT

IEEE Std. Features

T
S 802.1AS Time Synchronization (802.1AS-Rev in draft)

B
L

L

802.1Qav Credit Based Shaper
802.1Qbv Time Scheduled Traffic
802.1Qbu Frame Preemption (also 802.3br)
802.1Qch Cyclic Queuing and Forwarding
802.1Qcr Asynchronous Traffic Shaping

U
R

802.1CB Seamless Redundancy, Stream Identification
802.1Qci Filtering and Policing
802.1Qca Path Control and Reservation

R
M

802.1Qcc Stream Reservation Protocol Enhancements
802.1Qcp YANG Model for Bridging
802.1Qcw YANG Model for Qbv, Qbu, Qci
802.1CBcv YANG Model for CB

time and ULL capabilities for Layer 2, Layer 3 and re-
spectively upcoming mobile wireless network standards.

3. Time Sensitive Networking

In this section we briefly introduce the Time Sensitive
Networking technologies that have already been defined
for IEEE 802.3 Ethernet and provide an overview of TSN
in general. We will define the four key pillars of operating
a Time Sensitive Network, which provide the fundamental
characteristics of TSN.

One of the main goals of the development of TSN,
was to provide an open and standardized technology, not
affiliated to any organization or company. The demand-
ing need for real-time capable deterministic networking,
which in addition allows interoperability between devices,
has pushed the development on TSN forwards. The clear
benefits of using TSN over proprietary solutions, are better
cost efficiency as common off the shelf (COTS) hardware
can be used, establishing network convergence and the
technology scales with the Ethernet standard. The TSN
technology is based on four basic key concepts, accurate
time synchronization, bounded guaranteed low latency,
ultra reliability and resource management. For each of
these key pillars, the IEEE TSN TG has defined several
standards to provide the according functionality (see Ta-
ble 1). In the following we will have a detailed look at
each of these components and the according standards:

1) Time Synchronization (TS): In order to provide a
common sense of time, shared between all participating
nodes in the TSN network, IEEE 802.1AS [4] provides a
generalized PTP (gPTP) profile for accurate time synchro-
nization, using the IEEE 1588v2 PTP protocol [3]. PTP
is being used to synchronize the physical hardware clocks
(PHCs) of network interface cards (NICs) to a dedicated
(Grand-) Master clock on Local Area Networks (LAN),
with very high precision. For Ethernet, the accuracy of
the offset lies in the sub microsecond range with modern
hardware. In contrast to IEEE 1588v2, gPTP provides a
generalized and optimized clock synchronization method
and provides a set of configuration parameters referred
as PTP profile. An accurate clock synchronization is a
fundamental premise for most of the IEEE TSN standards,
such as IEEE 802.1Qbv for Time based Scheduling. All
participating nodes in the TSN-Network must be synchro-

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

34 doi: 10.2313/NET-2019-06-1_07

nized, in order to ensure real-time execution and real-time
networking.

2) Bounded Low Latency (BLL): One main aspect of
real-time applications is message exchange between dif-
ferent nodes in the network on a deterministic low latency
basis. Certain traffic classes, such as Cyclic (motion-)
control or isochronous (periodic) traffic as defined by A.
Ademaj et al. in [12], have strict latency requirements,
and thus need a guarantee by the network control for
these requirements. For this purpose, the TSN standards
provide several methods for ensuring bounded latencies,
e.g. 802.1Qbv for Time Scheduled Traffic or 802.1av
for a Credit Based Shaper. With 802.1Qbv for exam-
ple, a pre-defined cyclic time schedule will be deployed
throughout the network path. This cyclic time schedule
defines for each time slot, which specific traffic classes
will be forwarded for the specified amount of time within
the cycle. The traffic classes are identified by the IEEE
802.1Q VLAN header, in particular by the priority value.
In addition with using time triggered traffic sending (e.g.
via SO_TXTIME socket option), time critical traffic can
now be sent through the network with constant guaranteed
latency, even if there is interfering traffic on the path.

3) Ultra Reliability (UR): Similar to bounded latency,
real-time safety-critical applications require high relia-
bility, to ensure their proper functionality. As most of
the used traffic types in real-time applications rely on
UDP and common Ethernet, there is no built-in reliability
mechanism, such as retransmission of lost frames. For
this purpose, the TSN standards provide e.g. 802.1CB
for Seamless Redundancy and Identification for streams,
which replicates frames on a per-frame basis and sends
them on 2 (or more) disjoint paths to the target. The
duplicate/extra frames will be eliminated on the last net-
work node before the target. This goes hand-in-hand with
802.1Qca for Path Control and Reservation technology,
for determining these paths in the network.

4) Resource Management (RM): In a TSN network,
each real-time application needs certain network perfor-
mance requirements, in order to function properly. An-
other key aspect of enabling TSN is the configuration
and management of the available network resources. For
this the TSN standards defined both a fully centralized
and a fully distributed model for configuration of the
network, namely IEEE 802.1Qcc. The trend tends towards
using a centralized model, which consists of a Centralized
User Configuration (CUC) and a Centralized Network
Configuration (CNC) system. These systems are similar
to configuration techniques from Software Defined Net-
working (SDN). The applications request their resource
needs at the CUC, which will then trigger the appropriate
actions to be taken at the CNC for resource reservation,
e.g. for configuring the appropriate cycles for 802.1Qbv on
the network path. For the specific data model on the end-
points and the bridges, several YANG 1 models have been
designed to be used via the NETCONF or RESTCONF
protocol. Figure 2 in section 4 shows a complete model
of a TSN network, which uses a centralized configuration
model. The Resource Management is currently still under
heavy development and certification process.

1A data model language for network configuration - see
https://tools.ietf.org/html/rfc6020

4. Towards TSN for Wireless Networks

In this section, we discuss the main challenges and
gaps for Wireless TSN, which refer to the four funda-
mental pillars of Time Sensitive Networking, presented
in section 3. First, we define the main problems and
parameters of a wireless link, that directly affect the
fundamental key components of TSN. After that, we will
investigate current research efforts on enabling the specific
key components of TSN on Wireless Networks.

Wireless Technology has brought up new possibilities
and advantages for network communications, in contrast
to wired networks. The newly gained flexibility of moving
end stations, opened new possibilities to connect devices
in a cost efficient way. But in contrast to Ethernet, wireless
links introduce several characteristics like unreliability,
asymmetric link delay and channels, channel interference
and signal distortions from the environment. These prop-
erties make the development of suitable standards and
implementations for enabling TSN for wireless networks
a challenge. A noticeable research effort has already been
done, in providing real-time capabilities for IEEE 802.15.4
networks [15], such as Wireless Sensor Networks. But,
the overall trend leads towards enabling TSN for IEEE
802.11, due to the higher range and rate, the better inter-
operability and the improved security mechanisms.

1) Accurate Clock Synchronization: The most impor-
tant fundamental component of a TSN network is accurate
clock synchronization between endstations and also be-
tween network devices, such as bridges. For this purpose,
we have already introduced the IEEE 802.1AS generalized
PTP protocol in section 3. This standard also includes a
proposal for clock synchronization for 802.11 in section
12 of [4] by using 802.11 Timing Measurement (TM) [10].
The synchronization procedure is shown in Figure 1.

Figure 1. PTP Time Synchronization using TM, ToA = Time of Arrival,
ToD = Time of Destination [11]

The biggest difference to the usual gPTP two-step pro-
tocol, is that M2 contains information about the previous
two step synchronization (specifically t1 and t4 − t1).
With this additional information, channel asymmetries
can be detected and accounted into the offset correc-
tion calculation on the Slave. The according formulas

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

35 doi: 10.2313/NET-2019-06-1_07

for calculating the offset, link delay and the so called
neighborRateRatio are as following:

neighborRateRatio = (t1′ − t1)/(t2′ − t2)
linkDelay = [(t4− t1)− (t3− t2)]/2
timeOffset = [(t2− t1)− (t4− t3)]/2

The neighborRateRatio is being used, to detect and
measure current jitters occurring in unreliable wireless
media. These values are then used to synchronize a system
clock to the current network time, as the majority of
wireless interface cards do not have a built-in PHC. The
IEEE 802.1AS-Rev, which is scheduled for release end
of 2018, will introduce IEEE 802.11 Fine Timing Mea-
surement (FTM) [5] for an even more accurate clock syn-
chronization, using PTP. Another approach, which does
not rely on PTP, for accurate clock synchronization for
802.11 wireless networks, has been proposed by J.-H.
Chiang et al. in [14], which uses 802.11 Beacon Frames
and the internal Time Synchronization Function (TSF) for
synchronizing clocks in a multi-hop wireless network in
microsecond range.

2) Bounded Low Latencies: Approaching bounded low
latencies is a key challenge for enabling TSN for wireless
networks. The main problem is that the unreliability of
the wireless media, needs to be measured and monitored,
in order to detect e.g. signal quality reduction and current
latencies. This is still under heavy development and re-
search. One approach to bypass the unreliability of the
wireless media, is to hide the wireless link behind a
802.1Qbv Time Based Scheduler as proposed in [6]. The
network nodes need to be synchronized in time to ensure
accurate clock synchronization for implementing the time-
based cycle. As there do not exist any current implemen-
tations of the in Section 4.1 defined clock synchronization
methods for wireless networks, one would need to rely on
clock synchronization mechanisms for wired ethernet. The
cycle needs to take possible retransmissions and maximum
latencies of the wireless media into account. Furthermore,
the Wireless NIC needs to be capable of controlling the
message transmission time and implement the 802.1Qbv
scheduler, which is still an open research topic. Although,
there have also been approaches to implement a Time-
Division Multiple Access (TDMA)-MAC for access con-
trol as e.g. by G.-H. Liaw in [13], these techniques cannot
meet the requirements of certain use-cases with latencies
in the millisecond range e.g. for an industrial real-time
application.

3) Providing Reliability: As the IEEE 802.11 standard
includes an Automatic Repeat Request (ARQ) mechanism
for retransmitting packets that have been lost on transmis-
sion, these introduce uncertainties in regards to bounded
latency. In Reference [6] the introduction of a redundant
system using a wireless network is being proposed, in
order to support the redundancy of wired TSN networks,
and furthermore gradually introduce wireless networks
to industrial IoT use-cases. The Author also states, that
802.11 supports IEEE 802.1CB for Seamless Redundancy
and Stream Identification, but that when moving towards
enabling TSN for wireless given wireless retransmissions
schemes, needs careful design and analysis.

4) Resource Management: In regards of Resource
Management, the wireless networks could be used, as a

Figure 2. TSN Resource management [5]

first step, to manage the configuration links between CUC
and endpoints and CNC and network devices. In Figure 2
the complete structure of a decentralized configuration
based TSN network can be seen. As suggested in [6],
the dotted lines could be deployed as wireless links, as
this is only for control not for operation. One advantage
would be that there could be mobile Access terminals,
which would allow to control the applications via wire-
less networks. Furthermore, replacements of equipment
could be simplified, as no physical wiring needs to be
changed. Of course, once there are suitable TSN standards
to operate a TSN network over wireless media, there
will be the need of certain standards for a configuration
model specification for wireless bridges and endpoints.
These would have different configuration parameters as
wired stations. Furthermore there would be the need of
an analyzing or monitoring instance, which would collect
and analyze data about the current status of the wireless
channels, in order to ensure resource availability.

5. Conclusion and Future Work

In this paper we showed only an excerpt of the current
efforts to enable TSN on wireless networks. We discussed
the main challenges for providing accurate clock synchro-
nization, reliability, deterministic or bounded latencies and
resource management and provided an insight to current
developments, in order to approach some of them. The
current status of TSN for wireless is in an early develop-
ment stage and there are still many open topics to address
for an open standardization. Accurate clock synchroniza-
tion for wireless networks still needs further investigations
and improvements, especially improved hardware support
for 802.1AS for wireless NICs. Another future work
would be to investigate the performance improvements
of clock synchronization using the upcoming 802.1AS-
Rev standard, in comparison with 802.1AS and 802.11
Beacon Frame methods. In terms of bounded latencies,
further developments of time based packet transmission,
as done for Ethernet, need to be considered for future
work. Furthermore, there is the need for a sophisticated
solution for measuring and monitoring quality parameters
of the wireless links, in order to make guarantees for
resource management.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

36 doi: 10.2313/NET-2019-06-1_07

References

[1] M. Wollschlaeger, T. Sauter and J. Jasperneite, “The Future of
Industrial Communication: Automation Networks in the Era of the
Internet of Things and Industry 4.0,” in IEEE Industrial Electronics
Magazine, vol. 11, no. 1, pp. 17-27, March 2017.

[2] “IEEE Standard for Local and Metropolitan Area Network–Bridges
and Bridged Networks,” in IEEE Std 802.1Q-2018 (Revision of
IEEE Std 802.1Q-2014) , vol., no., pp.1-1993, 6 July 2018.

[3] IEEE Std. 1588-2008, “IEEE Standard for A Precision Clock
Synchronization Protocol for Networked Measurement and Control
Systems.”, IEEE Std., 2008.

[4] IEEE, “802.1AS-2011 - IEEE Standard for Local and Metropolitan
Area Networks - Timing and Synchronization for Time-Sensitive
Applications in Bridged Local Area Networks”, IEEE Std., 2011.

[5] “IEEE Standard for Information technology–Telecommunications
and information exchange between systems Local and metropolitan
area networks–Specific requirements - Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Speci-
fications,” in IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-
2012) , vol., no., pp.1-3534, 14 Dec. 2016.

[6] S. F. Bush et al. “Industrial Wireless Time-Sensitive Networking:
RFC on the Path Forward,” [White paper], Retrieved on Sep.
18, 2018, from AVNU Alliance Community, https://avnu.org/wp-
content/uploads/2014/05/Industrial-Wireless-TSN-Roadmap-
v1.0.3-1.pdf.

[7] A. Mahmood, R. Exel, H. Trsek and T. Sauter, “Clock Synchro-
nization Over IEEE 802.11 - A Survey of Methodologies and
Protocols,” in IEEE Transactions on Industrial Informatics, vol.
13, no. 2, pp. 907-922, April 2017.

[8] A. Mahmood, G. Gaderer, H. Trsek, S. Schwalowsky and N.
Kerö, “Towards high accuracy in IEEE 802.11 based clock syn-
chronization using PTP,” 2011 IEEE International Symposium on
Precision Clock Synchronization for Measurement, Control and
Communication, Munich, 2011, pp. 13-18.

[9] A. Nasrallah et al. , “Ultra-Low Latency (ULL) Networks: The
IEEE TSN and IETF DetNet Standards and Related 5G ULL
Research,” in IEEE Communications Surveys & Tutorials, Sep
2018.

[10] K. B. Stanton, “Distributing Deterministic, Accurate Time for
Tightly Coordinated Network and Software Applications: IEEE
802.1AS, the TSN profile of PTP,” in IEEE Communications
Standards Magazine, vol. 2, no. 2, pp. 34-40, JUNE 2018.

[11] K. B. Stanton, “Tutorial: The Time-Synchronization
Standard from the AVB/TSN suite IEEE Std 802.1AS-
2011 ,” Retrieved on Sep. 29, 2018, from IEEE,
http://www.ieee802.org/1/files/public/docs2014/as-kbstanton-
8021AS-tutorial-0714-v01.pdf.

[12] A. Ademaj, “Time Sensitive Networks for Flexible
Manufacturing Testbed - Description of Converged Traffic
Types,” Retrieved on Sep. 29, 2018, IIC Consortium,
https://www.iiconsortium.org/pdf/IIC_TSN_Testbed_Traffic_
Whitepaper_20180418.pdf.

[13] G. Liaw and Y. Yeh, “A TDMA Medium Access Control Mech-
anism for IEEE 802.11-Based Wireless Networks,” 2011 Fifth
International Conference on Genetic and Evolutionary Computing,
Xiamen, 2011, pp. 61-64.

[14] J.-H. Chiang and T. Chiueh, “Accurate clock synchronization for
IEEE 802.11-based multi-hop wireless networks,” 2009 17th IEEE
International Conference on Network Protocols (2009): 11-20.

[15] Feng Chen, T. Talanis, R. German and F. Dressler, "Real-time
enabled IEEE 802.15.4 sensor networks in industrial automation,"
2009 IEEE International Symposium on Industrial Embedded Sys-
tems, Lausanne, 2009, pp. 136-139.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

37 doi: 10.2313/NET-2019-06-1_07

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

38

Measuring TCP Performance Metrics with Bro

Leonhard Stemplinger, Simon Bauer∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: leonhard.stemplinger@tum.de, bauersi@net.in.tum.de

Abstract—The Transmission Control Protocol (TCP) is one
of the most widely used networking protocols. The ability to
accurately measure the performance of a TCP connection is
important for identifying network problems. In this paper,
we present an implementation of three TCP performance
metrics: the inter-arrival time of acknowledgements, the
time-series of retransmissions and the retransmission score.
We compute these metrics using the Bro network analysis
framework.

Index Terms—tcp, bro, retransmissions, network monitoring

1. Introduction

TCP is the most common transport layer protocol,
with over 90% of internet traffic transmitted over TCP
[14]. This makes analysing TCP connections important
for network operators, as performance problems could
impact the majority of users. One indicator of possible
network problems is a high rate of retransmissions, as this
indicates a high rate of packet loss. We present Bro scripts
to measure several TCP performance metrics for both live
connections and trace files. These metrics are the inter-
arrival times of acknowlegments, a time-series of retrans-
missions, and the retransmission rate. They were defined
by Siekinnen et al. [2] as part of a root cause analysis
framework. We extend their work by describing a possible
implementation in detail. Additionaly, our implemetation
is able to analyse live traffic, while [2] is limited to trace
files.

In this paper, we will first summarize important as-
pects of the TCP protocol and the Bro network monitor
in Section 2. We continue by defining the TCP perfomance
metrics implemented for this work in Section 3 and listing
other works dealing with related topics in Section 4. In
Section 5 we describe an implementation of these metrics
in Bro scripts and present the results computed by the
scripts in a test in Section 6. We show possibilities for
further work in Section 7 and provide access to the Bro
scripts and conclude the paper with Section 8.

2. Technical Background

2.1. TCP Protocol

TCP is a transport layer protocol. It relies on the
underlying Internet Protocol to transfer packets to their
destination. TCP aims to provide a reliable connection

Figure 1. The TCP header [9]

even over unreliable network infrastructure [9]. To achieve
this, a TCP connection must be established using a three-
way-handshake, and both endpoints must keep status
information over the lifetime of the connection. Addi-
tionally, damaged or lost packets must be detected and
retransmitted.

The most relevant part of TCP for this paper is
the acknowledgement mechanism. TCP packets carry a
sequence number, which is incremented for every byte
sent by an endpoint. The receiver acknowledges correctly
received data by incrementing the responses acknowl-
edgment number. A packet with set ACK flag and an
acknowledgment number n indicates that all data up to
and including sequence number n − 1 has been received
by the connection partner.

Using this mechanism, TCP attempts to detect and
retransmit lost packets. Generally, TCP will assume a
packet was lost if it is not acknowledged within a certain
timespan, or when receiving multiple acknowlegments for
previous packets. Details vary between TCP implementa-
tions [6]. If a TCP endpoint receives non-contiguous data,
meaning data has been lost, but a later packet was received
successfully, the selective acknowledgment (SACK) op-
tion can be used to notify the sender of the received data
and avoid unneccessary retransmissions [10] [12].

2.2. Bro

Bro [8] is a free, open source network monitoring tool.
It was originally published by Paxson in 1999 [1]. Bro can
process both trace files and live traffic.

Bro is divided into two main components. The Event
Engine generates events based on the observed network

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

39 doi: 10.2313/NET-2019-06-1_08

activity. The Policy Script Interpreter executes scripts in
response to the generated events. Bro scripts are written
in the Bro scripting language. Each Bro script defines a
number of event handlers that are called whenever the
corresponding event is triggered. While Bro comes with
a large library of scripts for traffic analysis, it can also be
extended with custom scripts.

We mainly chose Bro because the abstraction provided
by the event system made development of our traffic
analysis scripts easier and faster. Bro scripts do not need
to perform low level traffic processing such as separating
TCP and non-TCP traffic, detecting the TCP connection
a packet belongs to or extracting header information from
raw packets, as this is handled by the event engine.
Additionally they work on live traffic as well as trace files
without modifications.

3. Metrics

This paper describes a solution to measure three of
the metrics defined in [2] using Bro scripts. This section
describes the selected metrics. All metrics are measured
separately for each direction of a TCP connection.

3.1. Inter-Arrival Times of Acknowledgements

Each endpoint of a TCP connection acknowleges cor-
rectly received packets. For every acknowlegement, we
record its’ arrival time, the number of acknowledged bytes
and the interval since the last observed acknowledgment.
Packets that do not advance the acknowledgement number
are not recorded. The inter-arrival times can be used to
estimate the capacity of the connections’ network path
[2].

3.2. Retransmission Metrics

TCP detects lost packets by monitoring acknowledg-
ments and retransmits those packets. For this paper, re-
transmitted packets are defined as packets with a sequence
number lower than or equal to the highest previous se-
quence number. The definition in [2] additionally demands
an IPID higher than all previous packets to eliminate
false positives caused by out of order packets. However
the IPv4 specification has since been updated to allow
arbitrary ID values for non-fragmented packets [3]. Fur-
thermore, non-fragmented IPv6 packets do not carry any
ID value [16]. Packets without a payload (i.e. pure ACKs)
are not included in the analysis, as they do not advance
the sequence number.

We measure two metrics to analyse retransmissions.
The timestamp and payload size of each retransmitted
packet are recorded to create a time-series of retransmis-
sions. Additionaly, we keep track of the amount of data
retransmitted, and the total amount of data transmitted.
The ratio of retransmitted data to total data is the re-
transmission score. A high retransmission score generally
correlates to a high rate of packet loss. If this occurs
frequently, it can indicate a network problem.

4. Related work

The TCP performance metrics implemented for this
paper are a subset of those described by Siekinnen et

al. [2]. They define several other metrics, as well as a
procedure to determine limiting factors for a connections’
throughput based on these metrics. However, they do not
provide implementation details.

There have been many other works studying TCP
retransmissions. Examples include Pentikousis et als. [5]
analysis of aggregate retransmission rates among a large
number of connections. Rewaskar et al. [6] and Jaiswal
et al. [7] present methodologies to classify out-of-order
packets into retransmissions and reordered packets.

The TCPRS Bro plugin by Swaro [13] extends Bro
with additional events for reordered and retransmitted
packets. While the implementation for this paper is written
entirely as Bro scripts, TCPRS adds a new analyzer to the
Bro event engine.

Most publications related to Bro deal with network
security topics, such as intrusion detection, and not net-
work performance. One exception is Sargent and Allmans
analysis [15] of the limiting factors for very high bandwith
(1 Gb/s) residential fiber connections. They report that
current TCP implementations do not use such a connection
efficiently, as receiver window sizes limit data transmis-
sion to a far lower rate.

5. Implementation

This section describes the Bro scripts that implement
the metrics described above.

5.1. Common components

This section describes some patterns that occur in both
scripts.

5.1.1. State Information. Both scripts need to keep infor-
mation about previous packets observed in each direction
of each connection. For this purpose, both scripts include
two tables to store this information, one for each direction
of a connection. A Bro script table is a key-value store.
In this case, the keys are the unique IDs (uids) generated
by bro for each connection, and the values are records, a
data type similar to C structs, that hold information about
the connection.

Records are added when observing a packet that does
not belong to a previous connection. They are deleted
when Bro deletes the connection by handling the con-
nection_state_remove event.

5.1.2. Analyzing new TCP packets. To monitor TCP
connections, both scripts register a handler for the
tcp_packet event, which is triggered for every TCP packet
. The handler receives a connection record, a flag indicat-
ing by which endpoint the packet was sent and the values
of various TCP header fields. The connection record has
a large number of fields which hold information about
aspects of the connection. For our scripts, only the con-
nection uid is needed.

5.1.3. Logging. Both scripts record their results in Bro
log files (acks.log, retransmission_series.log and retrans-
mission_scores.log). While the result format is different,
the first three items of each entry are the same in all logs:

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

40 doi: 10.2313/NET-2019-06-1_08

• Connection UID: For cross-referencing with other
Bro logs

• Timestamp
• from_orig: A boolean flag that indicates which

direction of the connection the entry concerns.

5.2. Inter-arrival times of Acknowledgements

The acknowledgment script stores two numbers for
each direction of a connection: The highest ack number
of the observed packets, and the timestamp of that packet.
For each new packet, the script first checks wether the
packet is relevant for the time-series. Packets without a
set ACK flag, as well as packages whose acknowledgment
number is lower than or equal to the highest number
recorded for the same direction are filtered out. If the
packet passes this filter, the stored information about the
corresponding connection is updated, and a log entry is
created. In addition to the fields listed in section 5.1.3, it
contains the packets’ acknowledgment number, the num-
ber of bytes acknowledged (i.e. the difference between the
new ack number and the previous one), and the interval
since the last acknowldegment.

5.3. Retransmission Metrics

For each direction of a connection the retransmission
metrics script stores the maximum sequence number, the
number of bytes previously retransmitted and the total
number of bytes transmitted, including retransmissions. It
also stores wether these values have changed since the last
time the retransmission score was computed. Whenever a
new packet with a payload is received, the script updates
the amount of transmitted data. It also determines wether
the packet is a retransmission by comparing its’ sequence
number to that stored for the connection. If it is not a
retransmission, the new maximum sequence number is
saved. If it is, the number of retransmitted bytes is up-
dated, and an entry is added to retransmission_series.log.

The information gathered this way is used to calculate
the retransmission score. The script defines a new event
score_log_trigger and schedules it to trigger every 0.1
seconds. In a handler for this event, the script updates
retransmission_score.log. For each direction of each con-
nection, a new log entry is created, if there was a packet
observed in this direction since the last log entry.

6. Evaluation

The scripts were tested on a packet capture of the
download of part of the Bro documentation. Both Figure
2 and Figure 3 show results for the same connection.

Figure 2 shows that over this connection, data was sent
almost exclusively from the responder to the originator.
The only packets acknowledged by the responder are those
necessary for the TCP and TLS handshakes and for the
TCP teardown. After the data transfer, there was a period
of inactivity for about two seconds before the connection
closed. As seen in Figure 3, the connection experienced a
spike in retransmissions after approximately two seconds
without retransmissions. Afterwards, the retransmission
score decreased again as more data was transmitted.

type ack_time: record{
ack: count;
timestamp: time;

};

global last_orig_acks: table[string] of
ack_time;↪→

global last_resp_acks: table[string] of
ack_time;↪→

event tcp_packet(c: connection, is_orig:bool,
flags: string, seq: count, ack: count,
len: count, payload: string){

↪→

↪→

if ("A" !in flags){
return;

}
local timestamp=network_time();
local first_ack: bool;
local last_acks=last_resp_acks;
if (is_orig){

last_acks=last_orig_acks;
}
first_ack=(c$uid !in last_acks);
if (first_ack){

last_acks[c$uid]=ack_time($ack=ack,
$timestamp=timestamp);↪→

}
if (ack <= last_acks[c$uid]$ack &&

!first_ack){↪→

return;
}
handle_ack(last_acks[c$uid], ack,

timestamp, is_orig, c, first_ack);↪→

last_acks[c$uid]=ack_time($ack=ack,
$timestamp=timestamp);↪→

}

Script 1: The acknowledgement scripts’ tcp_packet han-
dler

event score_log_trigger(){
local ts=network_time();
log_scores(orig_info, T, ts);
log_scores(resp_info, F, ts);
schedule 0.1sec {score_log_trigger()};

}

Script 2: Retransmission score logging

7. Future Work

Currently, our script uses a very simple retransmission
detection mechanism. The precision of of the retransmis-
sion metrics could be improved by a more sophisticated
mechanism that is able to separate true retransmissions
and reordered packages, removing false positives.

As mentioned in section 4, not all of the metrics
described in [2] were implemented for this work. The
remaining metrics could be implemented in similar Bro
scripts. This would enable the use of the root cause
analysis procedure described in [2].

However, Bro scripts might not be the best tool for
calculating these metrics, in particular for higher band-
width connections. The Bro documentation [4] warns of

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

41 doi: 10.2313/NET-2019-06-1_08

Figure 2. A plot of the intervals between acknowledgments over the
duration of a connection.

Figure 3. A plot of the retransmission score over the duration of a
connection

the performance impact of handling the tcp_packet event.
While no performance problems were observed in our
tests, these were done with fairly small trace files and re-
sults could change in higher load situations. Additionally,
the tcp_packet event does not expose the size of the TCP
window, which is needed for some metrics. To access this
value, a script needs to use the more general new_packet
event. This could add to to any performance problems, as
new_packet is triggered more frequently than tcp_packet.
One solution to possible performance problems could be
moving packet classification from the tcp_packet handler
to a custom Bro traffic analyzer. As Bros’ traffic analysis
layer is built in C++, it would likely run far faster than
the interpreted scripts.

8. Conclusion

In this paper, we summarized the TCP acknowleg-
ment and loss recovery mechanism and introduced three
performance metrics based on this mechanism: the inter-
arrival times of acknowledgments, the time-series of re-
transmissions and the retransmission score. We described
Bro scripts that compute these metrics for both trace files

and live traffic and tested them on real-world internet
traffic.

Both of our scripts are available at [11]. For instruc-
tions on how to set up Bro and run custom Bro scripts,
please refer to the Bro documentation [8].

The implemented metrics are of limited use on their
own. However, this work shows the feasibility of using
Bro for TCP performance analysis. Combined with scripts
for other metrics, the Bro scripts shown here could form
part of a more sophisticated measurement toolkit.

References

[1] Vern Paxson, Bro: A System for Detecting Network Intruders in
Real-Time, Computer Networks, 31(23-24), pp. 2435-2463, 1999

[2] Matti Siekkinnen, Guillaume Urvoy-Keller, Ernst W. Biersack,
Denis Collange, A root cause analysis toolkit for TCP, Computer
Networks, Volume 52, Issue 9, Pages 1846-1858, 2008

[3] J. Touch, Updated Specification of the IPv4 ID Field, RFC 6864,
2013

[4] Documentation of the Bro_TCP.events script,
www.bro.org/sphinx/scripts/base/bif/plugins/Bro_TCP.events.bif.bro.html

[5] Kostas Pentikousis, Hussein Badr, Asha Andrade, A Comparative
Study of Aggregate TCP Retransmission Rates, International Jour-
nal of Computers and Applications, 32:4, 435-441, 2010

[6] Sushant Rewaskar, Jasleen Kaur, F. Donelson Smith, A Passive
State-Machine Approach for Accurate Analysis of TCP Out-of-
Sequence Segments, ACM SIGCOMM Computer Communication
Review, Volume 36 Issue 3, Pages 51-64, 2006

[7] Sharad Jaiswal, Gianluca Iannacone, Cristophe Diot, Jim Kurose,
Don Townsley, Measurement and Classification of Out-of-
Sequence Packets in a Tier-1 IP Backbone, IEEE/ACM Transac-
tions on Networking, Volume 15 Issue 1, Pages 54-66, 2007

[8] The Bro Network Security Monitor, www.bro.org

[9] Transmission Control Protocol, RFC 793, 1981

[10] M. Mathis, J. Mahdavi, S. Floyd, A. Romanov, TCP Selective
Acknowledgement Options, RFC 2018, 1996

[11] github.com/lstemplinger/bro-tcp, Commit c4b6dc9

[12] E. Blanton, M. Allman, L. Wang, I. Jarvinen, M. Kojo, Y. Nishida,
A Conservative Loss Recovery Algorithm Based on Selective
Acknowledgement (SACK) for TCP, RFC 6675, 2012

[13] James Swaro, TCP Retransmission and State Analyzer plugin for
the Bro-IDS framework, github.com/jswaro/tcprs

[14] DongJin Lee, Brian E. Carpenter, Nevil Brownlee, Media Stream-
ing Observations: Trends in UDP to TCP Ratio, International
Journal on Advances in Systems and Measurements, vol 3 no 3&4,
2010

[15] Matthew Sargent, Mark Allman, Performance within a fiber-to-
the-home network, ACM SIGCOMM Computer Communication
Review, Volume 44, Issue 3, pages 22-30, 2014

[16] S. Deering, R.Hinden, Internet Protocol Version 6 (IPv6) Specifi-
cation, RFC 8200, 2017

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

42 doi: 10.2313/NET-2019-06-1_08

Open vSwitch Configuration for Separation of KVM/libvirt VMs

Jonas Andre, Johannes Naab∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: andre@in.tum.de, naab@net.in.tum.de

Abstract—Virtual machines are very useful tools to provide
configured computers for a lecture. These machines are
usually connected via a layer two network to the Internet.
As the virtual machines cannot be trusted because they
can send arbitrary frames, the network and other virtual
machines need to be protected of network attacks. This
paper presents a solution and implementation to improve
the security of libvirt virtual machines connected via an
Open vSwitch. The outcome is an Open Flow implementation
which prevents virtual machines from attacks like spoofing,
Denial of Service, and Man in the Middle attacks.

Index Terms—Open vSwitch, libvirt, Open Flow, virtual
machine security, layer 2 attacks

1. Introduction

Lectures like Grundlagen Rechnernetze und Verteilte
Systeme and Advanced Computer Networks at TUM pro-
vide virtual machines (VMs) to their students. On those
machines they perform practical experiments. Using VMs
is comfortable as it provides each student the same con-
figuration where the experiments work out of the box.
For the experiments, the machines need to be connected
to the Internet. This is done via a single layer two network
connecting all VMs with their gateway. As all machines
are within a single layer two network, there are attacks
which could not only harm the VM of a student, but all
VMs within the network.
This work deals with security problems of multiple VMs
within one layer two network. The paper specializes on
VMs virtualized by the Linux KVM module, configured
by using the libvirt API, where the network is managed
via the Open vSwitch module.
As discovered in previously running environments with
900 VMs, the CPU workload should be addressed. ARP
requests need to be processed at all machines parallel.
With this number of VMs and a high number of ARP
requests, the CPU load of the host grew significantly. A
solution to prevent ARP broadcasting is also presented.
The paper is structured as follows. In Section 2, popular
(layer two) attacks which are relevant for the used scenario
are considered. Requirements to prohibit those attacks are
determined. Afterwards, the section describes the CPU
workload problem related to the network. In Section 3, the
current implementation is described and evaluated. The
new implementation for the libvirt/KVM scenario with
Open vSwitch is described in Section 4. The conlusion
in Section 5 evaluates the implemented rules and shows
investigations for future work.

2. Security Issues in Layer 2 Networks

In this section, relevant security issues within layer
two networks are explained. A short description of pos-
sible attacks is given. It also shows the theoretical possi-
bilities to prevent those attacks. Authenticity is not given
for sender and receiver addresses within layer 2 network
frames. Consequently, there are several spoofing attacks
on which a VM can send with fake IP and MAC addresses.

MAC Spoofing. If a VM wants to hide what packets it is
sending, it can use MAC spoofing. In this attack the sender
machine does not send an Ethernet frame with the source
MAC of its own interface. Instead, a fake MAC address
or the address of another machine within the network is
used. With this it is not possible anymore to track the
sender of the frame. To be able to determine the true
sender of a frame we must ensure that the VMs can only
send frames with their own (predefined) MAC address. To
prevent MAC Spoofing the following requirement needs
to be fulfilled.

Req.1 VMs can only send Ethernet frames from their
configured MAC address

IP Spoofing. Another spoofing attack is IP/IPv6 spoofing.
Here, the attacker uses a fake IP address to hide its identity
to hosts outside of this layer two network. The problem
is that attacks on hosts outside of the layer two network
identify the attacker by its IP address. This address can be
tracked back to the IP network of the VMs. If the address
was spoofed, it is not possible to find the attacker within
the network. This should be possible, as the responsible
VM for such an attack needs to be found. To achieve this
two requirements need to be met:

Req.2 VMs can only send IPv4 frames from their
configured IPv4 address

Req.3 VMs can only send IPv6 messages from their
configured IPv6 addresses

ARP Spoofing. A well known attack which may result
in a DoS or a MitM is the so called ARP spoofing [1].
ARP is designed to find the MAC address of a machine
within a layer two network by its IPv4 address [2]. On an
ARP request resolving a specific IP address the machine
with the configured IP address should answer with a reply
containing the MAC address of its interface on which the
IP address is configured. However, any machine could
answer on an ARP request. If a machine answers to an
ARP request which is not meant for it, future IP packets
will be routed to the spoofing machine instead to its

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

43 doi: 10.2313/NET-2019-06-1_09

correct destination. The following requirement protects the
network from APR spoofing:

Req.4 VMs can only answer with ARP requests con-
taining their configured IP address

IPv6 Router Spoofing. A Router Solicitation is a message
that is sent from a host to find routers within its layer
two network [3]. Listening routers answer with router
advertisements which include information about the net-
work configuration. VMs can manipulate the interface
configuration of other VMs. This is possible by sending
Router Advertisements by themselves. As this can lead
to DoS and MitM attacks [4], the messages must be
forbidden.

Req.5 VMs are not allowed to send Router Adver-
tisements

Neighbor Discovery Spoofing. In IPv6 NDP also takes
the place of ARP in IPv4. Spoofing is here possible in the
same way as it is described before. To prevent spoofing,
the machines are only allowed to answer to Neighbor So-
licitations meant for them. This also addresses a problem
with Stateless Address Auto Configuration (SLAAC) [5].
With SLAAC IPv6 interfaces generate their own IP ad-
dress. In our setup SLAAC is used to configure link local
IP addresses. One step is to check whether the IP address
generated is already used. For this, a Duplicate Address
Detection (DAD) message is sent. This is a Neighbor
Solicitation message for the generated address. If no one
answers to this message, the address can be assigned to the
interface. A typical attack in DAD is a machine answering
to these DAD messages although it is not configured
with this address. This leads to a DoS as the VM cannot
generate an IPv6 address.

Req.6 VMs can only send Neighbor Advertisements
containing one of their configured IPv6 address

ICMP Redirect. Another possible attack is the abuse of
the Redirect message [4]. This message is usually used
to inform clients that a router which received the packet
knows a better route to the destination IP. By sending such
messages, the VMs can be manipulated to send packets
to other VMs instead of the gateway.

Req.7 VMs are not allowed to send the Redirect
messages

Broadcast Flooding. As ARP requests are broadcasted
in Ethernet networks [2], every VM gets all ARP re-
quest. Every machine needs to process the request to
decide whether it needs to response to the request or not.
Hundreds of VMs processing ARP requests at the same
time leads to high CPU consumption. The reason for the
high CPU consumption lies in the Spectre and Meltdown
security fixes. As the VMs have to be loaded and unloaded
every time to prevent reading uncleaned memory of the
other machines. This needs to be done for every incoming
ARP request. The workload for loading and unloading the
machines is high. There should be a solution such that the
ARP requests do not need to be sent to all machines. This
is possible because all IP addresses of the virtual machines
are known in advance.

Req.8 Prevent ARP broadcasting by sending ARP
requests directly to the correct machine

DHCP. The IP addresses of the VMs are known in ad-
vance. Nevertheless, a DHCP server is useful to assign IP
addresses to the machines. An attacker can fake a DHCP
server on a virtual machine by answering packets destined
for the original DHCP server or sending DHCP offers to
other clients [6]. This should be denied as this may lead to
DoS or MitM for other VMs. DHCP server messages can
be dropped by filtering on the DHCP server UDP source
port.

Req.9 VMs are not allowed to send DHCP server
messages

3. Current State

In this section, the setup of the network connecting
the VMs is described. It also shows how the machines
are created and configured as this is the basis on which
the countermeasures against network attacks can be pig-
gybacked. At the end of this section the defenses installed
currently are evaluated.
There is one Open vSwitch which connects all VMs with
the gateway to the Internet. The Open vSwitch with name
vm-switch is shown in Figure 1. Traffic from and to the

vm-switch

upstream

vm001 vm002 vm003 vm004 vm005 vm006 vm007 vm008

Figure 1: The switch and its ports

Internet goes through interface upstream. All VMs are
connected via an interface vmXXX where XXX is the number
of the VM.
The VMs are created via the command virt install.
A script called create-student.sh generates one or
multiple VMs for a user. To be able to access the generated
information, name and address(es) of the interface(s) are
encoded within the metadata option of the virt install
command.
The necessary security rules are created via Open Flow. A
script for generating these rules is triggered by a QEMU
hook. QEMU is the machine emulator on which KVM
is based on. On every start of a VM the – within the
virt install defined – metadata is parsed. With this
information the script finds the port identifier of the Open
vSwitch on which the VM is connected to vm-switch.
The MAC and IPv4 address of the interface are also
extracted from the metadata file. With information about
port ID, MAC address, and IPv4 address, Open Flow
rules are installed on the switch. It is intended to create
rules to prevent MAC and ARP spoofing. The following
rules are created with the ovs-ofctl create-flow command
within the QEMU hook. To provide better readability, the
in_port=$port which is part of every rule is omitted.
1 dl_src=$mac priority =40 action=normal
2 dl_src =⁎ priority =39 action=drop
3 arp arp_sha=$mac nw_src=$ip4 priority =40

↪→action=normal
4 arp arp_sha=$mac nw_src =⁎ priority =39 action=

↪→drop

Listing 1: Installed rules

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

44 doi: 10.2313/NET-2019-06-1_09

The rules shown in Listing 1 are written in Open Flow
syntax. They are intended to work the following way:

• Allow frames from the given port where the MAC
address matches the configured MAC address of
the machine

• Drop all frames with another MAC address
• If the packet is an ARP response, allow only

responses of the configured IP and MAC address
• Drop all other ARP responses

During the implementation of security features (explained
in Section 4) within this work, it was detected that these
rules do not work in the intended way. The problem
lies in the first rule. As it has the same priority as rule
number three, it is not deterministic which of those rules
is considered at first [7]. Therefore, if an ARP response
with the configured source MAC address and a spoofed IP
address is sent the action depends on the chosen rule. If the
third rule is used, everything is fine. In case the first rule is
used the switch determines a correct sender MAC address
and performs the action normal. This means the packet is
processed like it is a normal unconfigured switch, i.e., it
is sent to the given destination. With this ARP spoofing is
possible. An attacker using this ARP spoofing attack can
act as a Man in the Middle for packets which are destined
for the spoofed IP address. This is the case as all packets
are first sent to the attacker because the sender expects
the IP address at the attacker.
At the moment the following issues are not considered

• Defenses against attacks based on IPv6
• DHCP attacks
• DoS by spamming broadcasts
• DoS by ARP request which may lead to CPU

overconsumption as all machines have to process
the packets

• Cleanup of old rules when a VM is destroyed

4. Implementation

This section is about how the issues addressed in
Section 2 are implemented. The changes in the script for
creating the students VMs and how the security relevant
rules are installed are pointed out.
The script for creating the VMs was updated to handle
different new functionalities. Configured IPv6 addresses
of the machines are now also written to the metadata
of the machines. This is necessary for the automatic
creation of security rules.
These rules are created via a hook which is triggered by
the QEMU creation of the VMs. It runs during step start
and phase begin. The basic functionality of the script
is to create new security rules for each VM and delete
those rules when the machine is deleted or shut down.
To implement the security rule in the Open vSwitch, the
ovs-ofctl add flows command is used.
When the script is started, the data written to the
metadata file is parsed. As only the information about
the different interfaces MAC, IPv4, and IPv6 global
unique addresses are given, the link local addresses of the
interfaces need to be derived. With the specified interface
name in the metadata of the VM, the Open vSwitch port
ID of the machines gateway interface can be found. This

table0
MAC spoof
ARP

table1
IP spoof
ARP spoof
DHCP spoof

table2
Direct ARP

table3
ICMP spoof

Figure 2: The Open Flow tables of vm-switch

port ID is necessary to generate input-dependent flow
rules on the switch. For convenience and an easy way to
delete the created rules, rules are tagged with an unique
identifier (called cookie) of the machines. This is the
MAC address of the interface connecting the VM to the
switch.
Open vSwitch manages its OpenFlow rules with different
tables. Each table consists of several rules with different
priority. A table needs to have an entry with priority
0. This rule is the default rule (table miss rule). In an
Open vSwitch with default configuration there exists only
one table called table0. This has only the default rule
with action normal which indicates the switch should
handle the frame like a typical switch. Beside normal
there exist more actions like drop (dropping the frame),
goto_table:X, where X is the id of the table in which
the frame should be tested next, and X which sends the
frame to port ID X [7].
The implemented rule set is defined in four tables. An
overview of the structure can be seen in Figure 2. It
shows which table handles the specific requirements.

The following source code shows the installed rules
of the different tables. The cookie is not represented
below for providing better readability. If no in_port is
specified within a rule, it means this rule is only applied
on the incoming port where the VM is connected to. The
entry table table0 prevents MAC spoofing and initiates
the ARP optimization.

1 dl_src=$mac priority =40 action=goto_table :1
2 priority =39 action=drop
3 in_port =⁎ arp priority =1 action=goto_table :2
4 in_port =⁎ priority =0 action=normal

Listing 2: Installed rules in table0

The first rule of Listing 2 defines that frames coming
from the connected machine which are sent with the
correct MAC address are processed further in table1. The
next rule (it has lower priority) drops all packets coming
to the switch which are not sent from the defined MAC
address. It matches against all MAC addresses. However,
the correct address is already tested in the previous rule.
With these two rules, Req. 1 as specified in Section 2
is met. All packets that do not enter the switch from a
virtual machine (interface upstream) are first matched
against the third rule. This rule does not specify an
in_port. It tests if the frame is an ARP packet. Then
it is further processed in the ARP optimization table
(table2). All other packets from upstream match against
the table miss entry which defines to process the frame
with action normal.

1 arp arp_sha=$mac arp_spa=$ip4 priority =40
↪→action=table2

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

45 doi: 10.2313/NET-2019-06-1_09

2 udp udp_src =67 priority =39 action=drop
3 ip nw_src=$ip4 priority =38 action=normal
4 icmp6 ipv6_src=$ip6 priority =37 action=table3
5 icmp6 ipv6_src=$eui64 priority =36 action=

↪→table3
6 icmp6 ipv6_src =:: priority =35 action=table3
7 udp6 udp_src =547 priority =34 action=drop
8 ipv6 ipv6_src=$ip6 priority =33 action=normal
9 ipv6 ipv6_src=$eui64 priority =32 action=

↪→normal
10 in_port =⁎ priority =0 action=drop

Listing 3: Installed rules table1

In the second table, ARP spoofing, DHCP server spoofing,
and IP(v6) spoofing are considered. The rule with highest
priority (in Line 1 of Listing 3) only allows ARP requests
and responses with non-spoofed addresses (Req. 4).
These frames are also (like the ARP rule in table0) sent
to table2 which does ARP optimization. Rules number
two and seven prevent DHCP server messages from VMs
by dropping all packets that are sent from the DHCP
server UDP port [8], [9]. This prevents the machines from
faking a DHCP server (Req. 9). All other IPv4 packets
are allowed by action normal in the next rule if the source
address matches the configured one (Req. 2). The next
three flows handle ICMPv6 spoofing. It is only allowed to
send ICMP messages from one of its own IPv6 addresses
(Req. 6). Additionally, the unspecified address needs to
be allowed to permit Duplicate Address Detection. All
these ICMPv6 messages are sent to table3 to handle
more ICMP security issues. Rules eight and nine allow
all other IPv6 packets that leave the virtual machine
with the correct link local or global IPv6 address (Req. 3).

1 in_port =⁎ arp arp_op =1 arp_tpa=$ip4
↪→priority =40 action=$port

2 in_port =1 arp arp_op =1 priority =2 action=drop
3 in_port =⁎ arp arp_op =1 priority =1 action =1
4 in_port =⁎ priority =0 action=normal

Listing 4: Installed rules table2

Now the rules of the ARP optimization table (table2)
are explained. The first rule within Listing 4 defines
that all ARP requests that are destined for any of the
virtual machines are not broadcasted like ARP is usually
done, but they are only sent directly to the corresponding
machine (here no in_port is considered). Such a rule is
created for every VM because of the VM’s IP address
within it. ARP request which come from the interface
upstream, i.e., the Internet and were not matched against
the first rule are dropped as these are destined to IP
addresses which are not present within this network. All
other ARP requests coming from one of the VMs are
sent to upstream. All other ARP packets are processed
the normal way (by defining the table miss with action
normal). With this table Req. 8 is met.

1 icmp_type =134 priority =40 action=drop
2 icmp_type =136 nd_target=$ip6 priority =39

↪→action=normal
3 icmp_type =136 nd_target=$eui64 priority =38

↪→action=normal
4 icmp_type =136 priority =37 action=drop
5 icmp_type =137 priority =36 action=drop
6 in_port =⁎ priority =0 action=normal

Listing 5: Installed rules table3

The fourth table represented in Listing 5 handles spoofing
within ICMPv6. First, all router advertisements (ICMP
type 134) sent from the VMs are dropped (Req. 5). This
prevents the machines from faking to be a router to others
in the network. The next three rules only allow sending
Neighbor Advertisement messages from their own IPv6
addresses. All other Neighbor Advertisements are dropped
(Req. 6). Additionally, all ICMPv6 Redirect messages are
forbidden as this may lead to DoS attacks. With this rule,
Req. 7 is also fulfilled.
In the qemu hooks file, the shutdown of the machines is
also handled. The deletion of the rules is handled during
step stopped and phase end. Here, all rules affecting the
VM are deleted. This is done by matching the cookie of
the flows to the MAC address of the VM.

5. Conclusion and Future Work

With the outcome of this paper, the network connect-
ing the VMs is more secure. The implementation han-
dles MAC, IPv4, IPv6, APR, NDP, and DHCP spoofing.
Furthermore, the optimization of ARP requests aims for
reducing the CPU load of the host system.
As the number of different layer two network attacks
grows and new attacks are created over time, more se-
curity features need to be added in future. Currently, the
problem of tiny IPv6 fragments is not addressed yet [10].
Additionally, the performance of checking the OpenFlow
rules can be evaluated in future. An interesting point is
whether the checks can be more performant if other strate-
gies (blacklisting, whiteliting) are used. As multicasts and
broadcasts can lead to a network overload, a meaningful
prevention of this should be explored. A first idea would
be rate limiting of the VMs when sending to much traffic
into the network. Whether this can be realised is part of
future work.

References

[1] S. Whalen, An Introduction to ARP Spoofing. Chocobospore, 2001.

[2] D. Plummer, “An Ethernet Address Resolution Protocol or Con-
verting Network Protocol Address to 48.bit Ethernet Address for
Transmissing on Ethernet Hardware,” RFC 826, 1982.

[3] T. Narten, “Neighbor Discovery for IP version 6 (IPv6),” RFC
4861, 2007.

[4] A. Pilihanto, A Complete Guide on IPv6 Attack and Defense. SANS
Institute, 2011. Available at https://www.sans.org/reading-room/
whitepapers/detection/complete-guide-ipv6-attack-defense-33904.

[5] S. Thomson, “IPv6 Stateless Address Autoconfiguration,” RFC
4862, 2007.

[6] Y. Bhaiji, Understanding, Preventing, and Defending
Against Layer 2 Attacks. Cisco, 2007. Available at
https://www.cisco.com/c/dam/global/en_ae/assets/exposaudi2009/
assets/docs/layer2-attacks-and-mitigation-t.pdf.

[7] Open Networking Foundation, OpenFlow Switch Specification,
2012. Available at https://www.opennetworking.org/wp-content/
uploads/2013/04/openflow-spec-v1.3.1.pdf.

[8] R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131,
1997.

[9] T. Mrugalski, “Dynamic Host Configuration Protocol for IPv6
(DHCPv6),” RFC 8415, 2018.

[10] A. Atlasis, Attacking IPv6 Implementation Using Fragmenta-
tion. Center for Strategic Cyberspace + Security Science,
2012. Available at https://media.blackhat.com/bh-eu-12/Atlasis/
bh-eu-12-Atlasis-Attacking_IPv6-WP.pdf.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

46 doi: 10.2313/NET-2019-06-1_09

Networking in MirageOS

Fabian Bonk, Paul Emmerich∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: fabian.bonk@tum.de, emmericp@net.in.tum.de

Abstract—MirageOS is a modern library operating system
written in the functional, memory-safe OCaml programming
language. Users of MirageOS write application code in
OCaml and link against various libraries provided by Mi-
rageOS. These include a complete network stack (Ethernet,
IP, TCP, UDP, TLS) written in pure OCaml as well as a
number of backends for receiving and transmitting packets.
We introduce some of MirageOS’ techniques for handling
raw memory. We detail two of the various networking
backends offered by MirageOS as well as a library used for
safe abstraction over raw memory. We additionally suggest
possible performance improvements in MirageOS. Finally
we compare MirageOS with ixy.ml, a small userspace driver
for ixgbe-compatible NICs written entirely in OCaml.

Index Terms—library operating system, unikernel, OCaml,
networking

1. Introduction

MirageOS introduces the concept of unikernels:
Application-specific, standalone, bootable virtual machine
images designed to run on top of a hypervisor (initially
Xen, nowadays also KVM) [1]. The hypervisor provides
hardware abstractions and isolation between unikernels.
Unikernels are configured at compile-time to target a
specific hypervisor and only include code to support their
exact required features. Unlike the typical VM deployment
that runs few services on top of an entire operating system
such as Linux (including Linux’s filesystems, drivers,
network stack, userspace, etc.), a unikernel only includes
the code it requires, e.g. a static webserver includes only a
network stack and its hardcoded webpages. Anything that
isn’t strictly required is not included in the final unikernel,
which leads to typical image sizes of a few MiB.

Figure 1 compares a typical VM deployment and a
unikernel deployment.

MirageOS provides these libraries for many backends
including a standard UNIX backend that runs the uniker-
nel as a normal process, a Xen backend, and a KVM
backend (via Solo5). These backends all provide specific
implementations for MirageOS’ interfaces, including Mi-
rageOS’ Mirage_net.S network interface. In the follow-
ing we analyse the KVM and Xen implementations of the
Mirage_net.S interface.

MirageOS is written in OCaml1, a multi-paradigm pro-
gramming language that supports functional, imperative
and object-oriented programming styles. OCaml features

1. https://ocaml.org/

Figure 1: Typical VM deployment (left) vs. Unikernel
deployment (right) [1]

module Main
(N : Mirage_net_lwt.S)
(C : Mirage_clock_lwt.PCLOCK) = struct
let start n c =
N.listen n (fun _ ->

let now, _ = C.now_d_ps c in
Logs.info
(fun f ->

f "got a packet at %d s!" now);
Lwt.return_unit)

end
Figure 2: Example unikernel

memory safety, static type checking with type inference,
garbage collection, and an optimizing native code com-
piler with support for multiple architectures. Real World
OCaml [2] provides a good introduction to OCaml.

MirageOS users write their applications as OCaml
functors. A functor is an OCaml module that is param-
eterized over other OCaml modules. In MirageOS’ case
the parameters are modules that implement functionality
that is commonly provided by operating systems (network
stack, file sytems, clocks, etc.).

Figure 2 shows a unikernel that simply prints a log
message whenever it receives a packet. It is parameterized
over a network interface (N) and a POSIX clock (C). At
compile-time specific implementations for these modules
must be chosen. The available choices depend on the
runtime environment, i.e. which hypervisor or host OS
will be used.

Section 2 introduces MirageOS’ memory handling
libraries. Section 3 explains MirageOS’ network interface
abstractions as well as two specific implementations of

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

47 doi: 10.2313/NET-2019-06-1_10

MirageOS network interfaces. Section 4 suggests some
candidate performance improvements for MirageOS’ net-
work interface implementations. Finally section 5 com-
pares MirageOS’ network interface with ixy.ml, a network
driver written in OCaml.

2. MirageOS Memory Handling

MirageOS needs to communicate with hypervisors
using shared memory. Since OCaml natively only has
limited support for accessing raw memory, MirageOS
provides two libraries to handle page-aligned allocation
and access in a safe way.

2.1. io-page

MirageOS provides io-page [4], a library for allocating
page-aligned memory. io-page supports both UNIX and
Xen backends (as well as Windows, though MirageOS
itself doesn’t support Windows). On Xen it uses Mini-OS’
[5] _xmalloc() memory allocator. Mini-OS is a small
kernel developed by the Xen project. MirageOS uses parts
of it for CPU initialization, console output and mem-
ory allocation.2 On other platforms (besides Windows)
posix_memalign() is used for allocation.

2.2. cstruct

MirageOS uses a small wrapper library around C-like
structures called cstruct [3] to facilitate safe and easy
access to raw memory blocks. This library is split into
the core cstruct library that manages the raw memory as
well as a preprocessor called ppx_cstruct and the UNIX-
specific library cstruct-unix.

2.2.1. cstruct. The main cstruct library defines an OCaml
type Cstruct.t (referred to as cstruct from now on) that
stores a reference to an OCaml Bigarray (which in turn
references a raw memory region) as well as the array’s
length and an optional offset into the array.

The library includes functions for reading from and
writing to these arrays in both little and big endian modes.
Additionally cstructs can be converted to various other
OCaml types such as string, bytes and S-expressions.
Reads and writes are bounds-checked at runtime to ensure
safety.

2.2.2. ppx_cstruct. ppx_cstruct is an OCaml ppx pre-
processor that automatically generates accessor functions
from C-like struct definitions (akin to LuaJIT’s ffi.cdef).

Programmers simply declare the fields and types of
struct and ppx_cstruct generates a number of functions
for reading and writing each field as well as functions
to hexdump an instance of the struct. Figures 3 and 4
show a UDP header definition and the values generated
by ppx_cstruct respectively.

Additionally C-like enums can also be declared.

2. https://mirage.io/blog/introducing-xen-minios-arm

[%%cstruct
type udp_header = {
sport : uint16;
dport : uint16;
length : uint16;
checksum : uint16

} [@@big_endian]
]

Figure 3: cstruct UDP header declaration

val sizeof_udp_header : int
val get_udp_header_sport :
Cstruct.t -> int

val set_udp_header_sport :
Cstruct.t -> int -> unit

val get_udp_header_dport :
Cstruct.t -> int

val set_udp_header_dport :
Cstruct.t -> int -> unit

val get_udp_header_length :
Cstruct.t -> int

val set_udp_header_length :
Cstruct.t -> int -> unit

val get_udp_header_checksum :
Cstruct.t -> int

val set_udp_header_checksum :
Cstruct.t -> int -> unit

val hexdump_udp_header_to_buffer :
Buffer.t -> Cstruct.t -> unit

val hexdump_udp_header :
Cstruct.t -> unit

Figure 4: Values generated by ppx_cstruct from decla-
ration in Figure 3

2.2.3. unix-cstruct. unix-cstruct wraps the mmap(2) sys-
tem call and creates a cstruct by memory-mapping a file
descriptor. The file descriptor is not mapped as shared
(MAP_SHARED) but as private (MAP_PRIVATE), therefore
writes to the cstruct are not reflected in the underlying
file.

3. MirageOS Network Interfaces

The Mirage_net [6] module defines the module sig-
nature (interface) MirageOS programs use to send and re-
ceive packets. At compile-time a specific implementation
that fulfills this signature must be chosen and linked into
the unikernel.

While Mirage_net.S is an abstraction over net-
work devices it itself leaves some implementation de-
tails abstract. All MirageOS backends actually implement
Mirage_net_lwt.S which uses the Lwt library [7] for
concurrency.

There are a number of different backends that imple-
ment this signature:

• mirage-net-unix [8]
• mirage-net-xen [9]
• mirage-net-macosx [10]
• mirage-net-flow [11]
• mirage-net-fd [12]
• mirage-net-solo5 [13]

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

48 doi: 10.2313/NET-2019-06-1_10

Sections 3.2 and 3.3 detail the hypervisor backends
mirage-net-xen and mirage-net-solo5 respectively.

MirageOS’ network stack (layer 2 and up) simply
calls into the network backend to communicate; the same
network stack can be run on any backend.

3.1. Mirage_net.S

A MirageOS network interface must support these
core functions:

• write transmits a single packet
• writev transmits a list of buffers concatenated into

a single packet; this is generally implemented by
concatenating the buffers into a freshly allocated,
larger buffer and then transmitting this buffer

• listen calls a specified handler function for every
received packet

The underlying implementation of the module signa-
ture may specify the type of packet buffers, asynchronous
I/O operations, device state, MAC addresses and alloca-
tion operations for new buffers.

In the case of Mirage_net_lwt.S packet buffers are
cstructs, I/O operations are Lwt promises and allocation
is done using MirageOS’ io-page library (see Section 2).

The Mirage_net.S signature also requires a number
of other functions such as disconnecting from a network
interface (interestingly connecting to an interface is not
required), retrieving the interface’s MAC address as well
as reading the interface’s receive and transmit statistics
(bytes/packets sent/received).

3.2. Xen

The Xen implementation of the Mirage_net_lwt.S
signature is written entirely in OCaml. It communicates
with Xen via the netfront/netback protocol3.

mirage-net-xen’s listen loop sleeps until an event is
fired on the event channel associated with the specified
network interface. Once an event is fired a new cstruct
is allocated for each received packet and the packet frag-
ments delivered by Xen are assembled into the cstruct.
MirageOS’ handler function is called for every packet.

When transmitting, packet data is copied into a shared
memory page and a reference to the page is stored in the
transmit ring.

Both receiving and transmitting packets requires a full
copy of the packet data from/to a shared page.

3.3. KVM

MirageOS’ KVM implementation is provided by
Solo5. Solo5 is an execution environment for unikernels. It
can be used to run MirageOS unikernels on Linux’s KVM
hypervisor. On Linux it can interface with both virtio and
TAP network interfaces, though virtio support is no longer
maintained.

3. https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=xen/include/
public/io/netif.h

3.3.1. hvt. Solo5 provides a small hypervisor manager
called hvt (hardware virtualized tender). hvt sets up a
KVM virtual machine and runs a unikernel inside this
machine. hvt connects to a TAP interface on the host
operating system and forwards packets between unikernel
and host.

3.3.2. mirage-solo5 and mirage-net-solo5. A unikernel
interfaces with hvt via mirage-net-solo5, a small OCaml
wrapper around mirage-solo5 which in turn wraps hvt’s
hypercalls (hypervisor equivalent of a system call) and
makes them callable from OCaml. OCaml cannot directly
call C functions due to differing value representations.
mirage-solo5 converts OCaml values to their C represen-
tation and vice versa.

mirage-net-solo5 implements MirageOS’
Mirage_net_lwt.S signature.

The listen function repeatedly calls
solo5_net_read function. If a packet has been
received, it is written into a freshly allocated cstruct
before MirageOS’ handler function is applied to the
buffer. If nothing has been received, the thread blocks
until an I/O event is signaled by hvt. Note that the I/O
event need not be a received packet; Solo5 currently
offers no mechanism for waiting for specific I/O events.

mirage-net-solo5’s write function calls
solo5_net_write.

Both solo5_net_read and solo5_net_write simply
call hvt’s hypercall_netread and hypercall_netwrite
which read from/write to hvt’s TAP device.

4. Possible performance improvements

We identified some possible peroformance improve-
ments for MirageOS’ network interfaces.

4.1. Avoiding memory copies

MirageOS’ Xen networking backend copies every sin-
gle received and sent packet buffer to and from cstructs.
Solo5 requires full copies to and from the host’s ker-
nelspace when sending and receiving packets respectively.
Copying every packet’s payload incurs performance penal-
ties proportional to each packet’s size, though it allows
users to transmit any cstruct and keep any received cstruct
forever. Additionally cstructs can be collected by OCaml’s
garbage collector; there is never any need for manual
memory management.

Implementing "zero-copy" packet buffers will likely
require modifications to MirageOS’ APIs and its network
stack.

4.2. Batching

MirageOS handles packets individually. Handling
batches of packets could reduce per-packet overhead.
Batching is a common pattern in high-performance net-
working toolkits such as the DPDK [14], Snabb [15] or
ixy and its derivatives [16] (see Section 5). Implementing
packet batching requires a modifications to MirageOS’
Mirage_net.S signature and all of MirageOS’ networking
backends.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

49 doi: 10.2313/NET-2019-06-1_10

4.3. Parallelism

MirageOS unikernels can only be run on a single
CPU core at once. This limitation is imposed by OCaml’s
runtime. Once the ocaml-multicore [17] project reaches
maturity, it may be possible for the Lwt library to upgrade
its scheduler. Once Lwt supports parallelism it should
require little effort to run MirageOS unikernels on mul-
tiple CPU cores, given that MirageOS’ interfaces already
support concurrency.

5. Comparison with ixy.ml

ixy.ml [18] is a userspace driver for ixgbe-compatible
NICs (Intel 82599) written entirely in OCaml and target-
ing Linux machines. ixy.ml also makes use of cstruct.

5.1. Memory

ixy.ml does not use OCaml lists but rather stores
all data elements in arrays. Arrays in OCaml are fast to
traverse, and are mutable (i.e. can be modified in-place).
Mutable state requires careful programming to prevent
race conditions. Functional programming languages gen-
erally favor immutable data structures.

5.2. Packet buffers

ixy.ml uses Linux’s hugetlbfs for memory allocation.
It provides the Ixy.Memory module that allows users to
create fixed size memory pools from which packet buffers
can be allocated. These packet buffers contain cstructs that
wrap part of a huge page (2 MiB page). A user accesses
packet data directly in the hugepage through the cstruct
library. This memory is ready for DMA (Direct Memory
Access) and can immediately be read and written by the
NIC.

ixy.ml requires explicit allocation and deallocation of
packet buffers by the user due to the fact that packet data
must be written to DMA memory. Packet data is never
copied between buffers. Use-after-free cannot be detected,
though should be avoided.

mirage-net-xen requires copying of packet data for
both receive and transmit; users never directly write to
the buffer read by Xen’s backend driver and vice versa.
mirage-net-solo5 triggers a copy of packet data between
userspace and kernelspace when calling read/write on
the TAP device’s file descriptor.

Since packet data is always copied in MirageOS, the
user may hold on to previously sent or received buffers.
Therefore MirageOS provides more memory-safety guar-
antees than ixy.ml.

5.3. Receive/Transmit

All Mirage_net.S implementations only transmit and
receive packets one at a time. ixy.ml implements batching;
multiple packets are sent/received at once.

5.4. API

MirageOS generally implements I/O asynchronously.
Most function calls that may block can be run in the
background.

ixy.ml’s receive and transmit functions do block
though they never wait (unless explicitly told to and the
NIC cannot keep up with the user program’s transmit
speed). Given that the NIC operates asynchronously there
is never any need to wait. If there is not enough room in
ixy.ml’s transmit queue(s), any unsent packets are simply
returned to the user program.

MirageOS’ network functions don’t require any man-
ual memory management by the user. Any cstruct can be
sent as a packet (assuming its size is within the MTU).

Figure 5 shows an implementation of a bidirectional
layer 2 forwarder using ixy.ml’s API. Initialization code
has been omitted. See app/fwd.ml4 in ixy.ml’s repository
for a full implementation.

Figure 6 shows an implementation of a bidirectional
layer 2 forwarder using MirageOS’ API. Initialization
code has been omitted and errors will be ignored.

let forward rx_dev tx_dev =
(⁎ receive a batch of packets ⁎)
let rx = Ixy.rx_batch rx_dev 0 in
(⁎ transmit all packets ⁎)
Ixy.tx_batch_busy_wait tx_dev 0 rx

let () =
let a, b = init_devs () in
while true do
forward a b;
forward b a

done
Figure 5: ixy.ml layer 2 forwarder

open Lwt.Infix

module Main
(N_a : Mirage_net_lwt.S)
(N_b : Mirage_net_lwt.S) = struct
let start net_a net_b =
Lwt.join
[N_a.listen

net_a
(fun frame ->
N_b.write net_b frame >|= ignore)

>|= ignore;
N_b.listen
net_b
(fun frame ->
N_a.write net_a frame >|= ignore)

>|= ignore;
]

end
Figure 6: MirageOS layer 2 forwarder

4. https://github.com/ixy-languages/ixy.ml/blob/master/app/fwd.ml

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

50 doi: 10.2313/NET-2019-06-1_10

References

[1] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T.
Gazagnaire, S. Smith, S. Hand, J. Crowcroft, “Unikernels: Library
Operating Systems for the Cloud,” SIGPLAN Notices, vol. 48, pp.
461-472, March 2013

[2] Y. Minsky, A. Madhavapeddy, J. Hickey, “Real World OCaml,”,
https://v1.realworldocaml.org/, 2013

[3] MirageOS project, “ocaml-cstruct,” https://github.com/mirage/
ocaml-cstruct, 2019

[4] MirageOS project, “io-page,” https://github.com/mirage/io-page,
2019

[5] Xen Project, “Mini-OS,” https://wiki.xen.org/wiki/Mini-OS, 2019

[6] MirageOS project, “mirage-net,”, https://github.com/mirage/
mirage-net, 2019

[7] Ocsigen Project, “Lwt,” https://ocsigen.org/lwt/4.1.0/manual/
manual, 2019

[8] MirageOS project, “mirage-net-unix,”, https://github.com/mirage/
mirage-net-unix, 2019

[9] MirageOS project, “mirage-net-xen,”, https://github.com/mirage/
mirage-net-xen, 2019

[10] MirageOS project, “mirage-net-macosx,”, https://github.com/
mirage/mirage-net-macosx, 2019

[11] MirageOS project, “mirage-net-flow,”, https://github.com/mirage/
mirage-net-flow, 2019

[12] MirageOS project, “mirage-net-fd,”, https://github.com/mirage/
mirage-net-fd, 2019

[13] MirageOS project, “mirage-net-solo5,”, https://github.com/mirage/
mirage-net-solo5, 2019

[14] Linux Foundation, “Data Plane Development Kit,” https://dpdk.
org/, 2013

[15] Luke Gorrie et al., “Snabb: Simple and fast packet networking,”
https://github.com/snabbco/snabb, 2012

[16] Paul Emmerich et al., “ixy-languages”, https://github.com/
ixy-languages/ixy-languages, 2018

[17] OCaml Labs, “Multicore OCaml,” http://ocamllabs.io/doc/
multicore.html, 2017

[18] Fabian Bonk, “ixy.ml,” https://github.com/ixy-languages/ixy.ml,
2018

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

51 doi: 10.2313/NET-2019-06-1_10

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

52

Bot-based IT Troubleshooting

Benjamin Braun, Jonas Jelten∗, Simon Bauer∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ga82vah@mytum.de, jelten@net.in.tum.de, bauersi@net.in.tum.de

Abstract—The use of relatively newer technologies like chat-
bots and artificial intelligence has seen a steady rise for
customer service encounters in various companies, in order
to minimize cost and personnel while providing a broad
access point with an individual feel to it to the general
customer base. The state of the art of these chatbots and
their use cases is compared for a general overview, as
well as their applicability to customer service in IT system
administrations and service providers. The difficulties and
problems of this specific application, in comparison to other
uses of chatbots, are highlighted and discussed.

Index Terms—chatbots, troubleshooting, customer service,
service encounters, information technology

1. Introduction

The improvement of customer services in efficiency
and effectiveness has always been an ongoing issue across
many fields. One of the most promising approaches to
solve this challenge is the use of technologies such as arti-
ficial intelligence or chatbots, which have been developed
heavily over the last decades and seen some significant
advancements in recent years.

Chatbots are programs working as a dialog system
for human-computer interaction, which emulate human
behaviour in a conversation and can provide both chatter
and serious help with tasks and questions of the user.

The goal for customer services is to enhance the user
experience in service encounters by providing immediate
and exact responses, which are available at all times,
something that is difficult to achieve and costly with
customer service personnel. Companies might have a great
interest in reducing the human factor in these matters,
for both cost and efficiency, but at the same time the
experience with customer service should not become more
impersonal.

It is the responsibility of the service providers to solve
the customers’ problems by not only making the desired
knowledge available for look-up, but also offering creative
and custom solutions to the individual issues.

To bring together these desired aspects of customer
service, chatbots seem like one of the most ideal ap-
proaches, which is proven by the already manifold uses
across many different websites of companies.

2. Value of Chatbots

An ideal chatbot would behave indistinguishable from
a real human working in customer service, but would also

be much faster, always available and with perfect knowl-
edge and memory. While there is no perfectly human-like
or sentient artificial intelligence yet, this concept of the
ideal customer service helps outlining some of the most
important values and benefits of chatbots, and serves as
the long-term goals for these kinds of technologies.

2.1. Advantages over conventional customer ser-
vices

The most important aspect of having a chatbot, in
place of, for example, just a FAQ-section on their website,
is the personal nature of this access point to the knowledge
databases. Customers can talk to them about their problem
or ask questions, and then it is within the responsibility
of the program to process the query and provide the
corresponding answers. The workload of searching for
relevant information is taken away from the customers.
In addition, if further information is needed, the program
can selectively ask for additional data.

This possibility of a dialog about the specific issues
of the user is the usual reason for consulting customer
services anyway, and it is of great importance that chatbots
keep this nature of interaction preserved.

Some of the more obvious advantages that chatbots
provide, in opposition to human customer services, are
speed and availability. In order for service personnel to
compete with the speed of a chatbots’ direct link to
their databases, they would need to be experts on the
corresponding field and memorize the solutions to most
issues.

Even if such experts could be hired for customer
services, it would need an unfeasible amount of employees
to cover the availability that chatbots offer. The software is
available 24/7 and no matter how many clients are already
in dialog with the customer service, a new request should
never be placed on hold, as long as there is enough server
capacity to run and process all queries.

2.2. Benefits in costs

Especially the before mentioned last two advantages
come hand in hand with another significant benefit. The
cost of a bot-based customer service is overall much lower
than employing humans. On top of running costs, chatbots
do have a substantial initial implementation or setup price
though, which depends on the method used to acquire the
bot, as well as the extend of its functionality.

There are several ways of obtaining a chatbot as
discussed by Viktoria K. and Vlad V. in [1]: Buying an

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

53 doi: 10.2313/NET-2019-06-1_11

already existing solution, using self-service platforms to
build and design chatbots, or implementation from scratch.
After the initial setup costs, there might also be mainte-
nance costs, for analysis, adjustments and improvements,
or further bot training if needed.

While developing and integrating a chatbot can cost
from a few thousands to several tens of thousands of
dollars (Estimations by [1], [2] and [3]), the low running
costs make up for it very quickly; and the comparison
to the unrealistic customer service team which would be
needed to even come close to a chatbots’ knowledge,
speed and availability, makes the advantage in costs very
apparent.

These comparisons are disregarding one important fact
though: chatbots are not yet competent enough to cover
all customer service needs for any company. The usual
application of bots entails taking care of a majority of
queries from customers that are repetitive or easy to look
up. For the more complex user requests that are to difficult
to understand for the software, the bot usually refers the
client to human staff. Therefore it is not yet possible to
dispense with all employees, but their workload can be
greatly reduced.

Despite the requirement of some form of remainder
human staff alongside chatbots, the advantages of using
such technology in customer service still hold and the
subsequent reduction in costs is still significant.

An estimating study by Isabella Steele in [4] shows
that even if only 50% of queries are eligible for chatbots
(this percentage is predicted to go up to 90% in the next
years), the deployment of a bot can cut the costs on staff
by at least 44%.

As a side effect, it is also proposed in [4] that the
shift in tasks for human employees, away from repetitive
and dull questions and towards mostly complex and skill-
challenging queries, leads to a more fulfilling experience
for the service agents, and happier, more motivated staff
leads to more satisfied customers.

Beyond all extrapolations of return values, chatbots
are a long-term investment for any company. The requests
for chat-based customer support saw a rise of 180% from
2016 to 2017 as stated by [4]. The number of queries a
bot can easily answer goes up in a similar fashion; not
only because of the higher amount of requests, but also
as a result of the rapidly evolving technologies behind
these bots, the complexity of queries artificial intelligence
systems are able to handle is increasing quickly.

In conclusion, chatbots are already very profitable and
capable, and they will continue to grow in both factors.

3. Current Use Cases

The advantages of using chatbots or similar technolo-
gies has already been realized by many companies across
many fields of use, although there is still much room for
improvement.

Chatbots have been researched and developed since
the 1960s; Joseph Weizenbaum’s ELIZA, published in
1966, is believed to be one of the earliest working bots.
It was designed to act like a Rogerian therapist, but its
main functionality consisted of using the recognition of
keywords and the output of corresponding answers to fool

people into the assumption that the machine was actually
intelligent [5].

This trend shaped the development of chatbots for
many years, the research was mostly aimed at passing
the Turing Test rather than commercial use. Especially
the Loebner Prize Competition, which is the first formal
instantiation of the Turing Test and has been giving out
prizes for the most human-like chatbot annually since
1991, has sparked some controversies, "whether this com-
petition is really contributing to the development of AI,
or it is blocking it", as stated by Bradesko et al. in [6].

Nonetheless chatbots designed for actual commercial
tasks have emerged in many different domains, with vary-
ing functionality and applicability.

A study conducted by Prof. Dr. Julian Kawohl and
Stefanie Haß in [7] investigated the use of chatbots by
DAX and MDAX corporations. Their findings conclude
that 15% out of the 80 examined companies have bots
available for their customer experience. Whether this
amount is too low for the present times and proof of the
slow adaptation of big, established corporations, or a sign
of progress and proof of the usefulness of bots in various
fields, is debatable.

At the very least the twelve inspected chatbots of
these big companies give an insight into the diversity
of commercial applications. Some of these chatbots are
only designed for a very specific purpose, showing that
most of even these few companies are still far from an
AI supported customer service. Some examples for the
chatbots’ purpose in life, as listed by [7], are:

• Booking of sport courses at Adidas Gym London
(Adidas)

• Calculation of automobile insurance (Allianz)
• Broadcasting tool for touring car tournaments

(BMW)
• Assistant for spot removal (Persil)
• Information as to flight prices (Lufthansa)
• Assistant for searching for second-hand cars (VW)
• News service, primarily for German Football

League (Bild)
• Personal shopping consultant (Zalando)

Other chatbots are listed with the broader term "per-
sonal customer consultant", implying a more general field
of application across the companies’ offers.

The very varied and in some cases extremely specific
uses of chatbot technology show that at least big German
companies are slowly exploring the market with the intro-
duction of artificial dialog systems, but are still far from
the potential of this innovative medium.

3.1. Comparison of the capabilities of different
chatbots

While the functionalities of different chatbots overlap
for the most parts, roughly three roles can be determined
for commercial bots: personal assistants, shopping assis-
tants and troubleshooting.

3.1.1. Personal assistants. The most well known types
of chatbots are the personal assistants, due to just about
every big IT company building their own virtual assistant
following the success of Apple’s "Siri" in 2011. Amazon

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

54 doi: 10.2313/NET-2019-06-1_11

has "Alexa", Google offers their "Google Assistant", Mi-
crosoft followed with "Cortana", Samsung has "Bixby",
and the list continues.

Although there is not quite a consensus yet whether
there is a difference between virtual assistants and chat-
bots, or one of these words is just an umbrella term for
the other [8], they share enough significant features to be
worth mentioning.

The basic services of these assistants include providing
current information and facts, setting alarms or timers,
adding or retrieving events from the calendar, calling
or texting specific contacts, accessing media libraries or
streaming services, and many more.

This shows their early intended use as a voice com-
manding tool for the phone, while also having the gim-
mick of chitchat. The ability to talk with the user and to
tell jokes etc. was something new and exciting at the time
and surely helped their popularity.

As times and bots made progress over the years, they
also gained some more significant capabilities. Especially
"Alexa" and "Google Assistant" acquire more and more
service features, ranging from controlling various aspects
of smart homes to buying products online with just voice
commands [9].

Recently Google pushed another advancement for self-
dependence of chatbots, the ability to let the virtual assis-
tant call services like shops or restaurants and scheduling
appointments or asking for information, as presented re-
cently in the form of "Google Duplex", see [10]. While
this concept has yet to become reality and widely avail-
able, this great leap in technological advancement shows
that virtual assistants will continue to grow more potent.

3.1.2. Shopping assistants and troubleshooting bots.
The other two roles of chatbots are much more similar to
each other in opposition to personal assistants, and also
tie in better with the issues discussed in previous sections.
Both shopping assistants and troubleshooting bots are
chatbots for customer service, and quite often the systems
are capable of fulfilling both roles.

As, for example, the before mentioned study in [7]
showed, being a pure shopping/searching assistant is still
the more common task of bots, primarily because they get
used by companies that want to improve their sales and
do not have a very consistent troubleshooting process, for
example clothing shops or travel agencies.

Due to the large amount of small and very specialized
chatbots in this domain, it is hard to get a generalized
overview of their capabilities, but some of the usual details
can be summarized.

• Chatbots tend to present themselves as a visible
dialog partner, with the help of avatars or similar,
and can be written with some form of personality
to reinforce humanness and sympathy.

• The basic framework of a well-constructed chat-
bot contains common phrases for small talk and
chatter, and some general knowledge.

• The chatbot needs to be capable of understanding
and outputting natural language. Some bots only
use keyword searches to guess the query, others
are able to process full sentences, but specific tech-
nical inputs by the user should never be required.

• Shared details about the client are often stored and
retrieved when necessary to personalize the dialog.

• Bots have access to a database of the relevant
knowledge, in order to answer questions, but also
to proactively show the user additional content.

• Whenever the system realizes it can not suffi-
ciently help the client anymore, it refers them to
supplementary services, usually human staff.

• And in general, chatbots are available for free
around the clock, and have the ability to answer
queries in reasonably short time, with high enough
effectiveness and efficiency to satisfy the customer.

These general qualities for chatbot systems in cus-
tomer support are referring to the metrics used in the
study by Kawohl and Haß in [7], which most of the tested
chatbots satisfied to an acceptable degree.

Additionally, chatbots also used as troubleshooting
customer service are able to ask the user in a search
tree-like fashion about several "symptoms", until the
most likely problem is found and a solution can be
proposed. For this role the systems have to be capable of
identifying the best route for questioning the client about
their problem with very little starting information given.
An elaborated tree structure for all possible problems and
how to identify them is crucial for this kind of customer
service.

Two examples of commercial service bots will be
examined in more detail.

At first a rather negative exemplar: Ikea’s chatbot
"Anna" was one of the earliest better known customer
service bots in the industry, and was online for over ten
years, before being retired with no plans of replacement
in 2016. "Anna" aimed at answering questions and guid-
ing customers around the website in an interactive way,
but users seemed to be too frustrated with the bot. The
developers tried too hard to be natural and human-like,
and diverted too far from the real purpose of the bot, to
provide correct answers as efficient as possible. "Anna
was too human", according to an Ikea representative [11].

This case is especially interesting because the usual
complaints about chatbots deemed them "overly robotic
and lacking a personal touch" [11], signifying the impor-
tance of balance.

The second example is an application of a chatbot,
which is not from a specific company, but rather available
as an add-on extension for browsers. The bot called "Su-
perAgent" leverages publicly available e-commerce data
in the form of product descriptions and user generated data
like Q&As and reviews, to generate a customer service
dialog in-page of online shopping websites like Amazon
or Ebay, as presented by Cui et al. in [12].

It uses state of the art natural language processing and
machine learning techniques to obtain the desired infor-
mation from the available data. This innovative technology
has been shown to improve end-to-end user experience for
online shopping and to make large amounts of information
and user generated content easier comprehensible [12].

"SuperAgent" demonstrates effectively how the pin-
nacle of customer service bots in the form of shopping
assistants is not yet reached, and that there are more
ways to enhance the customer experience besides just the

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

55 doi: 10.2313/NET-2019-06-1_11

hope for every company to provide a decent and capable
chatbot.

3.2. Application in IT

Information Technology (IT) companies are not utiliz-
ing chatbots as much yet, which is surprising, considering
these systems are developed in this industry sector.

The website "chatbots.org" maintains a list of regis-
tered chatbots, virtual assistants and conversational agents
all over the world, and has them categorized by countries,
languages, platforms and consumer themes. Their archive
contains 1368 chatbots as of December 2018.

And yet, an extensive search through chatbots in the
category "electronics and hardware" and "telecoms and
utilities" yielded in just about one accessible and visibly
troubleshooting chatbot from an IT company. This bot
is Dell’s "Assisted Search" (see [13]), and it is built
for troubleshooting common technical issues with dell
products. This system is not much of a conversationalist,
and rather quick to direct towards articles with solutions to
the identified problems. After the initial typed-in question,
the user is mostly navigating with links provided by the
bot to further specify the issue, until solutions from the
article database are presented, or the agent knows some
short tips, which are given directly in chat.

In contrast to the rather plain "Assisted Search", T-
Mobile’s "Tinka" has a lot of personality and even a
fictitious backstory (see [14]). This chatbot is an assistant
for products and the website, but also offers customer
support regarding accounts and contracts, as well as tech
issues. Some basic functionalities of troubleshooting are
therefore integrated in this bot, as it is the case with many
customer service chatbots.

Finding only very few cases of troubleshooting bots
in IT does not mean there are no other, the list from
"chatbots.org" is by no means complete. But it does show
how underutilized this technology is in the context of IT,
a domain with a lot of requests for troubleshooting.

4. Difficulties and Problems in the IT Domain

As Subsection 3.2 showed, the use of chatbots in IT
troubleshooting processes is still very much improvable.
But as discussed throughout Subsection 3.1, the qualities
of troubleshooting bots are not that different from other
customer service systems, so wherein lie the difficulties?

Not much information can be found on this topic,
therefore this section will try to discuss possible issues
and reasons for this discrepancy.

Troubleshooting in IT services is done by defining the
problem, analyzing possible causes and following them to
the root, and then looking for the best fix.

One of the most important difficulties with this ap-
proach are often the users themselves: technological un-
derstanding can occasionally be extremely limited. "It
does not work" can be a very challenging starting point
for any customer service to try and fix the issue, human
or bot alike. Guiding such a client through the process
of finding possible causes can become even more of a
sticking point.

Chatbots would need to have a way of identifying the
user’s affinity and knowledge about technology, and adapt

accordingly. The search tree for analyzing the symptoms
and causes needs to be both very general and elaborate,
but also detailed and specialized enough to actually iden-
tify the correct issues. Users with greater technological
understanding would also want the bot to respond on a
higher level.

This makes the setup of databases and search trees
quite difficult and much more extensive than with other
types of chatbots.

A sophisticated natural language processing system is
necessary for the same reasons, it has to be adaptable
in its level of communication and recognize how much
technical jargon it can and should use with the client.

On top of that, the language processing system needs
to be able to extract information from even the most vague
descriptions of the problems of customers, as well as iden-
tifying potentially wrong "self-diagnoses" and proposing
some other possible causes for the issue proactively (Mon-
itors have been wrongly blamed for enough computer
problems already).

The extensiveness of possible issues in information
technology, together with the unpredictability of the users
and their knowledge, is most definitely a significant rea-
son for the relatively unexplored potential of chatbot-
supported troubleshooting services in IT. Although cur-
rent chatbots are capable of fulfilling the role of general
customer service, the additional competence needed to
build an adaptable, more-than-decent chatbot for IT trou-
bleshooting might be what is holding the bots’ advance-
ment in this industry back.

5. Conclusion and Future Work

Chatbots have some very distinctive advantages in the
domain of customer services, they are always available,
fast and have a big knowledge base. On top of that,
they can reduce a company’s cost for customer service
by a significant amount while also increasing the work
satisfaction for human employees.

Development over the recent decades assured that the
capabilities of chatbots and virtual assistants are growing
exponentially, and while they might not always be used
to their full potential yet, companies are finding more and
more ways to integrate dialog systems into their service
experience.

As for the IT sector, it became apparent that the
utilization has not proceeded as much as in other fields.
Chatbots are still very much applicable in this domain and
could bring great benefits for service providers and clients
alike, but several additional difficulties demand for a more
sophisticated and extensive creation of a chatbot.

In order to have an excellent troubleshooting bot for
issues in IT, the varying amount of technical understand-
ings of users and the extended amount of problems and
possible causes need to be countered by extraordinary
adaptability and a higher than usual intelligence of the
assistant.

For the future, the next step would be to go into more
detail about the technical possibilities of creating such a
chatbot for IT customer service, investigating any current
projects from the industry further, and working together
towards the creation of a new chatbot system, built for the
specific purpose to address the ongoing issues.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

56 doi: 10.2313/NET-2019-06-1_11

References

[1] K. V. and V. V., "How Much Does it Cost to Build a Chatbot",
Retrieved December 13th, 2018, from https://rubygarage.org/blog/
how-much-does-it-cost-to-build-a-chatbot

[2] Borisov H., "Anatomy of a Chatbot - How Much
Does it Cost to Build One?", Retrieved December
13th, 2018, from https://www.progress.com/blogs/
anatomy-of-a-chatbot-how-much-does-it-cost-to-build-one

[3] Kaarma J., "How much does a chatbot cost?", Retrieved
December 13th, 2018, from https://chatbotslife.com/
how-much-does-a-chatbot-cost-783bf583ac4

[4] Steele I., "It’s All About The $$$ - How Much
Money Can Chatbots Actually Save You?", Retrieved
December 13th, 2018, from https://www.comm100.com/blog/
how-much-can-chatbots-actually-save-you.html

[5] McNeal M. L. and Newyear D., "Introducing chatbots in libraries",
Library technology reports, vol. 49(8), 2013, pp. 5-10.

[6] Bradesko L. and Mladenic D., "A survey of chatbot systems
through a Loebner prize competition", Proceedings of Slovenian
Language Technologies Society Eighth Conference of Language
Technologies, 2012, pp. 34-37.

[7] Kawohl J. M. and Haß S., "Customer Service 4.0 - Wie gut sind
Chatbots?", from https://www.heise.de/downloads/18/2/5/4/1/3/4/2/
Studie_chatbots.pdf

[8] Lobo J., "What is the difference between a chatbot and a virtual
assistant?", Retrieved December 16th, 2018, from https://www.
inbenta.com/en/blog/difference-chatbot-virtual-assistant/

[9] Martin T. and Priest D., "The complete list of Alexa commands so
far", Retrieved December 16th, 2018, from https://www.cnet.com/
how-to/amazon-echo-the-complete-list-of-alexa-commands/

[10] Leviathan Y., "Google Duplex: An AI System for Accom-
plishing Real-World Tasks Over the Phone", Retrieved De-
cember 16th, 2018, from https://ai.googleblog.com/2018/05/
duplex-ai-system-for-natural-conversation.html

[11] Brandtzaeg P. and Følstad A., "Chatbots: changing user needs and
motivations", Interactions, vol. 25(5), 2018, pp. 38-43.

[12] Cui L., Huang S., Wei F., Tan C., Duan C., and Zhou M., "Su-
peragent: a customer service chatbot for e-commerce websites",
Proceedings of ACL 2017, System Demonstrations, 2017, pp. 97-
102.

[13] http://www5.nohold.net/Dell/Loginr.aspx?pid=3&userrole=USen,
Retrieved February 11th, 2019

[14] https://www.t-mobile.at/tinka/, Retrieved February 11th, 2019

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

57 doi: 10.2313/NET-2019-06-1_11

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

58

Client Monitoring with HTTPS

Felix Hartmond, Simon Bauer∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: felix.hartmond@tum.de, bauersi@net.in.tum.de

Abstract—With the increasing number of users and devices
on the internet, it is more and more important for an
administrator to know who and what is using his networks
and services. Therefore it is necessary to find out information
about the clients. This process is called fingerprinting. With
the ongoing deployment of HTTPS information from the
application layer can no longer be read directly. In this paper,
we will look at the different layers of the HTTPS protocol
stack and examine which fingerprinting approaches are still
possible, or even only possible, with the added encryption.

Index Terms—https, client fingerprinting

1. Introduction

1.1. Motivation

With the growing number of users and devices on the
internet is it more and more interesting who and what is
producing traffic. Information about the users and devices
is helpful for a lot of things. For example, it can be used
to optimize services and networks. It can also be used
to improve the security of a system as it can help to
identify potential malicious actors. Such actors can also
be tracked with such information which allows finding out
more about them.

Getting information from network traffic is getting
harder with the extended use of the encrypted version of
the HTTP protocol: HTTPS. But there are far more ways
to find out information about a client than just reading
plain HTTP requests. And, even if encryption makes the
analysis harder, it does not make it impossible. In this
paper, we look at the different layers of the network
stack and examine different ways to analyze a client with
information provided by the different layers.

1.2. Outline

In Section 2, we will give a rough overview of dif-
ferent kinds of fingerprinting. After this, we will look
at the involved protocols in an HTTPS communication
and analyze which kinds of fingerprinting are possible on
the different layers. We will go down the network stack
from top to bottom and look at each layer. For each layer,
we will analyze which methods were developed to gather
information about the client from the information provided
by this layer.

We will start at the very top and look at the Hyper Text
Transfer Protocol (HTTP) in Section 3. Then, we look

at the Transport Layer Security protocol (TLS), which is
the new layer in HTTPS, compared to HTTP, in Section
4. After this, we examine in Section 5 the Transmission
Control Protocol (TCP), which is usually used by HTTP
connections as transport protocol [7] together with the
Internet Protocol (IP). We look at these two layers at once
as many approaches use information from both protocols.
Finally, we will take a brief look at transport layer pro-
tocols. As these protocols are not used end to end they
have some limitations we will also look at.

In the end, in Section 7, we will recap which infor-
mation can be gathered overall.

2. Fingerprinting

Fingerprinting can be split into two categories: device
fingerprinting and user fingerprinting. The methods used
for fingerprinting can also be categorized into active meth-
ods and passive methods.

Device fingerprinting is about gathering information
about the device which is communicating. These things
include the operating system, drivers, protocol implemen-
tations or browsers. These can be very interesting to
understand which device types are active in the network
and which software in which versions they use. This
information can be relevant to be able to optimize services
and network infrastructure for the way how they are used.
User fingerprinting is about getting information about the
user who is actively using the applications. This can be
interesting for tracking a user across different devices or
services to be able to optimize, for example, the presented
content for this user.

Fingerprinting methods can be split up into two cat-
egories: Active and passive methods. Active methods ac-
tively send probes to a device and analyze the responses.
These methods require the ability to send probes to a
device but are very mighty if there is no firewall in
front of the device. They are mighty because due to the
active participation of the observer it is possible to send
specifically crafted packets to the client. On the other side,
passive methods do not send out any new traffic, they just
analyze traffic which is passing. Such methods completely
rely on the traffic which is already there. But they has
the huge advantage that they do not have to happen real
time. It is possible to just capture and store traffic and
do the complete analysis afterwards or even running an
analysis on a traffic capture which was not stored with
fingerprinting in mind.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

59 doi: 10.2313/NET-2019-06-1_12

3. HTTP

If we would not use HTTPS, the information from
the application layer would tell us a lot about the client
and its action. There would be a lot of HTTP headers
sent with every request, for example, the User Agent,
which explicitly tells which system is used by the client.
Additionally, we would be able to see all the requests
including all parameters which gives us very detailed
information about user and his actions. But, HTTPS hides
all this application data through the addition of encryption.
For the encryption an TLS layer is added between the
TCP layer and the HTTP layer. This layer acts as an
container for the HTTP layer and encrypts all data from
it. So, theoretically, all data from the HTTP layer should
not provide any information to an observer. But a lot
of research was done to find out if it is possible to
gain information about a client despite the presence of
encryption.

Stöber et. al. [19] took a look at mobile applications
and tried to find out which application observed traffic
belongs to. They were able to identify the application with
a success probability of 90% despite not seeing the content
of the traffic. For they approach they utilized that a lot
of application traffic is not directly triggered by a user
action. Instead, most traffic is done by the application
is the background on a reglar basic. They analyed the
patterns of this background traffic and were able to deduce
the running application from the traffic patterns.

Zion et. al. [13] tried to find out the client’s operat-
ing system, the used browser and the application from
encrypted traffic. They used supervised machine learning
to assign labels of the form (OS, Browser, Application)
to the packets. They were able to successfully classify
packets with their approach. This shows that is is possible
to get basic information about a user by only looking at
the encrypted traffic.

Panchekno et. al. [14] analyzed if it is possible to find
out which website was accessed if the traffic is protected
and anonymized by anonymization networks like TOR.
For their approach, they used a support vector machine
(another machine learning technique) and were able to
archive a true positive rate of 73% for a false positive
rate of 0.05%.

Also, Cai et. al. [2] looked at encrypted traffic in the
context of defenses like Tor. They used a simple model of
network behavior to find out which homepage is accessed
by a user and were able to identify the requested page
with a good success rate.

Overall research has shown that encryption can not
completely hide information from the communication. A
very impressive example of getting information out of
encrypted packets was presented by Wright et. all. They
took a look at Voice over IP communication and were
able to reconstruct spoken text from encrypted traffic.
This was possible as the audio was encoded with a codec
with variable frame rate which caused network packets
of variable length. These varying packet lengths were
sufficient to reconstruct spoken phrases. [22]

Dyer et. al. [4] took a conceptional look into the prob-
lem of hiding information completely through encryption
or obfuscation. They came to the conclusion that it will
always be possible to extract some kind of information

from encrypted traffic as long as bandwidth optimizations
are done, what every protocol does.

4. TLS

The Transport Layer Security Protocol takes care of
encrypting all data above the TLS layer. To be able to
do encryption the protocol has first to do a handshake
between client and server. As there are no shared secrets
between client and server initially, the first messages of
the handshake are unencrypted. In the beginning, the
client sends a so called "hello message" in which it tells
the server about its version, cipher suites, compression
methods and extension they support. The only other un-
encrypted message from the server contains the servers
public key. After this, no more messages from the client
are unencrypted. [3]

As often multiple homepages are hosted on a single
server and these homepages use different certificates, TLS
needs to know the requested homepage already during the
handshake to provide the correct certificate. As ordinarily
the domain is presented first after the finished handshake
TLS has an extension called Server Name Indication
(SNI). This extension presents the requested domain in
the client hello message of the TLS handshake to make it
possible for the server to present the correct certificate for
the requested domain afterward. But the information from
this is very limited as only the domain can be retrieved
but neither any further information about the request nor
details about the requesting client. [6]

To get more information about the client from the
client hello message, Martin Husák et. al. went through the
different values included in the client hello message and
analyzed them towards the differences in the values for
different client types. They found out that the most values
are quite similar for different client types, but they found
one very interesting value: the list of supported cipher
suites. This list of support cipher suites differs enough
between different clients to make it possible to distinguish
them. [10]

Martin Husák et. al. used two methods to build a
codebook which maps cipher suite lists to user agents.
For the first one, a server based one, they logged the
cipher suite lists as well as the user agent of incoming
https connections on a web server. This method produces
very accurate results but the clients have to visit a spe-
cific server to be included in the codebook. Because of
this, they combined the fist with a second method which
analyzed network traffic which includes HTTP as well as
HTTPS connections from the same clients. By matching
the connections from the same client together they were
able to extend the codebook with clients which did not
connect to their servers. In their tests, the top 10 cipher
suite lists covered 68.5% of the network traffic and the
top 31 cipher suite lists covered 90% of the traffic. Over
their measurements, they discovered 1598 different cipher
suite lists. [10]

Despite a very good variance in the cipher suite list
there were still multiple user agents which correspond to a
single cipher suite list. So they used a tool which extracts
information about a system from a user agent like browser
name, operating system or vendor. With this, they were

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

60 doi: 10.2313/NET-2019-06-1_12

able to classify the traffic into several categories for de-
vices (desktop, mobile, unknown) as well as applications
(browser, command line, application, update, unknown).
[10]

5. TCP/IP

The Transport Control Protocol (TCP) takes care of the
reliability network connection. It takes care of retransmis-
sion of lost packets, flow control, congestion control and
multiplexing of connections between two hosts. [17]. The
Internet Protocol (IP) provides addressing between the
hosts which communicate with each other. Also, packet
routing is done by this network layer. [16]. As many
fingerprinting approaches use information from these two
layers together, we will look at these two layers together.

The TCP specification, as well as the IP specification,
does only describe the scenarios of regular operation. They
do not specify corner cases like how an implementation
should behave in the case of packets which should never
occur, like strange combinations of flags or if TCP seg-
ments or IP fragments overlap. As these scenarios are not
specified, different implementations have different behav-
ior when processing such packets. This can be used for
active fingerprinting. By sending such impossible packets
the used implementation of the communicating host can
be examined. For example, the tool NMAP implements
a test where a packet with a FIN flag is sent without
establishing a connection beforehand. Even if this packet
should be just discarded, some implementations send an
answer to it. [18]

In addition to implementation differences caused by
edge cases and implementation bugs, TCP implementa-
tions also have slight differences in their behavior con-
cerning retransmissions and congestion control. Differ-
ent implementations have slightly different retransmission
timeouts. By sending a TCP SYN packet, and measuring
the time between the SYN-ACK packet and his retrans-
missions it is also possible to detect the used implemen-
tation as Veysset et. al. showed. [21]

Many more people have done research on active
TCP/IP fingerprinting and developed tools which can
execute the proposed measurements and classifications.
Grek Taleck took a very detailed look at the different
aspects of a TCP/IP implementations and developed a
tool called SYNSCAN which’s "objective is to fingerprint
every aspect of a TCP/IP implementation". [20] Ofir Arkin
and Fyodor Yarochkin developed Xprobe2 which uses an
approach based on confidences to find a result, instead of
relying on an exact match with a known fingerprint. [1]

All methods mentioned for TCP/IP so far were active
methods. But an active method needs either an accessible
device or a connection from this device to a controlled
server which then can send probes as replies. Having an
accessible device is rather easy for servers but in gen-
eral, clients are hidden behind a firewall which makes it
impossible to send probes to them. Passive fingerprinting
methods allow fingerprinting just by analyzing the traffic
from a client at any point on the path between client and
server.

Different researchers created tools which analyze ini-
tial values of different fields from the TCP and the IP
header. The siphone tool was a proof-of-concept tool

which only analyzed the TCP window size, the IP Time
to Live and the IP Don’t Fragment bit from packets of
a TCP connection. The p0f tool and the ettercap tool
look especially at the SYN packet of the TCP connection.
Ettercap additionally analyzes the SYN-ACK packet. In
addition to the features of siphone, they also analyze
different options and flags from the TCP header. [12] [23]

Vern Paxson took a different approach and developed
a passive fingerprinting tool called tcpanaly. This tool
analyzes a complete flow and looks at the congestion
control behavior of the implementation as different im-
plementations differ in their rounding of TCP’s sstresh. It
also takes a look at response delays for the creation of
acknowledgments and watches for occurrences of a bug
caused by uninitialized variables. [15]

TCP has a timestamp option which is intended for
round trip time measurements. Kohno et. al. showed that it
is possible to use the values from this timestamp option to
detect clock skews which can be used to uniquely identify
a user. Even if these variations are very small, they found
out that it is possible to use that technique even if the
observer is quite far away from the client. [11]

6. Link Layer Protocols

When looking at network layers below the IP layer,
fingerprinting on these layers has a different initial situ-
ation - it is link dependent as first the IP Protocol takes
care of the end-to-end addressing of a packet. So, when
looking below the IP Layer we no longer look at packets,
instead look at frames which only exist for one hop in the
connection. This means, to be able to monitor a client we
have to be very close, especially on the same link as the
client. So fingerprinting on these layers is not possible for
server administrators who want to know something about
the clients sending requests. But for administrators who
want to learn about the clients in their local network, these
methods are useful.

Fingerprinting on the Link Layer is of course highly
dependent on the used Link Layer protocol. When looking
at an Ethernet frame the header only contains the source
and destination MAC addresses, a type id of the content
of the next higher layer and an optional VLAN tag. One
of the few things which can be derived from these header
fields is the vendor of the sender’s network card as the
MAC address contains an "Organization Unique Identi-
fier" (OUI). [5] But the network card vendor does not give
any reliable information about the software running on the
client. Despite that, MAC addresses can be modified by
a user or in case of virtual machines are not bound to
physical hardware at all.

But, this situation is different for 801.11 networks.
802.11 is far more complicated than ethernet as it has
connection establishment and authorization mechanisms,
so it has far more potential to reveal information about
the client.

Franklin et. al. used the active scanning for driver fin-
gerprinting. Every 802.11 client periodically sends probe
requests to discover access points in range. The time
intervals between the probes can be used to identify the
used driver. A huge advantage of this approach is that no
specialized equipment is required for the measurements as

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

61 doi: 10.2313/NET-2019-06-1_12

the probes can be received any ordinary 802.11 hardware.
[8]

It’s even possible to get a step further and look at
the analog signal created by an 802.11 interface. Gerdes
et. al. took this approach and found out that a device
can be identified and tracked by small differences caused
by hardware and manufacturing inconsistencies. With this
approach, it is not possible to identify the used driver or
operating system, but it allows to identify a user on the
link layer even if he changed his MAC address to another
value or moves to another network. [9]

7. Conclusion

We have seen that even if the presence of encryption
makes the analysis of the application layer harder it does
not block fingerprinting. Despite the encryption, it is still
possible to find out a lot about the actions of the user on
the application layer. Especially with the current develop-
ment in machine learning approaches, it is very hard to
hide information from the application layer completely.
The added TLS layer provides encryption but offers with
the supported cipher suite list a way itself to fingerprint
the device.

On the IP and TCP layers, there is also fingerprint-
ing possible due to implementation differences. As these
layers are below the TLS layer, they are completely un-
touched by the added encryption. Even lower on the link
layer, there are also ways to do fingerprinting but these
are dependent on the used link layer technology on this
link. Additionally, the observer has to be on the same link
as the client to do observations on the link layer.

Overall the Protocol stack of HTTPS has a lot of
possibilities which can be taken into account when specific
information about the clients should be examined. As fin-
gerprinting methods are possible at very different aspects
of a connection a specific attacker model is needed to say
if a setup is sufficiently protected against fingerprinting.

References

[1] O. Arkin and F. Yarochkin. Xprobe v2.0 - a "fuzzy" approach to
remote active operating system fingerprinting. 08 2002.

[2] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching from a
distance: Website fingerprinting attacks and defenses. In Proceed-
ings of the 2012 ACM Conference on Computer and Communi-
cations Security, CCS ’12, pages 605–616, New York, NY, USA,
2012. ACM.

[3] T. Dierks and E. Rescorla. The transport layer security (tls)
protocol version 1.2. RFC 5246, RFC Editor, August 2008.
http://www.rfc-editor.org/rfc/rfc5246.txt.

[4] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-
boo, i still see you: Why efficient traffic analysis countermeasures
fail. In 2012 IEEE Symposium on Security and Privacy, pages
332–346, May 2012.

[5] D. Eastlake. Iana considerations and ietf protocol usage for ieee
802 parameters. RFC 5342, RFC Editor, September 2008. http:
//www.rfc-editor.org/rfc/rfc5342.txt.

[6] D. Eastlake. Transport layer security (tls) extensions: Extension
definitions. RFC 6066, RFC Editor, January 2011. http://www.
rfc-editor.org/rfc/rfc6066.txt.

[7] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter,
P. J. Leach, and T. Berners-Lee. Hypertext transfer protocol –
http/1.1. RFC 2616, RFC Editor, June 1999. http://www.rfc-editor.
org/rfc/rfc2616.txt.

[8] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. Van Randwyk, and
D. Sicker. Passive data link layer 802.11 wireless device driver
fingerprinting. In Proceedings of the 15th Conference on USENIX
Security Symposium - Volume 15, USENIX-SS’06, Berkeley, CA,
USA, 2006. USENIX Association.

[9] R. M. Gerdes, T. E. Daniels, M. Mina, and S. Russell. Device
identification via analog signal fingerprinting: A matched filter
approach. In NDSS, 2006.

[10] M. Husák, M. Cermák, T. Jirsík, and P. Celeda. Network-based
https client identification using ssl/tls fingerprinting. In 2015 10th
International Conference on Availability, Reliability and Security,
pages 389–396, Aug 2015.

[11] T. Kohno, A. Broido, and K. C. Claffy. Remote physical device
fingerprinting. IEEE Transactions on Dependable and Secure
Computing, 2(2):93–108, April 2005.

[12] R. Lippmann, D. Fried, K. Piwowarski, and W. W. Streilein.
Passive operating system identification from tcp / ip packet headers
*. 2003.

[13] J. Muehlstein, Y. Zion, M. Bahumi, I. Kirshenboim, R. Dubin,
A. Dvir, and O. Pele. Analyzing https encrypted traffic to identify
user operating system, browser and application. 03 2016.

[14] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website
fingerprinting in onion routing based anonymization networks. In
Proceedings of the 10th Annual ACM Workshop on Privacy in the
Electronic Society, WPES ’11, pages 103–114, New York, NY,
USA, 2011. ACM.

[15] V. Paxson. Automated packet trace analysis of tcp implementations.
ACM SIGCOMM, 27, 07 2000.

[16] J. Postel. Internet protocol. STD 5, RFC Editor, September 1981.
http://www.rfc-editor.org/rfc/rfc791.txt.

[17] J. Postel. Transmission control protocol. STD 7, RFC Editor,
September 1981. http://www.rfc-editor.org/rfc/rfc793.txt.

[18] Fyodor. Remote os detection via tcp/ip stack fingerprinting. https:
//nmap.org/nmap-fingerprinting-article.txt. Accessed: 2018-11-26.

[19] T. Stöber, M. Frank, J. Schmitt, and I. Martinovic. Who do
you sync you are?: Smartphone fingerprinting via application be-
haviour. In Proceedings of the Sixth ACM Conference on Security
and Privacy in Wireless and Mobile Networks, WiSec ’13, pages
7–12, New York, NY, USA, 2013. ACM.

[20] G. Taleck. Synscan : Towards complete tcp / ip fingerprinting.
2004.

[21] F. Veysset, O. Courtay, and O. Heen. New tool and technique for
remote operating system fingerprinting - full paper -. 2002.

[22] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Mas-
son. Spot me if you can: Uncovering spoken phrases in encrypted
voip conversations. In 2008 IEEE Symposium on Security and
Privacy (sp 2008), pages 35–49, May 2008.

[23] M. Zalewski. p0f v3: passive fingerprinter. http://lcamtuf.
coredump.cx/p0f3/README, 2012. Accessed: 2018-11-20.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

62 doi: 10.2313/NET-2019-06-1_12

Caching with Relation

Mohamad Nour Moazzen, Stefan Liebald ∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: mohamadnour.moazzen@tum.de, liebald@net.in.tum.de

Abstract—
The increase in network traffic across the Internet in

recent days impose many challenges to web servers and
Internet service providers regarding access latency and net-
work bandwidth consumption. Web caching is one of the
optimization methods used to face these challenges. The
most important part of a web caching system is the cache
replacement algorithm which decides which web objects
should be evicted from the cache in order to make space
for new ones when the cache is full. Traditional algorithms
consider metrics such as recency and frequency to make the
replacement decisions. In this paper we explore a type of
algorithms which considers the semantics of the web objects
to make the replacement decisions. We differentiate two
categories of this type of algorithms according to how they
interpret the contents of the web objects: subject-based and
link-based. We present some algorithms of both categories
and explain how they work.

Index Terms—WWW, Web caching, Cache replacement al-
gorithms, Semantic distance

1. Introduction

The Internet is a valuable source of information and it
is used by an increasing number of people for education,
entertainment, business and almost every aspect of modern
life. This led to an increase of network traffic across the
Internet, which in turn causes increasing access latency. To
face these challenges, several optimization methods have
been developed [1]. Web caching is one of these methods.
It aims to improve the performance of web servers and
decrease access latency.

We can differentiate three types of Web caching
depending on the place where the web cache is em-
ployed: Client-side caching, Server-side caching and
Proxy caching. In this paper we focus on proxy caching.

The basic idea of web caching is to store copies of
web objects (web pages, photos, videos, etc.) which are
requested by users in intermediate web caches, so future
requests for these web objects will be served by these web
caches instead of the original servers. This decreases the
number of requests to the original servers and reduces the
amount of transmitted data over the network in addition
to decrease access latency because these web caches are
closer to the users.

Web caching system works as follows:
• When user requests an object from a web server,

the system first checks if this object is already
cached.

• If there is a copy of this object in the cache it will
be send directly to the user.

• If the object is not cached then it will be requested
from the original web server and forwarded to the
user, then this object is stored in the cache.

Because web caches have limited size, we cannot store
every web object for indefinite time. When the cache is
full, and new objects need to be stored in it, the system
has to remove one or more cached objects in order to
make space for the new objects. The decision of what
objects to be removed from the cache is taken by the
cache replacement algorithm.

Cache replacement algorithms are very crucial for
the performance of the web caching system because if
the algorithm removes objects which maybe requested
again in the near future, this degrades the performance
of the system as these objects have to be requested again
from the original server. There are several types of cache
replacement algorithms, each one of them depends on one
or several metrics to decide which object(s) to evict from
the cache.

In this paper we explore a type which depends mainly
on the semantics of the contents of the web objects to
make the replacement decisions. Algorithms of this type
measure the relationship between the cached objects and
the new incoming objects which need to be stored in cache
in terms of a semantic distance calculated based on the
subject of the contents or the links between objects. The
objects which are the furthest from the new objects in
terms of the semantic distance , i. e., the objects which
are the least related to the new objects, are marked for
eviction.

The rest of this paper is structured as follows. Section
2 includes a background about cache replacement algo-
rithms. Section 3 introduces semantic cache replacement
algorithms and describes several algorithms from this
type. In section 4 we conclude the paper.

2. Background

Many cache replacement Algorithms have been pro-
posed in literature.

We can differentiate between them according to the
metric they use to make the replacement decisions.

Two of the most important metrics are [2]:

• Recency: time of last request for an object.
• Frequency: number of requests for an object.

Podlipnig and Böszörmenyi in [2] proposed a classi-
fication for the cache replacement Algorithms as follows:

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

63 doi: 10.2313/NET-2019-06-1_13

• Recency-based Algorithms: depend on the recency
metric to make the replacement decisions. The
most well-known algorithm from this category is
LRU (Least Recently used), which evicts the least
recently accessed objects from the cache.

• Frequency-based Algorithms: depend on the fre-
quency metric to make the replacement decisions.
The most well-known algorithm from this category
is LFU (Least Frequently used), which evicts the
least frequently accessed objects form the cache.

• Recency/Frequency-based Algorithms: depend on
both recency and frequency metrics to make the re-
placement decisions. SLRU (Segmented LRU) [3]
is an example of algorithms from this category.

• Function-based Algorithms: use a function to cal-
culate the value of an object then use this value
as a metric to make the replacement decisions.
GD(Greedy Dual)-Size [4] is an example of al-
gorithms from this category.

• Randomized Algorithms: these algorithms ran-
domly make the replacement decisions. HAR-
MONIC [5] is an example of algorithms from this
category.

The most important metrics to take into account when
evaluating or comparing the performance of cache replace-
ment Algorithms are hit rate and byte hit rate.

• Hit rate: "measures the percentage of requests that
are served from the cache (i. e., requests for pages
that are cached)" [6].

• Byte hit rate: "measures the amount of data (in
bytes) served from the cache as a percentage of
the total amount of bytes requested" [6].

The algorithms which we have mentioned in this
Section depend on the metadata of the cached objects to
decide which ones to evict from the cache (time of last
access, frequency of access, etc.).

In the next section we explore a different type of
cache replacement algorithms which take into account the
contents of the objects [7] when making the replacement
decisions.

3. Semantics based cache replacement algo-
rithms

Semantics based cache replacement algorithms depend
mainly on semantics of the contents of the cached web
objects in order to decide which ones to evict from the
cache [8]. They measure the relationship between the
cached objects and the new incoming objects which need
to be stored in cache (or the most recently accessed cached
objects).

When the replacement process is triggered, the algo-
rithm evicts the objects in cache which are less related to
the new incoming objects regarding the semantics of their
contents. This type of algorithms relies on the intuition
that the cached objects which are less related to the new
objects regarding the semantics of their contents are less
likely to be requested in the near future, therefore they
can be evicted from the cache.

If the algorithm cannot decide what objects to evict be-
cause all of them are closely related to the new incoming

objects, then these algorithms make use of other metrics
such as recency, frequency, etc., to make the replacement
decision. We can differentiate two categories of this type
of algorithms according to how they interpret the contents
of the web objects:

• Algorithms which calculate the semantics for the
objects based on the subject of their contents
(LSR [7], LSR/H [8]).

• Algorithms which calculate the semantics for the
objects based on the links which are contained in
these objects (SACS) [6].

In the following we describe several semantics-based
algorithms.

3.1. LSR

Alcides [7] proposed an algorithm called LSR (Least
Semantically Related). This algorithm relies on the as-
sumption that every user is inclined, for a period of time,
to request objects whose contents belong to a specific
subject, i. e., semantically related objects. Also, it assumes
that during a period of time all the objects which are
requested from a cache belong to the same subject, that
is, "LSR supports single thread of interest" [8].

It depends on a metric called semantic distance to
make the replacement decisions. In order to calculate the
semantic distance, the algorithm associates semantics to
each object according to its contents.

When the replacement process is triggered, the al-
gorithm calculates the semantic distance between each
cached object and the new object(s) which need(s) to be
stored in the cache. The cached objects which are less
related to the new objects, i. e., the objects which have the
highest semantic distance to the new objects, are marked
for eviction.

According to [7], one way to associate semantics to
each object is through a taxonomy, objects are organized
into a tree of subjects. It starts from the root and branches
out into nodes where each node represents a subject,
the nodes may branch out into children nodes which
represents more specific subjects, objects are distributed
on the nodes according to the subject of their contents.

Using this taxonomy, we can get the semantics of
any object in the form of a sequence of tree nodes from
root to the specific subject which match the subject of its
contents. Then the algorithm can calculate the semantic
distance between any two objects by measuring the short-
est path between the corresponding subject nodes.

It is hard to implement such taxonomy for the whole
Internet, but there are several efforts toward this like
DMOZ Open Directory Project [9] and by Schmidt et al.
in [10] which proposed creating web servers which can
be queried using the URL of an object to respond by its
semantics.

Figure 1 shows an example of a tree of subjects, it is
a real-world example represents a partial view of a taxon-
omy defined by the DMOZ Open Directory Project [8].
Using this figure, we can get the semantics of the object
which is titled "Foundations of the Internet Protocol" in
the following form: Top.Computers.Internet.Protocols.IP.
So, for example if this object is the new object which

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

64 doi: 10.2313/NET-2019-06-1_13

Figure 1: Partial hierarchy of subjects defined by the
DMOZ Open Directory [8].

Figure 2: A history of 10 subject accesses [8].

needs to be stored in the cache, the algorithm starts evict-
ing objects which corresponds to subject nodes which are
the furthest from IP node like Art, Business, Algorithms,
etc.

3.2. LSR/H

Calsavara and Schuck [8] proposed an algorithm called
LSR/H (Least Semantically Related + History of subject
accesses) This algorithm is a developed version of LSR. It
adds the dependency on a metric called history of subject
accesses to make the replacement decision. It supports
"multiple threads of interest" [8], i. e., there can be, for a
period of time, multiple subjects of interest for the users.
These subjects are called "hot subjects" [8]. A subject is
included in the hot subjects when, for a period of time,
there is a substantial number of accesses to objects whose
contents are related to that subject [8].

To keep track of the hot subjects, the algorithm records
the history of subject accesses. Whenever an object is
accessed, it adds a weight to its corresponding subject.
Recency plays a role in the weighting process, recent
accesses weight more than old accesses [8]. The cached
objects whose contents are less related to the hot subjects
are marked for eviction, i. e., objects whose contents are
related to subjects of less weight.

LSR/H, like LSR, depends on "tree of subjects" tax-
onomy to map semantics to objects. As we described

Figure 3: Hierarchy of subjects of Figure 1 with
weights [8].

earlier, each request or access to an object adds a weight
to its corresponding subject. In this taxonomy, when the
algorithm adds a weight to a subject node, it should also
add this weight to the parent nodes of this subject node
recursively until reaching the root.

To clarify this, we take the tree of subjects in Figure 1
as an example. We assume that the record of history of
subject accesses is of length 10, i. e., the algorithm is
configured to record the subjects of the last 10 accesses.
Also, we assume that when the replacement process is
triggered the history of subject accesses is as shown in
Figure 2.

The weight values are distributed according to the
recency of access, i. e., 10 corresponds to the most recently
accessed subject and 1 corresponds to the least recently
accessed subject [8]. Using these values, the algorithm
calculates the weights of the subjects.

For example: according to Figure 2, the weight of
Software node is 9, the algorithm adds 9 to the node
Software and also adds 9 to its parent node Computers.
Figure 3 shows the tree of subjects after calculating the
weights. We can see from Figure 3 that the hot subjects are
mainly Computers, Business and Games. The algorithm
starts evicting objects whose contents are related to the
subjects of Art, Health and World, then Business and
Games and so on.

3.3. SACS

André et al. [6] proposed an algorithm called SACS
(Semantic Aware Caching System). This algorithm relies
on the assumption that the cached objects which can be
reached by links from a recently accessed object will most
likely be requested in the near future, so, they should
not be evicted from the cache. It depends on 3 metrics:
recency, frequency and semantic distance to make the
replacement decisions. The semantic distance between two
objects is calculated by measuring the minimum number
of links which is needed to be followed to reach one from
the other [6]. SACS differentiates between two types of
links when calculating the semantic distance:

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

65 doi: 10.2313/NET-2019-06-1_13

Figure 4: Example of a web site with distance assigned
based on link information [6].

• Explicit link: the link that should be clicked by
the user to get the referenced object. A link of
this type is assigned a distance of 1 [6].

• Implicit link: the referenced object by this link
is loaded automatically. A link of this type is
assigned a distance of 0 [6].

Figure 4 shows an example of how SACS assigns the
distance between pages of a website. SACS continuously
keep track of a set of objects called pivot, they are the
most recently accessed cached objects [6]. When the
replacement process is triggered, the algorithm calculates
the semantic distance between each cached object and the
nearest member of pivot. The objects which are the most
distant from pivot are marked for eviction. In case multiple
objects are in the same distance from pivot, the algorithm
orders them according to their frequency information (the
objects which are less frequently requested are more likely
to be evicted).

4. Conclusion

Web caching is one of the optimization methods used
by the web servers to improve their performance and
decrease access latency.

Cache replacement algorithm decides the web objects
that should be evicted from the cache in order to make
space for new ones when the cache is full.

Traditional algorithms consider metrics such as re-
cency and frequency to make the replacement decisions.

In this paper we explored a type of cache replacement
algorithms which considers the semantics of the contents
of the web objects to make the replacement decisions.
We divided it into two categories according to how they
interpret the contents of the web objects: subject-based
and link-based. Then we described several algorithms of
this type.

According to [6], [7], [8] these algorithms perform
better than the other well-known replacement algorithms
such as LRU and LFU.

LSR/H builds upon LSR by adding additional metrics
to improve performance.

LSR and LSR/H are hard to be implemented on the
Internet scale because they need a global representation

of the semantics of web objects (based on the subjects of
their contents) which enables them to associate semantics
to objects. This is not available for the all the objects on
the Internet, though there are some efforts toward that like
DMOZ open directory project [9] and by Schmidt et al.
in [10] which proposed creating web servers which can
be queried using the URL of an object to respond by its
semantics.

SACS algorithm on the other hand does not require
such condition to be implemented.

Also, LSR and LSR/H consider that each web object
can be associated with only one specific subject, therefore,
these algorithms are not applicable in cases where we have
for example a web page or an article which discusses
several subjects.

References

[1] Y. Zhang, N. Ansari, M. Wu, H. Yu, On wide area network
optimization, Commun Surv Tutor IEEE 14(4):1090-1113, (2012).

[2] S. Podlipnig, L. Böszörmenyi, A survey of Web cache replacement
strategies, ACM Comput. Surv. 35, 4, 374-398, (2003).

[3] R. Karedla et al, Caching Strategies to Improve Disk System
Performance, Computer, vol. 27, no. 3, pp. 38-46, (1994).

[4] P. Cao, S. Irani, Cost Aware WWW Proxy Caching Algorithms,
Proceedings of USENIX Symposium on Internet Technologies and
Systems (USITS), Monterey, CA, pp. 193-206, (1997).

[5] S. Hosseini-Khayat, Investigation of generalized caching, Ph.D.
dissertation, Washington University, St. Louis, MO, (1997).

[6] N. P. André, R. Carlos, F. Paulo, V. Luis, An adaptive semantics-
aware replacement algorithm for web caching. Journal of Internet
Services and Applications, 6. 10. 1186/s13174-015-0018-4, (2015).

[7] C. Alcides, The least semantically related cache replacement al-
gorithm, In Proceedings of the 2003 IFIP/ACM Latin America
conference on Towards a Latin American agenda for network
research (LANC ’03), ACM, New York, NY, USA, 21-34, (2003).

[8] A. Calsavara, M. R. Schuck, Internet object caching based on
semantics and access history, Programa de Pos-Graduacao em
Informatica Aplicada Pontificia Universidade Catolica do Parana
Rua Imaculada Conceicao, 1155, Prado Velho 80215-901 Curitiba,
PR.

[9] AOL Inc. "Archive of dmoz.org provided by Internet Marketing
Ninjas", Last visited 2019-02-06, http://dmoz-odp.org/

[10] A. Calsavara, G. Schmidt, Semantic search engines, In F. Ramos, F.
Unger and V. Larios, editors, Advanced Distributed Systems: Third
International School and Symposium, ISSADS 2004, Guadalajar
a, Mexico, January 24-30, 2004, Revised Selected Papers, volume
3061 of Lecture Notes in Computer Science, pp 145-157. (2004).

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

66 doi: 10.2313/NET-2019-06-1_13

Investigating TCP SYN Flood Mitigation Techniques in the Wild

Julian Villing
Technical University of Munich, Germany

Email: julian.villing@tum.de

Abstract—TCP SYN flood Denial-of-Service (DoS) attacks
exploit a weakness in the TCP specification. By initiating
many incomplete connections, the servers’ backlog is filled
with the states of the half-open ones. Once there is no more
space in the backlog, the server is unable to handle legitimate
requests and the attack has been successful. It is important
to prevent this problem as the targeted machine cannot offer
its services anymore due to being unreachable. This paper
introduces and compares several TCP SYN flood mitigation
techniques as well as discussing challenges of their detection.

Index Terms—tcp syn flood, syn cookies, syn authentication,
syn flood mitigation

1. Introduction

When establishing a new TCP connection, the server
stores the corresponding state in a transmission control
block (TCB) which is needed to establish the connection.
The minimum size for said block is 280 bytes whereas
Linux uses 1300 bytes per block. A new TCB is created
and stored in the backlog for each TCP SYN packet
received. This information persists during the three way
handshake until the connection is either established or a
timeout occures as explained by Eddy in [1].

TCP SYN flood attacks exploit this weakness: they
initiate many half-open connections in a short time but
never complete the handshake. The flood of connections
forces the server to keep many unnecessary TCBs for
those connections in the backlog which is eventually filled.
Upon exhaustion, which is reached with 100 to 1000
connections, no new connections can be established to
handle legitimate requests and the DoS attack has been
successful [1].

Mitigating this problem is important since not being
able to handle such floods can for instance lead to outages.
As an example, starting in October 2012, a large US
bank was a target of such a flood but unable to mitigate
the attacks for more than 5 months. This caused the
bank’s online service to be unusable every now and then
according to [10]. It is desirable that servers under attack
are still capable of delivering their services. Mitigation
techniques are designed for this usecase, aiming to protect
the server from being unreachable.

The rest of the paper is structured as follows in Sec-
tion 2, the TCP three way handshake including its weak-
ness is explained. Different countermeasures with their
advantages and disadvantes are introduced in Section 3.
Section 4 covers why it is difficult to detect which of
those techniques is currently in use. In the conclusion

these techniques get compared in terms of memory and
computing immunity as well as effectivity.

2. TCP Three Way Handshake

Client Server

1. SYN SEQ=x

2. SYN-ACK SEQ=y ACK=x+1

3. ACK SEQ=x+1 ACK=y+1

Figure 1: TCP Handshake

As seen in Figure 1, a TCP handshake consists of
three packets being exchanged between the client and the
server. Those are used to inform both endpoints about each
other’s sequence number and the corresponding acknowl-
edgments.

When the server receives the SYN packet, a TCB
is created and stored in the backlog, primarily to keep
track of the options selected / requested in the header. It
contains, among others, the source / destination addresses
and ports as well as the sequence numbers received from
and sent to the client [1].

Once the handshake is completed, the TCB is removed
from the backlog and does not put stress on the bottle-
neck anymore. Therefore the limited resource is consumed
starting with the reception of the first packet until the third
packet is received or a timeout occured [1].

In case of a SYN flood, the second packet is ignored
by the attacker and therefore the third packet will never
be sent. As a result the TCBs use up memory until the
timeouts occur [1].

3. Mitigation Techniques

This section describes and compares the advantages
and disadvantages of different approaches used to decrease
the vulnerability by the SYN flooding attack.

3.1. Filtering

When a router receives a packet, it verifies that the
source address specified in the received packet is actually

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

67 doi: 10.2313/NET-2019-06-1_14

reachable. A reasonable check to use is strict reverse path
forwarding. This method only forwards packets “if the
packet is received on the [network] interface which would
be used to forward [...] traffic to [the packets’ source
address]” as explained by Baker and Savola in [9]. The
dropped packet must have a spoofed source IP and did not
come from a legitimate host in the network [1] as shown
by Salunkhe et al. in [3].

Advantages: Sending spoofed packets is much more
difficult and no changes to TCP are necessary [1].

Disadvantages: Filtering only works for spoofed IP
addresses which are not reachable and is therefore inef-
fective against an attacker which controls multiple hosts.
Global deployment of filters is also neither guaranteed nor
likely [1].

3.2. Increased Backlog

This technique solves the problem that the backlog is
filled too quickly by simplyincreasing its size. The obvious
result is that more connections can be stored [1] [3].

Advantages: More connections can be stored, there-
fore filling the backlog takes a bit longer.

Disadvantages: The backlogs’ implementation is not
designed to scale, e. g. the search algorithm used is not
trimmed for efficiency. It can also be circumvented simply
by increasing the attack rate [1].

3.3. Reduced SYN-RECEIVED Timer

Instead of increasing the backlog, this approach re-
duces the duration for which the connections can occupy
the backlog by reducing the SYN-received timer [1] [3].

Advantages: Incomplete connection attempts get re-
moved earlier from the backlog.

Disadvantages: If the process of establishing a con-
nection takes longer than normal, e. g. due to a slow
network connection, legitimate connections might not get
established [3]. It is equally ineffective for the same
reason: an increased attack rate can easily make up for
the lower timeout [1].

3.4. Recycling the Oldest Half-Open TCB

This technique mitigates the attack by recycling the
oldest half-open connection once the backlog is ex-
hausted [1].

Advantages: It works if the time to fully establish
a connection is lower than the time needed to fill the
backlog [1]. This means that the attack rate must be low
or the backlog must be big enough.

Disadvantages: The approach fails if the backlog
gets filled too quickly [1] since slow connections can be
evicted.

3.5. SYN Cache

Each new connection is stored in a minimized TCB
which in turn is stored in a hashmap with a limited bucket
size. The bucket in which to store the TCB is selected by
hashing the IP adresses, ports and secret bits from the
header which the server chose beforehand and the oldest

entry is dropped if the bucket is full. Generating the hash
from secret bits prevents malicious clients from overflow-
ing a specific bucket and therefore dropping legitimate
connections [1] [3]. It was “the most effective and the
most used” technique back in 2008 according to Oncioiu
and Simion in [8].

Advantages: The secret bits prevent attackers from
overflowing buckets and dropping legitimate connec-
tions [1].

Disadvantages: Because the complete TCB is not
stored, some information is left out and must be retrans-
ferred once the connection gets established [1].

3.6. SYN Cookies

As the value of the initial sequence number (ISN) used
in the handshake can be chosen at random, the server can
give this number a special meaning e. g. by encoding data.

SYN Cookies use this very number to encode the
state which would otherwise be stored as a TCB in the
backlog and therefore prevent the latter from filling up.
The value consists of three parts which get concatenated:
the slowly increasing timestamp the server keeps track
of, the maximum segment size as well as a hash of the
client’s ISN as well as the source / destination address
and port. When the client’s acknowledgement is received,
the server substracts one from the acknowledgement
number and compares it to the encoded state using the
last few timestamps. If the encoded states match, it is a
legitimate client and the TCP handshake is completed
successfully. The use of a timestamp prevents replaying
the packet at a later time. A TCB is created using the
state and directly stored as an established connection,
therefore never allocating resources in the backlog [1]
[3] as presented by Lemon in [5], Ricciulli et al. in [6]
and Liu and Sheng in [7].

Advantages: No memory is consumed to store the
state because it is encoded in the server’s initial sequence
number instead [1].

Disadvantages: The sequence number is smaller
than the TCB, therefore, not the whole state can be
stored and data retransmission may be necessary. The
SYN-ACK cannot be resent because the state is not stored
on the server. This behavior breaks the TCP semantics.
This technique is only effective in a low degree SYN
flood attack as space is traded for processing time [1].

3.7. TCP SYN Authentication

Legitimate clients can be identified if they follow
the TCP specification unlike attackers who just flood the
server with SYN packets.

SYN Authentication uses a special mitigation device
between the client and the server. If a client wants to
establish a connection to the server, it actually does the
TCP handshake with that device. When the intermediate
device receives a SYN packet, it responds with a
SYN+ACK packet containing an invalid acknowledgment
number. The client has to respond with a RST packet
as defined in the TCP specification. If it does, the
client is authenticated beause attackers do not handle

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

68 doi: 10.2313/NET-2019-06-1_14

Packet Counter Action Pass?

SYN None Move to C-1 ×
SYN C-1 Move to C-3 X
SYN C-2 None X
SYN C-3 Add to C-3 ◦
ACK None None ×
ACK C-1 None ×
ACK C-2 None X
ACK C-3 Move to C-2 X

X (pass the packet), × (drop the packet), ◦ (pass is less likely)

TABLE 1: Handling of SYN and ACK packets

invalid packets and may not even receive it, e. g. if
they use spoofed IP addresses. Since the client is
now authenticated, the mitigation device allows direct
communication between the client and the server as
shown by Nagai et al. in [2]. In other flavors the server
may send a reset and also track the hop count.

Advantages: The server does not allocate resources
for incomplete connections as the mitigation device
ensures that the connection is legitimate [2].

Disadvantages: The client needs to do the handshake
twice [2]. This slightly increases the connection
establishment time in times where RTTs should be low.

3.8. Three Counters

Attackers flood the server with many SYN packets
without responding which can be distinguished from le-
gitimate requests. Because the latter follow the TCP spec-
ification, they can resend packets which were lost and
correctly reply to the server’s responses.

This technique makes use of three counters, C-1 to
C-3, in which different packets will be stored. The first
counter records initial SYN packets, the second stores
SYN packets of established connections, and the last
records any other SYN packets. These counters are typ-
ically used after a flood has been detected. Their usage
can be seen in Table 1 and is explained in the following
paragraphs [4].

A 4-tuple consisting of the source / destination ad-
dresses and ports is extracted from each received SYN
packet and queried against the three C-s. If it is not found,
the tuple resembles a new connection and is added to C-
1 while the packet is being dropped. If it is in C-1 or
C-2 the packet is passed and the tuple is moved to C-
3 in the first case. Otherwise the packet must be in C-3
and it is forwarded with a propability p, decreasing for an
increasing number of packets received. This is achieved
by adding the tuple to C-3 multiple times and querying
the counter for the total amount [4].

Received ACK packets are handled in a similar
manner using the same 4-tuple. If the packet is in C-2 or
C-3, the packet is passed and moved to C-2 if not done
yet because the connection is now completed. In any
other case, the packet will be dropped because a SYN
packet must be received before an ACK as explained by
Gavaskar et al. in [4].

Advantages: This technique is effective against many

identical packets as they are less likely to be passed the
more often they are received.

Disadvantages: Every SYN packet has to be sent
twice. Duplicating every SYN packet is a problem
because the latter will be forwarded to the server for
sure. Furthermore following the two SYNs with an ACK,
without the need to actually listen for a SYN-ACK
response, renders this countermeasure ineffective while
not affecting other approaches because the sequence
numbers are not tracked. Lastly, flooding the server with
a spoofed SYN packet, essentially preventing that very
packet from being forwarded can cause problems if a
legitimate client attempts to connect using the same SYN
packet.

3.9. Random drop

Similar to technique 3.4, a connection is dropped once
the backlog is full. The difference is that the connection
chosen at random and the client is informed with a TCP
Reset (RST) [6].

Advantages: As most of the entries in the backlog
are from the attacker, this mitigation technique has a high
chance to drop the malicious connections [6].

Disadvantages: There is a small propability that le-
gitimate connection attempts get denied [6].

3.10. SYN Agent

Instead of doing the handshake with the server, the
client does that with the SYN agent instead. After the
handshake is completed, there are two ways to continue
depending on the kind of agent.

The first option is that the agent does the handshake
with the server imitating the client. Once this is completed,
the difference between the agent’s and the server’s se-
quence number has to be remembered. It is applied to each
message the agent receives from either side and modified
before it is forwarded.

The other option is that the agent informs the server
about the successful handshake by sending an ACK
packet to the server with the reserved bit set to one.
This includes the sequence number the agent used while
establishing the initial connection. The advantage of
this method is that the agent just forwards the messages
without touching them. As a result, the agent does not
need to store the difference and the computational effort
is also decreased [7].

Advantages: The server is guaranteed to only get
to know serious connection attempts. The latter option
also reduces the load on the agent [7].

Disadvantages: An extra agent is needed which
has to store information about half-open connections [7].
If the first option is chosen, the agent is also given
additional computational effort.

4. Detection

The detection and identification of the mitigation tech-
niques in use is difficult because they are only active

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

69 doi: 10.2313/NET-2019-06-1_14

while the server is being flooded with excessive SYN
packets. Some countermeasures are hard to identifiy from
the outside even if they are currently active. To make if
even more difficult, not every technique has an unique
measurable outcome.

Sending SYN packets alone does not yield any in-
formation about the protection mechanisms used because
the necessary information is contained within the received
SYN-ACK packet. A SYN-ACK which is not sent yields
additional information as well. For these information to
be collected a legitimate client or tool is required which
actually listens for those responses.

An increased backlog or the reduced timeout are
practically undetectable because they are essentially con-
figuration options which could also just be configured
large or short respectively. Additionally, these measures
simply delay the point of exhaustion by allowing more
half-open connections to be stored at the same time or
removing them earlier.

Recycling is mostly undetectable as the oldest half-
open connection is resetted. The attack rate must be high
enough for this technique to get noticable by preventing
legitimate connections from being established.

Besides being quite similar, random drop is even
harder to detect because the amount of dropped con-
nections is equal however the legitimate clients have a
decreased chance to be chosen. This technique is therefore
even more difficult to be identified.

Filtering is partly detectable because SYN packets
with spoofed addresses do not get forwarded and because
of that no SYK-ACKs for those can be captured.

Caching is difficult to detect as it can be identified
if information needs to be retransmitted. This technique
should not be identifiable by dropped connections as the
probability of a real one being reset is rather low.

SYN Cookies are not detectable since the initial se-
quence number is a hash value.

SYN Authentication is identifiable by the first SYN-
ACK which is always invalid.

Three counters are detectable as the first SYN will
always be dropped for a new connection. In addition
sending many packets in the name of a valid client might
block it from connecting.

The agent cannot be identified as it duplicates and
imitates the server.

5. Conclusion

In order to prevent exploitation of the weakness in
the TCP specification, many TCP SYN flood mitigation
techniques have been developed. They are summarized in
Table 2.

Some techniques like increasing the backlog or reduc-
ing the timeout focus on delaying the exhaustion of the
backlog while others try to prevent it from getting full, like
SYN agent or SYN cookies. Additionally, recycling and
random drop take no precautions to prevent the backlog
from being filled, instead, they simply drop a connection
from the backlog if it is full based on the respective
heuristic algorithm.

SYN Cookies are the best choice if the migitation
technique must be ready for immediate use because this
method is included in Linux. They can therefore be used

Technique G
ua

ra
nt

ee

M
em

or
y

Im
m

un
ity

C
om

pu
tin

g
Im

m
un

ity

R
ob

us
tn

es
s

G
oo

d
Pe

rf
or

m
an

ce

Filtering ◦ X × X ×
Increased Backlog × × × X ×
Reduced Timeout ◦ × X X X
Recycling ◦ X X X X
SYN Cache X X × X ×
SYN Cookies X X × × X
SYN Authentication X X X X ×
SYN Agent X X X X X
Three Counters ◦ × × X ×
Random Drop × X X X X

X (fulfilled), × (not fulfilled), ◦ (depends on the attack)
This table further extends the one from [6].

TABLE 2: Comparison of Mitigation Techniques

even if no countermeasures have been taken beforehand.
A SYN Agent should be used when the server must be
protected from flooding attacks under all circumstances
however a separate machine with enough memory han-
dling the incoming traffic is needed. SYN Authentication
can be used instead of SYN Cookies if correctly following
the TCP specification is more important than the response
time as the intermediate device can resent the SYN-ACK
packets however the handshake has to be done twice.

References

[1] W. Eddy, “TCP SYN Flooding Attacks and Common Migitations”,
RFC 4987, August 2007

[2] R. Nagai, W. Kurihara, S. Higuchi, T. Hirotsiu, “Design and Im-
plementation of an OpenFlow-based TCP SYN Flood Mitigation”,
6th IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering, 2018

[3] H. S. Salunkhe, Prof. S. Jadhav, Prof. V. Bhosale, “Analysis and
Review of TCP SYN Flood Attack on Network with Its Detection
and Performance Metrics”, International Journal of Engineering
Research & Technology, January 2017

[4] S. Gavaskar, R. Surendiran, Dr. E. Ramaraj, “Three Counter De-
fense Mechanism for TCP SYN Flooding Attacks”, International
Journal of Computer Applications, September 2010

[5] J. Lemon, “Resisting SYN flood DoS Attacks with a SYN Cache”,
USENIX Association, February 2002

[6] L. Ricciulli, P. Lincoln, P. Kakkar, “TCP SYN Flooding Defense”

[7] P.-E. Liu, Z.-H. Sheng, “Defending Against TCP SYN Flooding
with a new Kind of SYN-Agent”, Proceeding of the 7th Interna-
tional Conference on Machine Learning and Cybernetings, July
2008

[8] R. Oncioiu, E. Simion, “Approach to Prevent SYN Flood DoS
Attacks in Cloud”

[9] F. Baker, P. Savola, “Ingress Filterin for Multihomed networks”,
RFC 3704, March 2004

[10] radware Inc, “Operation Ababil”, Online, 2013, last visited 2018-
12-06, https://security.radware.com/WorkArea/DownloadAsset.
aspx?id=848

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

70 doi: 10.2313/NET-2019-06-1_14

Networking in Biscuit

Sebastian Voit, Paul Emmerich∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: voit@in.tum.de, emmericp@net.in.tum.de

Abstract—Biscuit is a High Level Language (HLL) kernel
written in Go as a research project to evaluate the impact
HLLs have on the performance of operating systems. Go was
chosen as it allows easy asm calls, offers good concurrency
and can be statically analyzed and compiles to machine code.
While Biscuit as a whole has been thoroughly analyzed, this
is not true for its components. In this paper we present
Biscuit’s ixgbe network driver and its implementation. The
driver is separated into three main parts: initialization
and packet reception and transmission. Afterwards it is
compared with ixy.go, an ixgbe user space network driver
for Linux systems. Go systems are notably slower (around
15%) then the same systems written in C but offer increased
security as memory related bugs cannot occur.

Index Terms—Biscuit, Go, Networking, NIC, Driver

1. Introduction

Today the internet is arguably one of the most im-
portant aspects of IT. The ISO/OSI model is well known
and describes the process of sending information from
one participant to another on a high and abstract level.
Network Interface Controller (NICs) are pieces of hard-
ware that implement the necessary functionality to send
and receive data using physical and link layer standards
and thus provide the base of the ISO/OSI model. NICs
are accessed using drivers that allow communication be-
tween the physical card and the software running on the
computer and therefore are an integral part of Operating
System (OS) kernels. These kernels are almost exclusively
written in C (or the C family) and assembler, be it a Linux
kernel or a Windows NT kernel and thus the drivers are as
well. However in recent years there has been an effort to
write OS kernels in different languages. Biscuit [1] is such
a kernel and is written in the Go programming language
and assembler. In this paper we will take a look at its
implementation of the ixgbe network driver for the Intel
82599 10GbE controller.

Section 2 gives an overview of network drivers in
general, more specifically of those written in Go, and the
resulting differences. In Section 3 the driver implemented
in the Biscuit kernel will be presented. Next we will
compare the driver with a user space network driver for
the same device family written in Go, ixy.go, in Section 4
and finally, close this paper by pointing out advantages
and disadvantages of these drivers in section 5.

2. Network Drivers (in Go)

Drivers are pieces of software that allow communica-
tion between a hardware device and the rest of the system.
The driver abstracts from the actual hardware access and
instead exposes interfaces that are better to handle from
an outside programmer’s perspective. The datasheet for
the Intel 82599 family is freely available online and
describes the NIC in its full extent [2].

In case of drivers for network cards there are multiple
things that have to be managed:

• Transmit queues (TX) and receive queues (RX) are
used by the NIC to receive and send packets. They
are organized as ring buffers.

• DMA (Direct Memory Access) memory for the pack-
ets which the NIC and the driver can access.

• DMA memory for the packet descriptors. They hold
information about the corresponding packet buffers
and the packets contained in them and control the
behavior of the packet buffers. They are organized
as ring buffers.

• Access to the PCI device file in order to control the
NIC and enable DMA memory.

• Access to the pagemap (interface for the page tables)
as NICs work with physical addresses. It has to be
ensured that the mapping stays consistent.

These are general problems for network drivers, indepen-
dently of whether they are written for the user or kernel
space. Specific problems are discussed in Section 4.

Using Go to write network drivers is similar to writing
a network driver in C, as the language has intentionally
been designed with this similarity in mind. Apart from
obvious changes to the syntax it has to be noted that Go
does not support many of the tools that are standard in
systems programming, specifically in driver programming.
These include the volatile operator as reads and writes to
registers have to be processed immediately and cannot
be cached. Another important aspect of Go is that while
it does support pointers, due to its runtime and type
safety feature, it does not support pointer arithmetic. In
C one usually operates on the allocated DMA memory
via pointers. In Go this is only possible via the use of the
unsafe package that offers unsafe or arbitrary pointers,
which circumvent the runtime as well as many safety
measures. Thus care is required in order to break as few
assumptions of the runtime as possible when using this
approach.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

71 doi: 10.2313/NET-2019-06-1_15

3. Architecture

In the following we will take a look at the ar-
chitecture of biscuit’s network driver. We start with a
high level description and then go on to further elab-
orate the details and components. All function names,
line numbers, and other code references refer to the file
/biscuit/src/ixgbe/ixgbe.go of commit 2a2dbe1 of
the biscuit github page 1.

3.1. Overview

On a high level the driver manages the NIC and
its state, transmit and receive queues, handles incoming
packets and hands them over to applications on top of the
driver, and offers an interface which can be used to send
packets.

The driver can be loaded by calling its Ixgbe_init()
function, which registers the PCI device and its initial-
ization function attach_ixgbe() (lines 1272ff.). This
function executes the setup procedure: configure flow
control, offloading, RX and TX queues and interrupts.
After the initialization, received packets will automati-
cally be handed over to the network stack and an in-
terface Tx_[raw|ipv4|tcp|tcp_tso]() (lines 911ff.) is
provided for sending packets of different types.

3.2. Details

After this high level view of the driver’s architecture
we present a more detailed description of its components.
It is recommended to have the implementation and the
datasheet at hand. References to sections in the datasheet
will be noted as DS X where X is the section number.

3.2.1. Receive and Transmit Descriptors. The code it-
self starts with the definition of all relevant constants and
corresponding helper functions (lines 1 to 309, DS 8.2 and
8.3). Afterwards the TX and RX descriptors and functions
on them are defined. Note that the advanced descriptors
are used. Refer to DS 7.1.6 for the Advanced Receive
Descriptors and DS 7.2.3.2 for the Advanced Transmit
Descriptors. These registers are represented as two 64-
bit unsigned integers each, thus reading and writing is
done by setting the corresponding bits to 0 or 1. The NIC
supports various offloading features such as computing
and verifying checksums. The function ipsumok() (line
356) operates on the write-back format and checks, in
case a non layer two packet was received, whether the
bits 6 and 31 of the descriptor’s second line are set as
this indicates a bad IP checksum.

3.2.2. Device Properties. Next, starting from line 615,
the status of the device is described and functions are
defined that handle and mutate its state. A device has the
following properties:

• Pci address (tag):
The pci address the device is located at. Most impor-
tantly the Base Address Registers (BARs) addresses
are exposed via pci.

1. https://github.com/mit-pdos/biscuit/tree/
2a2dbe1228881c94764f1cdf6134dca27defab12

• BAR0 address (bar0):
The BARs expose configuration and control regis-
ters to the drivers. While the NIC’s address space
is mapped into multiple memory regions, only the
BAR0 is necessary as described in DS 8.1. This
address space is mapped in init() (line 650ff.) and
accessible via the bar0 slice.
The functions rs() and rl() (lines 681ff. and 688ff.)
write to and read from the registers as an offset of
bar0.

• Transmit queues (txs):
Queues that are used for packet transmissions. Con-
tains TX descriptors and their current number. The
queue tail as well as some additional parameters are
cached to reduce expensive register reads.
Packets can be enqueued for transmission with the
Tx_[raw|ipv4|tcp|tcp_tso]() (lines 911ff.) func-
tions. Note that sending is asynchronous: an en-
queued packet does not have to be sent out imme-
diately but the NIC will set the DD flag of the TX
descriptor once it has been sent out.

• Receive queue (rx):
Queue that are used for packet receptions. Contains
RX descriptors, their current number, a slice refer-
encing the packets and the queue tail is cached.

• Number of allocated pages (pgs):
Incremented by one whenever a page is added (see
pg_new(), line 89ff.).

• Link status (linkup):
Whether the NIC is operational.

This is not the full list but includes most that are relevant
for a general understanding. Refer to the implementation
for the full list.

3.2.3. Sending. Next we will take a more detailed look at
sending. The Tx_[raw|ipv4|tcp|tcp_tso]() functions
(note that these are the exported functions as they start
with a capital letter) all call _tx_nowait() (lines 927ff.)
with the corresponding arguments. This function locks a
TX queue and calls _tx_enqueue() (lines 963ff.) which
handles the actual sending. It takes information about the
packet to send and tries to enqueue the packet in the
transmission queue. The function returns true on success.

First the packet buffer is checked for empty rows
which will be deleted and parameters are checked for
correctness. The hardware controls the head pointer and
the driver the tail pointer of the ring buffer. The next step
is to find out how many buffers are needed and whether
there are enough that are free for use. The DD (descriptor
done) flag of the status register is set when the descriptor
is done, indicating that the packet has been sent out and
the descriptor can be reused. The eop (end of packet)
flag is set if it is the last descriptor of a packet (see DS
7.2.3.2.4 for the flags). If there are not enough descriptors
for the packet buffer, the function returns false, else there
is enough space in the transmit queue and the packet can
be enqueued.

For sending, the packet headers will be handled first
and the rest of the packet afterwards, refer to lines 1046
ff. for the enqueueing. Depending on the type of packet
(ethernet, ipv4, etc.) the approach has to be different to
accommodate to the packet properties. After the header
is done, the payload can be treated independently. The

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

72 doi: 10.2313/NET-2019-06-1_15

only thing left is to update the tail pointer so that the
NIC can now send out the packets in the queue.

3.2.4. Receiving. Now that we have discussed how send-
ing packets works, the next step is receiving packets. This
is implemented in rx_consume() in lines 1086ff. Receiv-
ing works on a RX queue which is organized similar to a
TX queue. A memory area that is handled as a ring buffer
with a head pointer controlled by the hardware and a tail
pointer controlled by the driver. When processing received
packets it first has to be checked for the DD flag, which
indicates a received packet, until the current head is found.
In the case of no newly received packets the function is
done. Note that the tail itself is empty and thus has to be
skipped. For each descriptor DMA memory in the size of
the packet is allocated and the packet is then handed over
to the network stack. Afterwards the descriptors are reset
and the tail pointer update is sent to the NIC.

3.3. Interrupt Handling

When operating a NIC interrupts may be triggered
which need to be handled by the driver. For this driver
interrupt handling is implemented in int_handler() (lines
1151ff.). Interrupts are described in DS 7.3. First the
interrupt handle has to be registered. The code then runs
in a forever loop: wait for an interrupt and handle it.

Four different types of interrupts in the Extended Inter-
rupt Cause Register (EICR, DS 7.3.1.1 for the description
and DS 8.2.3.5.1 for the register) are handled. Note that
the queue interrupts are mapped to bit 0 for all RX queues
and to bit 1 for all TX queues (lines 1406-1409, DS
8.2.3.5.16).

• RX queue interrupt (bit 0):
Is raised on descriptor write back, a full queue or
upon reaching a minimum threshold. Thus as this
indicates newly received packets, they are to be re-
trieved via a call to rx_consume()

• TX queue interrupt (bit 1):
Is raised on descriptor write back. This indicates that
packets have been sent out but as sending is done via
the corresponding functions, nothing has to be done.
It has to be assumed that this is left over from the
programming process.

• Rx Miss (bit 17):
Is raised when packets are dropped due to a full
Rx queue (overrun). Nothing additional that can be
done as rx_consume() would already be running and
packets arrive faster than they are being sent out;
increment statistic.

• Link Status Change (bit 20):
Is raised when the link status changes, e.g. from down
to up or vice versa. The new status is printed, the NIC
is tested and a goroutine is started that periodically
prints the number of received and dropped packets.

3.3.1. Setting Up the NIC. Now that the operations
of the driver on the NIC are defined, the only thing
that is left is the setup of the device. This is done in
the attach_ixgbe() function (lines 1272ff.). DS 4.6.3
describes this procedure. Please refer to the datasheet
for flag and register names and other details which we

cannot cover here. Note that the steps in the driver are
not necessarily is the same order as proposed in the
datasheet as reordering can be more efficient, as long as
it does not influence the result e.g. PHY is reset before
waiting for the DMA initialization as the latter has no
influence on the former.

1) Disable Interrupts and call init() (lines 650ff.) on
a new ixgbe_t struct which from then on represents
the device. After the reset disable interrupts again
(DS 4.6.3.1).

2) As flow control is disabled, the registers FCTTV,
FCRTL, FCRTH, FCRTV and FCCFG are set to 0x0
(DS 4.6.3.2) and the assumption of disabled flow
control is checked.

3) No snoop is enabled. Processor caches do not have
to be snooped in this case and direct access to the
DRAM is faster.

4) The physical address is reset via MDI command: the
MSCA register (8.2.3.22.11) allows the use of the
MDIO interface (3.7.6) with which physical registers
can be accessed. As clause 45 operations are utilized,
op code 00b has to be sent first and afterwards 11b
for the read (DS 3.7.6.4).

5) Wait for the DMAIDONE flag of the RDRXCTL
register.

6) Load the MAC address from the Receive Address
Registers and cache it.

7) Enable Message Signaled Interrupts (MSI) via PCI
and ensure that legacy interrupts are disabled.
Reset all interrupts (EIAC register), disable au-
tomask (EIAM registers), disable interrupt throttling
(EITR(n)), and map all RX queues to EICR bit 0 and
all TX queues to EICR bit 1 (4.6.6).

8) Disable Receive Side Coalescing (RSC), a technique
that would accumulate TCP/IP packets that belong to
the same flow into large packets [3].

9) Enable and configure receive queues (4.6.7):
a) Disable VLAN features PFVFSPOOF, MPSAR,

PFUTA, PFVLVFB (4.6.10) and VFTA (7.4.4).
b) Enable ethernet boardcast packets for ARP func-

tionality (FCTRL bit 10).
c) Offloading: IP checksum (RXCSUM bit 12,

8.2.3.7.5), strip CRC (RDRXCTL bit 1) and bit
12 of the DCA control register must be set to 0.

d) Setup RX queue:
i) Allocate new page for queue and send ad-

dress and size to NIC.
ii) Calculate number of descriptors and allocate

a new packet buffer for each (2048B buffers,
two per page).

iii) Disable header splitting (SRRCTL bits
25:27), write descriptors to the NIC and
initialize the receive head pointer (RDH).

iv) Enable the queue (RDRXCTL bit 25), set
the receive tail pointer (RDT) and enable
receive (RXCTRL bit 0).

10) Enable and configure transmit queues (4.6.8):
a) Map all TX queue statistics to a single counter.
b) Enable layer two offloading via HLREG0

(7.1.3): CRC offloading (bit 0) and stripping (bit
1), padding (bit 10) and receive length errors (bit

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

73 doi: 10.2313/NET-2019-06-1_15

27).
c) _dbc_init() (actually referring to DCB, Data

Center Bridging, see 4.6.11 for the configuration
and 7.7 for the description) (lines 1779ff.):
• Implements DCB-off, VT-off (4.6.11.3.4) as

neither flow control not virtualization is sup-
ported.

d) Setup multiple TX queues (default four):
i) Number each queue, allocate a new page for

the descriptors and send address and size to
NIC.

ii) Calculate number of descriptors and allocate
a new packet buffer for each (2048B buffers,
two per page) and set the DD and eop flags
so they are ready for use.

iii) Disable head write-back of the queue.
iv) Transmit Control (TXDCTL(queue_id)):

Set thresholds for Pre-Fetch, Host and
Write-Back. These values orient themselves
at the number of descriptors that fin in a
cache line to avoid cache thrashing.

v) Initialize descriptor head and tail.
e) Enable transmission (DMATXCTL bit 0).
f) Enable transmission queues (TXD-

CTL(queue_id) bit 25) and wait for success.
11) Configure and enable interrupts:

a) Set the General Purpose Interrupt Enable regis-
ter (GPIE, 8.2.3.5.18) to 0. This, among others,
configures the use of MSI interrupts and clears
the EICR register on read and disables many
unneeded features.

b) Set the interrupt throttle to a 125µs as lower val-
ues can have significant impact on performance,
especially within TCP bulk transfer.

c) Clear previous interrupts (EICR) and start the
interrupt handler as a goroutine.

d) Enable transmit and receive queue interrupts as
well as link change interrupts while disabling all
other types of interrupts (EIMS).

The rest of the code are testing functions which we will
not discuss in this work.

4. Comparison with ixy.go

Another driver for Intel 82599 10 GbE Controller
written in Go is ixy.go [4]. This is a user space driver
for Linux operating systems. This means that it runs
completely in user space compared to Biscuit’s ixgbe
driver that is part of the kernel. Therefore while the NIC is
still programmed in the same way, the approach differs at
times. We will not consider differences in the functionality
of the drivers as ixy.go is meant to be an educational
driver and thus is intentionally kept simple and without
much of the functionality that a driver for a running kernel
needs. From a high point of view, there is not much
difference to be found: On startup the NIC is initialized by
programming the registers. Afterwards received packets
are handled and packets can be send via an interface.
Table 1 lists high level stats of both systems. However
writing a kernel driver versus writing a user space driver
imposes two mayor differences:

1) A user space driver does not have access to privileged
system functions and must use syscalls instead.

2) While Biscuit’s driver has to provide general purpose
packet processing by itself for the rest of the system,
ixy.go offers an API with explicit memory allocation,
batching and abstraction that is similar to DPDK [5]

Two main challenges arise from the first point. As new
pages cannot simply be allocated from the user space, this
has to be done via Mmap() from the syscall package [6].
This also changes the way memory is administered. The
second challenge is the page virtualization. In Biscuit’s
driver a new physical page is allocated but from the user
space only virtual pages can be allocated. The mapping
virtual to physical addresses for the NIC via the pagemap
is not an issue but the page migration algorithm can
change this mapping at any time. Fortunately, it is not
implemented for huge pages which are thus used to keep
the physical addresses consistent.

The second difference is mainly an architectural one.
Biscuit’s network driver automatically checks for incom-
ing packets upon interrupts and hands them over to the
network stack. ixy.go on the other hand offers the Rx-
Batch() function which checks for received packets and
hands them back in the provided buffer. It is the respon-
sibility of applications built on top of ixy.go to regularly
check for incoming packets instead of the driver. Sending
is more similar with the main difference being batching.
ixy.go has a virtual copy of the packet ring as reading
flags is a rather expensive operation. When sending a
batch of packets, it is first checked whether a batch of
packets has been sent out, reducing the register access
to once per batch and afterwards enqueueing as many
packets as possible. Biscuit’s driver instead checks the
descriptor once per previously sent packet (eop is cached)
until enough space is found but does so for each packet.

5. Conclusion

In this paper we took a look at the network driver
of the biscuit kernel. Biscuit has been developed as a
scientific operating system to test the impact of higher
level languages on operating system kernels. While the
system runs notably slower due to the garbage collection
and runtime, this impact might still be acceptable for
certain use cases. On the other hand Go also brings a
distinct set of advantages such as memory safety. Advan-
tages as well as disadvantages also extend to the network
driver. Here speed is key and Go is slower then C. The
user space driver ixy.go [4] showcases a clear loss in
performance compared to its parent project written in C
(10-20% depending on batch size and CPU speed). Cutler
et al. also found that the kernel as a whole suffered a
performance loss of 15% [1] compared to a C kernel. Still,
speed is not everything, a driver also has to be secure.
Cutler at al. analyzed 65 code execution vulnerabilities in
the Linux kernel, 40 of which would have been prevented
when using Go. In the end the choice of language always
results in a trade-off between speed and security.

Because of these trade-offs we argue that is important
to re-implement existing software in other programing
languages. In this case Go offers security mechanisms
where C programs are vulnerable. Re-implementations
can be evaluated and their advantages and disadvantages

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

74 doi: 10.2313/NET-2019-06-1_15

biscuit ixy.go

lines 1900 (1600 without
register offsets) 1000

unsafe pointer rx & tx descriptor structs register access,
physical address calculation

memory allocation physical pages mmap(2) syscall

application area provide packet receive &
send functionality to kernel

low level API for
fast packet processing

TABLE 1: Comparison of Biscuit’s ixgbe driver and ixy.go

quantified. Similar to the CAP theorem [7] there are
always properties that are more important then others
depending on the system. Thus having the same programs
with different properties lead to generally better systems.

References
[1] C. Cutler, M. F. Kaashoek, and R. T. Morris, “The benefits and

costs of writing a POSIX kernel in a high-level language,” in 13th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 18), (Carlsbad, CA), pp. 89–105, USENIX Association,
2018.

[2] Intel, “Intel 82599 10 gbe controller datasheet rev. 3.3.”
https://www.intel.com/content/dam/www/public/us/en/documents/
datasheets/82599-10-gbe-controller-datasheet.pdf. Last visited
30.11.2018.

[3] S. Makineni, R. Iyer, P. Sarangam, D. Newell, L. Zhao, R. Illikkal,
and J. Moses, “Receive side coalescing for accelerating tcp/ip pro-
cessing,” in High Performance Computing - HiPC 2006 (Y. Robert,
M. Parashar, R. Badrinath, and V. K. Prasanna, eds.), (Berlin,
Heidelberg), pp. 289–300, Springer Berlin Heidelberg, 2006.

[4] S. Voit and P. Emmerich, “Writing network drivers in go,” 2018.

[5] DPDK Project, “Dpdk website.” https://dpdk.org/. Last visited
14.12.2018.

[6] Go Project, “Go syscall package.” https://golang.org/pkg/syscall/.
Last visited 14.12.2018.

[7] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility
of consistent available partition-tolerant web services,” in In ACM
SIGACT News, p. 2002, 2002.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

75 doi: 10.2313/NET-2019-06-1_15

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

76

Recent Progress on the QUIC Protocol

Mehdi Yosofie, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: mehdi.yosofie@tum.de, jaeger@net.in.tum.de

Abstract—Internet services increase rapidly and much data
is sent back and forth inside it. The most widely used
network infrastructure is the HTTPS stack which has several
disadvantages. To reduce handshake latency in network
traffic, Google’s researchers built a new multi-layer transfer
protocol called Quick UDP Internet Connections (QUIC). It
is implemented and tested on Google’s servers and clients
and proves its suitability in everyday Internet traffic. QUIC’s
new paradigm integrates the security and transport layer
of the widely used HTTPS stack into one and violates the
OSI model. QUIC takes advantages of existing protocols and
integrates them in a new transport protocol providing less
latency, more data flow on wire, and better deployability.
QUIC removes head-of-line blocking and provides a plug-
gable Congestion Control interface.

This paper indicates the disadvantages of the traditional
HTTPS stack and presents the main features of the QUIC
protocol which is currently standardized by the Internet
Engineering Task Force (IETF).

Index Terms—networks, multi-layer transport protocol,
latency reduction

1. Introduction

The Internet is used every day by many readers of this
paper. Internet giants like Amazon, Google, and Facebook
provide many applications and (web) services which let
the amount of data grow significantly. This data has to
be exchanged fast, reliably, and securely. Transferring
this data is possible through the existing infrastructure.
The most widely used one is the HTTPS stack. HTTP is
transported over TCP and is secured through TLS. This
network paradigm is approved and will be used for many
years to come. However, the speed to built up a connection
between client and server and to deliver data between
them can be improved. Quick UDP Internet Connections
(QUIC) may be a solution and a good replacement of
the traditional Internet stack. The new paradigm of QUIC
combines the transport layer and the security layer into
one and provides improved features than TCP/TLS. QUIC
is developed by Google. The researchers implemented the
protocol and tested it on production mode on their servers
such as YouTube and other Google web services, and
client applications such as Chrome/Chromium. To be able
to communicate over QUIC, both server and client have
to provide a QUIC implementation. Thus, QUIC requires
client support on application level like in the browser.
QUIC aroused the interest of the Internet Engineering

Task Force (IETF) and is on standardization progress. The
IETF is an Internet committee which deals with Internet
technologies and publishes Internet standards. Currently,
QUIC is being standardized, and it remains to be seen,
how it will influence the Internet traffic afterwards.

The rest of this paper is structured as follows: Sec-
tion 2 presents background information about the estab-
lished TCP/TLS stack needed for the problem analysis.
Section 3 explicitly investigates some QUIC features like
stream-multiplexing, security, loss recovery, congestion
control, flow control, QUIC’s handshake, its data format,
and the Multipath extension. They each rely on current
IETF standardization work, and are compared to the tra-
ditional TCP/TLS stack. In Section 4, related work about
comparable protocols like SPDY or SCTP, and other work
of IETF is discussed. Section 5 concludes this paper.

2. Background

The Transmission Control Protocol (TCP) is the stan-
dard transport protocol that most applications are based
on. Data transport over TCP is reliable and packets are
organized in an ordered way. Further, lost data is identified
and delivered again. Other TCP features are congestion
control and flow control which are necessary to not over-
load the receiver or the network. All of these concepts
are relevant and necessary in the transport layer so that
application level protocols like HTTP do not have to care
about and it is ensured that application level data are not
missing on endpoints. In the traditional web stack, TCP is
used as the underlying protocol to transport HTTP data.
To refer to the OSI model, transferring HTTP over TCP
is additionally protected by TLS. TLS is a security setup
which is on top of TCP (compare Figure 1). Although
it is the widely used transport protocol to transmit data
reliably, TCP has several disadvantages.

TCP

TLS

HTTP/2.0

IP

HTTP/3.0

QUIC

UDP

Application

Security

Transport

Network

Figure 1: Traditional network stack and QUIC
in comparison, adapted from [1]

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

77 doi: 10.2313/NET-2019-06-1_16

It is more difficult to have a faster development cycle
and publish new releases of kernel based implementations
like TCP. This protocol is implemented as part of the
kernel in an operating system, i.e. network connections
based on TCP run in kernel mode. Devices often have
to be upgraded on both client and server side. Bringing
changes to TCP and thus to the kernel would in turn cause
changes to the operating system. Moreover, TCP has some
inconveniences like the head-of-line-blocking delay and
the handshake delay. To transfer data, at least one round
trip is needed to set up the TCP connection. Furthermore,
the security layer with TLS adds two further round trip de-
lays on top TCP connections (compare Figure 1). Even if
the handshake delay seems to be solved with TLS 1.3 and
TCP Fast Open, the data transfer can still be optimized.

To reduce handshake latency, there is a new approach.
QUIC runs – in contrast to TCP – in user space, and
uses the User Datagram Protocol (UDP) as the underlying
transport protocol. UDP is a widely used and lightweight
transport protocol. Thus, it is suitable to be used as
transport layer protocol to transmit data from host to host.
The advantage of UDP is that it can traverse middleboxes
like firewalls. Many firewalls, especially in big companies,
block unknown protocols. Thus, unfamiliar packets could
be dropped by middleboxes. QUIC encrypts and authen-
ticates its packets and makes it possible to be transported
by UDP. There is a higher probability to get UDP packets
through the Internet. However, because of the required,
but missing TCP features in UDP, QUIC has to implement
everything that makes the protocol safe, secure, fast, and
reliable by its own: QUIC has to implement congestion
control and flow control. It has to define its handshake,
and, concerning security reasons, it also should decide for
an algorithm about encryption and authentication. These
features are implemented by QUIC on the application
layer. Additionally, a reason why TCP is not used, is its
slow development cycle. This makes it easier to decide
for the data transport protocol UDP. Thus, it is more
comfortable to bring new releases and adapt features
of QUIC without concerning the long term development
cycle of the kernel based TCP.

TCP’s handshake is the well known Three-Way-
Handshake (RFC 793). It takes one round trip until data
can be sent. If the current overall used TLS version,
TLS 1.2 is used on top of TCP for encryption and au-
thentication, two more round trip delays come additionally
according to RFC 5246. This would sum up to three
round trips until payload can be sent. For the QUIC
standardization, the new version 1.3 of TLS will be used.
Because QUIC puts encryption and transport together into
the same layer in user space, it is possible to overlay the
key exchanges of encryption and transport, and have a 0-
RTT handshake to same servers. TLS 1.3 is already an
IETF standard described in RFC 8446. However, hitherto
this protocol is barely implemented, however, it will be the
standard security protocol from the near future on. Ubuntu
announced in its new interim release 18.10 the updated
OpenSSL package which is equipped with TLS 1.3. Some
applications use TLS 1.3 as default on the new OS version.
According to [2], in the next Ubuntu release, TLS 1.3 will
be used by more applications.

Users could firstly use QUIC through Google appli-
cations like the Chrome browser, the open source version

Chromium, and the YouTube application on Android [1].
Gradually, there are more and more both client and server
side supports. The Opera browser also supports QUIC
if the corresponding QUIC flag is enabled. Except that
YouTube and all other web based Google services have
server side QUIC support, there are other implementations
in Go and C/C++ [3], [4] which are partly used in the
Caddy web server, and the LiteSpeed web server respec-
tively. An implementation in Rust is also available [5].
Like every other network protocol, QUIC has to be im-
plemented on both server and client to interact with each
other. Other browsers and (web) servers could begin to
support QUIC after the standardization is finished by the
IETF. Since Google controls both client and server side of
applications, it can implement and deploy such protocols
and test it on their servers and world wide used client
applications. Google’s leading position in the network
technology supports them to develop such protocols.

If the QUIC flag is enabled in Chrome and a client
does a request via TCP and TLS, the QUIC server ad-
vertises with a QUIC flag in his HTTP answer. The next
client side request, if the client wishes, will be a race
between TCP/TLS and QUIC [1]. The faster reply will be
the protocol stack which will be used for that request.
QUIC will only be chosen if in the whole path from
client to server QUIC is enabled and supported. Chrome
and Chromium users can currently set the corresponding
QUIC flag in their browsers to activate QUIC. Servers and
companies with production based services may disable
UDP inputs by their firewalls due to UDP spoofing attacks.
In those intranets, QUIC can currently not be used.

3. Standardization

This Section describes the most essential QUIC fea-
tures such as security, loss detection, congestion control,
flow control, QUIC’s data format, its handshake, and the
Multipath extension. While QUIC was developed as a
monolithic infrastructure by Google [1], the IETF work is
modularizing it into separate parts. Some details such as
the data format will be changed, although the core and the
paradigm of QUIC will be the same as initiated by Google.
Most of the concepts explained in the next Subsections,
are planned to be standalone RFCs [6].

3.1. Stream Multiplexing

To fetch data fast and in parallel, HTTP/1.1 opens
multiple TCP connections (compare Figure 2a). However,
since each single connection has to be handled, this ap-
proach may be inefficient and may cost high CPU rates
on constrained devices. HTTP/2.0 proposed to use a single
TCP connection, but multiple streams. On every stream,
data can be delivered (Figure 2b). The problem of this
approach, due to TCP’s in order delivery, is the head-
of-line-blocking delay. If a packet of one stream is lost,
then all other streams are blocked. The head of the line
is blocking the whole connection. QUIC allows multiple
streams like HTTP/2.0 but does not block all other streams
due to a blocking stream (Figure 2c). Data delivery on
other streams are not postponed because UDP is not bound
on the in-order delivery. According to the latest core
protocol draft, streams are identified by a unique stream

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

78 doi: 10.2313/NET-2019-06-1_16

ID and data delivery ordering is handled with stream
offsets within a stream.

Figure 2: The different HTTP versions and the upcoming
HTTP/3.0 in comparison [7]

3.2. Security

Encrypted packets play a key role in Internet traffic.
Thereby, network attacks like packet sniffing or man-in-
the-middle-attacks can be reduced or even stopped. Only
authorized entities should be able to read specific packets
in their original formats. This means, QUIC as a secure
transport protocol has to provide confidentiality, integrity
and authentication.

The first launch of the QUIC development was around
2012 by Google. The researchers implemented their own
cryptography for QUIC to reach the goal to exchange
payload with zero round trip delay. Since TLS 1.3 is
deployed as standard, the IETF working group decided
for TLS 1.3 as the security layer for QUIC. TLS 1.3
provides a 0-RTT handshake to known servers and thus
fits to QUIC’s target to reduce handshake lateny.

According to the current Chromium testable imple-
mentation, a QUIC server needs to have a valid certifi-
cate, and a private key in correctly supported formats to
run [8]. TLS is integrated into QUIC handshakes. The
current document draft about QUIC-TLS mentions that a
server must have a certificate signed by a valid certificate
authority, and the client must authenticate the identity of
the server during the handshakes. This would mean that
even a test server has to install a certificate to be runnable.
The positive effect would be a tendency to the overall
HTTPS usage and thus, to secure and authenticate web
servers in the Internet.

3.3. Loss Recovery

QUIC packets always have increasing packet numbers
and same packet numbers do not occur in a number space.
This concludes that packets with higher packet numbers
are sent later than packets with lower packet numbers.
This way, there will not be the retransmission ambiguity
problem as in TCP. In TCP, if a packet is sent, and no
ACK is received within a timer, the same packet is sent
again with the same sequence number. If an ACK arrives,

it cannot be determined, which packet is acknowledged,
and the round trip time is not measured reliably. With
monotonically increasing sequence numbers, the RTT can
be determined more accurately and there is no ambiguity
problem. Further, regarding loss recovery, a packet which
is declared lost, will have a new sequence number and is
sent again [9].

3.4. Congestion Control

To reduce and avoid high network load when too many
packets are sent by many endpoints in short times and
packets cannot pass on, there is the need of congestion
control algorithms to control the network rate and reduce
the network load. The Google implementation of QUIC
is adjustable so that any congestion control algorithm can
be experimented and may work. During the development
and testing cycle, Cubic was used as congestion controller
by the Google developers [1]. Cubic is also the standard
congestion controller of the Linux TCP [10]. The first
IETF draft concerning congestion control in QUIC also
mentions that Cubic was the default congestion controller.
At that time, Reno was another option to use, since it
is fully implemented [9]. In the latest draft of the IETF
working group about congestion control, NewReno is
announced on what QUIC bases on. However, it is also
emphasized that every host and every implementation may
use a different congestion controller, since QUIC supports
a pluggable congestion control interface.

3.5. Flow Control

Flow control is a data transport feature not to overload
the receiver. If an endpoint cannot receive data as fast
as the sender sends, the receiver is overstrained, cannot
handle all incoming packets and drops packets. Flow con-
trol mechanism handles the data flow between the sender
and receiver so that the receiver does not get more data
than its buffer can store. QUIC has, similiar to HTTP/2,
two levels of flow control: stream-level flow control and
connection-level flow control. Stream flow control limits
the data flow for every single stream so that a specific
stream will not be able to claim the entire receive buffer
for itself and to preclude other streams which send data on
other streams. Connection flow control means, the sender
does not exceed the receiver’s buffer on a connection for
all streams. However, it works the same way as stream
flow control, for the entire connection.

3.6. Handshake

QUIC distinguishes between the 1-RTT and the 0-
RTT handshake. The cryptographic handshake minimizes
handshake latency by using known server credentials on
repeat connections. A client stores information about the
server and can use the 0-RTT handshake on subsequent
connections to the same origin. The 1-RTT handshake is
possible because the transport and cryptographic keys are
overlapped into the same layer. The 0-RTT handshake is
possible, since TLS 1.3 provides a 0-RTT and TLS 1.3
will be used as security layer in QUIC. Since many
of the network connections are to same servers which

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

79 doi: 10.2313/NET-2019-06-1_16

were contacted before, the 0-RTT makes it possible for
a client to send payload without repeating cryptographic
or transport key exchange.

3.7. Data Format

The data format and the naming conventions of QUIC
packets and its fields are repeatedly in change during the
standardization. The current draft distinguishes between a
long header packet and a short header packet. The long
header packet has different types: Initial, Retry, Hand-
shake, and 0-RTT Protected. Thus, the initial connection
between two communication partners is established using
the long header. After connection establishment, the short
header is used. All types of packets ensure confidentiality
and integrity [11].

Furthermore, according to the latest draft, there is the
Version Negotiation Packet which seems to be a long
header packet when received by clients; but as the Version
Field is 0, that packet is recognized as a Version Nego-
tiation Packet. This packet is only sent by servers and
is an indication of the server to a client which versions
are supported by that QUIC server. All supported QUIC
versions on the server are listed in that packet. It will
be sent after the server received a packet with a version
proposal that it does not support. If the client side chosen
version is not supported by the server, the server has
to send a Version Negotiation Packet which results in
one additional round trip delay before the connection is
established [11].

3.8. Multipath Extension

A further feature of the QUIC protocol is Multipath. A
QUIC flow is, in contrast to a TCP connection, not bound
to the 5-tuple consisting of source IP/Port, destination
IP/Port, and the transport protocol itself. Instead, the pro-
tocol specifies a Connection ID each one for the server and
the client which is placed in every QUIC packet header.
Users can switch from one to another network seamlessly
and still communicate with the same server. Using multi-
ple paths over the Internet, with changed values in the 4-
tuple, is specified through the QUIC Migration feature. A
QUIC implementation including the Multipath extension
in Go can be found in [3].

4. Related Work

HTTP/1.0 was standardized by the IETF in 1996 in
RFC 1945. Three years later, the IETF introduced the
second version HTTP/1.1 which is described in a stricter
way with clearer rules in RFC 2616. Companies like
Google and Microsoft always want the Internet to be
faster. Google initiated the SPDY project [12] and on the
basis of SPDY, the new version of HTTP was standardized
by IETF: HTTP/2.0 was announced in 2015 (RFC 7540).
It uses the multiplexing technology which transfers more
data. On the incoming side, data is demultiplexed again.
Among other reasons, and because of that, HTTP/2.0 is
faster than HTTP/1.1. QUIC is the continuous develop-
ment of Google’s research to reduce latency in the web
and transmit data faster. It is the successor of SPDY and
the standardized HTTP/2.0 protocol.

The IETF currently has a working group for the
transport protocol QUIC. Beside the core overview, each
essential feature of QUIC is described into separate drafts
which are planned to be standalone RFCs. There is also a
working group responsible for “HTTP over QUIC” which
describes the transport of HTTP over QUIC as transport
layer. The researchers recently discussed about naming
conventions and decided to rename “HTTP over QUIC”
to “HTTP/3” [13]. HTTP version 3 would mean that
the HTTP protocol would run on the base of the QUIC
Transport Protocol. This would be another milestone for
the future of the Internet.

To reduce handshake latency in TCP, there were some
improvements. TCP Fast Open (TFO) allows to send data
in the TCP SYN field to same servers. Thus, after con-
nection establishment, there is a 0-RTT to send payload.
But data can only be sent as much as the TCP SYN
segment offers. QUIC does not have this limitation. Only
the congestion controller or the flow controller can limit
the data which can be sent in 0-RTT handshakes [1].

Another affiliated aspect in relation to QUIC is the
Stream Control Transmission Protocol (SCTP) defined
in RFC 4960. SCTP has many similarities and parallels
to TCP. It is a connection oriented transport protocol
which also uses sequence numbers and acknowledgments
to provide reliable data delivery. Like TCP, SCTP uses
a window mechanism to signal how much data can be
delivered on receive buffers. Even if the terminology of
SCTP is quite different, they both share common features.
However, SCTP was built to introduce some advantages
over TCP. It is not bound to a single IP address, not
even on the IP versions. Moreover, both hosts of a SCTP
connection can have multiple IP addresses to communicate
with each other. SCTP transmits on multiple streams and
is not bound on delivering data in order [14]. There is
no head-of-line-blocking. The main problem of SCTP
is that is not widely deployed. While the Linux kernel
implemented SCTP, MacOS and Windows do not support
SCTP officially, but only through extensions. Thus, SCTP
is not spread widely. QUIC takes the main idea of SCTP
and introduces stream-multiplexing without head-of-line-
blocking. It provides Multihoming through the Multipath
extension. However, through the aggregation of the trans-
port and security protocols and the usage of UDP, hand-
shake latency is reduced by QUIC.

5. Conclusion and Future Work

Latency Reduction was a key note when QUIC was
developed by Google. Simultaneously, other transport fea-
tures within the Internet such as security and reliability
had to remain unchanged. Google reached these goals
by deploying QUIC and tested it in production mode
within Chrome/Chromium on YouTube and other Google
services. The underlying UDP as transport layer is a
new approach to deliver data still reliably. This leads to
implement additionally separate features like congestion
control, flow control, and loss recovery, but on another
level and on top of UDP. That causes QUIC to run in
user space. Indeed, features like latency improvements
and removing head-of-line-blocking make QUIC attractive
and let QUIC be a proposed standard for today’s Internet.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

80 doi: 10.2313/NET-2019-06-1_16

However, the protocol violates the OSI model. The trans-
port features and the security protocol are mapped into the
same layer in the application level without following the
widely established OSI reference model. Thus, it remains
to be seen which influence on the usage of the traditional
TCP/TLS infrastructure will be. It also remains to be
seen how the standardization process by IETF evolves and
when the standard will be announced. Following the IETF
milestones of the QUIC working group, most of the drafts’
due dates were changed from November 2018 to July 2019
and one to May 2020. The “Core Protocol document” of
QUIC is planned to be finished in July 2019 [6].

References
[1] A. Langley et al., “The QUIC Transport Protocol: Design and

Internet-Scale Deployment,” in Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, ser.
SIGCOMM ’17. New York, NY, USA: ACM, 2017, pp. 183–196.
[Online]. Available: http://doi.acm.org/10.1145/3098822.3098842

[2] D. J. Ledkov, J.-B. Lallement et al., last visited 14
February 2019. [Online]. Available: https://wiki.ubuntu.com/
CosmicCuttlefish/ReleaseNotes

[3] L. Clemente, M. Seemann et al., “lucas-clemente/quic-go,”
Feb 2019, last visited 16 February 2019. [Online]. Available:
https://github.com/lucas-clemente/quic-go

[4] D. Tikhonov et al., “litespeedtech/lsquic-client,” Feb 2019,
last visited 16 February 2019. [Online]. Available: https:
//github.com/litespeedtech/lsquic-client

[5] B. Saunders, D. Ochtman et al., “djc/quinn,” Feb 2019, last visited
16 February 2019. [Online]. Available: https://github.com/djc/quinn

[6] “QUIC (quic),” last visited 17 February 2019. [Online]. Available:
https://datatracker.ietf.org/wg/quic/about/

[7] Y. Cui, T. Li, C. Liu, X. Wang, and M. Kühlewind, “Innovating
transport with QUIC: Design approaches and research challenges,”
IEEE Internet Computing, vol. 21, no. 2, pp. 72–76, 2017.

[8] “Playing with QUIC,” last visited 17 February 2019. [Online].
Available: https://www.chromium.org/quic/playing-with-quic

[9] [Online]. Available: https://datatracker.ietf.org/doc/
draft-ietf-quic-recovery

[10] “SNMP counter,” last visited 14 February 2019.
[Online]. Available: https://www.kernel.org/doc/html/latest/
networking/snmp_counter.html

[11] “QUIC: A UDP-Based Multiplexed and Secure
Transport.” [Online]. Available: https://tools.ietf.org/html/
draft-ietf-quic-transport-16

[12] “SPDY: An experimental protocol for a faster web,” last visited
14 February 2019. [Online]. Available: https://dev.chromium.org/
spdy/spdy-whitepaper

[13] M. Nottingham et al., “IETF Mail Archive,” last visited 14
February 2019. [Online]. Available: https://mailarchive.ietf.org/
arch/msg/quic/RLRs4nB1lwFCZ_7k0iuz0ZBa35s

[14] J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent Multipath
Transfer Using SCTP Multihoming Over Independent End-to-End
Paths,” IEEE/ACM Transactions on Networking, vol. 14, no. 5, pp.
951–964, Oct 2006.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

81 doi: 10.2313/NET-2019-06-1_16

ISBN 978-3-937201-64-1

9 783937 201641

ISBN 978-3-937201-64-1
DOI 10.2313/NET-2019-06-1

ISSN 1868-2642 (electronic)
ISSN 1868-2634 (print)

1

	Case Study and Practical Assessment of BPMN with Camunda
	Performance of Secure Multiparty Computation
	Overview of TCP Congestion Control Algorithms
	Robustness of Scanner Exams with TUMexam
	Network Resource Management for Virtual Networks with Learning Algorithms
	From FIFO to Predictive Cache Replacement
	Time Sensitive Networking for Wireless Networks – A State of the Art Analysis
	Measuring TCP Performance Metrics with Bro
	Open vSwitch Configuration for Separation of KVM/libvirt VMs
	Networking in MirageOS
	Bot-based IT Troubleshooting
	Client Monitoring with HTTPS
	Caching with Relation
	Investigating TCP SYN Flood Mitigation Techniques in the Wild
	Networking in Biscuit
	Recent Progress on the QUIC Protocol

