
Evaluation of Distributed Semantic Databases

Philipp Trucksäß
Advisor: Jan Seeger

Seminar Future Internet SS2018
Chair of Network Architectures and Services

Departments of Informatics, Technical University of Munich
Email: philipp.trucksaess@in.tum.de

ABSTRACT
In this paper, several implementations of RDF data stores
are compared, analyzing their unique innovations and eval-
uating their benefits and shortcomings for various applica-
tions. The goal is to give an overview of popular implemen-
tations and identify potential for further research.

Keywords
RDF, SPARQL, Distributed Semantic Databases

1. INTRODUCTION
With the rising popularity of the Semantic Web, Semantic
Databases are of increasing importance, as in the often
cited DBPedia project, the Linked Open Data platform of
Wikipedia [7]. The goal of the Semantic Web is to provide
a way to describe data and relationships between data
items, which makes it easier to process for machines. This
is particularly relevant because modern systems have to
process an ever increasing amount of information.
For instance, IoT applications are becoming more prevalent
with the growing acceptance of smart home appliances.
Those make use of sensor networks which produce gigabytes
of data every seconds, and with them comes a need for a
standardized way to integrate data from different sources,
and to store and process that data in an efficient way.
Semantic databases can help with that feat.
The Resource Description Framework, usually known as
RDF, standardizes the interchange of semantic data on the
web. The term “Semantic Data” refers to the structure of
the data as “Subject”, “Predicate” (or property), “Object”,
which is analogous to that of an English sentence. Because
of this focus on triples, the respective databases are called
Triple Stores.
The subjects and objects can be thought of as nodes
in a graph, where edges between those nodes represent
predicates. Even more so than for a traditional relational
database system, this graph structure calls for a distributed
implementation.
While some approaches simply provide an API for RDF
and its associated query language SPARQL on top of an
established central database architecture, I present some
of the more innovative distributed approaches and analyze
their capabilities and unique features.

2. BACKGROUND
RDF as a standard is maintained by the W3C. For the pur-
pose of comparing different RDF data stores it is helpful

to have a basic understanding of the RDF schema and the
SPARQL query language, which is most commonly used for
examples and benchmarks by the presented stores.

2.1 RDF Schema
The most recent version of the W3C RDF Schema Recom-
mendation (at the time of writing) specifies the vocabulary
to be used for RDF data [16] [17]. It defines an extension to
RDF, focused on describing groups and their relationships.
At its core, the schema provides a framework to model re-
lationships and properties of different kinds of resources,
which are organized in classes. The term is used not un-
like its meaning known from object-oriented programming
languages in this context. In RDF triples, these resources
can take the place of subject, property (predicate) or object.
There are several different concrete syntaxes implementing
the schema, such as the simple JSON RDF or Turtle. Those
can be extended to impose entailment regimes, e.g. by OWL,
the web ontology language which can describe complex log-
ical contexts between resources.The only concrete syntax
used in the standard is namespace:name.
Resources are specified by literal strings or numerals and
pairs of resources can be related to each other via proper-
ties. Those properties implement hierarchical relationships,
so a more specific property implies a more general property,
that it is a sub-property of. Two properties are special;
the range property refers to resources with a certain prop-
erty, which themselves are instances of a number of classes.
The domain property specifies, that resources with a specific
property have to be instances of one or multiple classes. In
the same vein, several other descriptors of hierarchical rela-
tionships and groupings are available.
Further, the RDF vocabulary also allows specifying labels
and comments to provide human-readable descriptions, and
set-theoretical groupings like rdf:Bag, as well as a syntax
to describe RDF statements, e.g. rdf:subject, and more.

2.2 SPARQL
The “SPARQL Query Language for RDF” specifies a lan-
guage and a protocol for interacting with RDF graph con-
tent [15]. SPARQL supports queries which use similar key-
words to regular SQL queries, as seen in 1.

PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

PREFIX rdf: <"http ://www.w3.org /1999/02/22

-rdf -syntax -ns/>

SELECT ?name

WHERE {

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

81 doi: 10.2313/NET-2018-11-1_11



?student foaf:name ?name.

?student hears ?lecture.

?professor holds ?lecture.

?professor foaf:interest ?subject;

rdfs:label "RDF".

} GROUP BY ?student ?name

Listing 1: SPARQL example query

This example shows the use of triple patterns in the WHERE

clause, where a ; indecates that the previous object is the
subject of the following triple. Each identifier preceded by a
? is a variable, and literal values are bound to the query solu-
tion. The example also demonstrates how more complex re-
lationships between multiple variables can be queried. Those
relationships represent paths in the data graph. A common
pattern in SPARQL is the introduction of several variables
which occur in several places throughout the query, often
connected by multiple predicates.
A problem which all presented data stores try to solve one
way or another, is that SPARQL queries with many interre-
lated variables tend to be quite expensive if the underlying
data storage model is based on a relational database. The
relational data model was designed to retrieve information
about indexable data items. In the semantic data model,
quick access to any of the stored resources is needed, so, as
shown later, a need for extensive index structures exists.
Each node in the query graph, in which two edges meet, im-
plies the need for a table join. These joins are unavoidable
in relational databases, but they do in general not scale well,
as they are so called “pipeline breakers”, so they should be
kept to a minimum. The number of joins that are required
even for simple SPARQL queries like 1 is significantly higher
than usually seen in SQL queries of comparable complexity.
Therefore, an alternative approach to relational modelling of
RDF data, which avoids large numbers of joins is presented
e.g. in 3.2.1. The method used there is graph exploration,
which lends itself to distributed parallel execution while only
requiring one final join phase in the end, but it requires a
more complex message passing system.

3. OVERVIEW OF RELEVANT DIS-
TRIBUTED RDF SYSTEMS

With the diversity of implementations, which have been
proposed focusing on optimizing various, but not necessarily
mutually exclusive, parts of the RDF architecture, it is
not straightforward to draw comparisons between them.
Kaoudi et al. [7] devise useful categories for popular RDF
systems. One of the two main groups are the MapReduce
based implementations that operate on key-value stores
and aggregate partial results, which can then be reduced to
produce the final solution for a query. They are conceptu-
ally closer to traditional relational database systems and
the reduction phase relies heavily on joins.
On the other hand, there are the graph based implemen-
tations, which generally map entities, i.e. subjects and
objects of the RDF triples, to adjacency lists containing in-
and outgoing edges, which represent their properties. That
representation allows for the use of graph exploration to
answer queries.
These two groups can be further separated as discussed by
Öszu et al. [10] and Peng et al. [12] with some correlation

with the previously introduced groups. The category they
label as “cloud based approaches” has a strong overlap
with MapReduce implementations, as they make use of
cloud platforms’ native file systems, which already come
with their own MapReduce implementations. The term
“partitioning-based approaches” is employed for fragmented
RDF data, which is distributed over several stores which
individually operate on any kind of centralized stores and
are coordinated by a master node.
“Federated systems” are those which send sub-queries over a
set of SPARQL endpoints and assemble the partial solutions
afterwards. As a last group they propose “partial query
evaluation approaches”, which are similar to federated ones,
except that the full query is sent to each partition and
partial matches are propagated under the condition that
they contain partition crossing edges.
Another fundamental difference between the systems,
regarding the style of distribution, is pointed out by Ham-
moud et al. [4]. Here, four Quadrants are distinguished,
where:

• Quadrant I represents fully centralized systems.

• Quadrant II describes systems with distributed data,
where the full query is sent to each partition.

• Quadrant III contains those systems where both the
data and the query get partitioned and distributed.

• Quadrant IV replicates the full data over distributed
nodes and partitions the query.

In the following, representatives across the spectrum are
evaluated in more depth. In particular, the maturity of
the implementation, the type of architecture with respect
to unique design decisions, and the reasoning tasks that are
supported, are given special attention.

3.1 Cloud Based Triple Stores
Approaches to utilize cloud architectures by building on top
of a distributed file system, such as Hadoop’s HDFS used
by Hammoud et al. [4] are among the earliest proposed
distributed RDF systems. The approach is rather straight-
forward, as it builds on a preexisting cloud infrastructure,
with built in resilience and elasticity, as well as data parti-
tioning backed up by redundancies.
The core technology behind these straightforward cloud
based triple stores is the MapReduce programming model [2].
map and reduce are common functions offered by functional
programming languages, which are used for list processing.
The MapReduce implementation brings their functionality
to key-value pairs stored in distributed clusters. In the con-
text of e.g. SPARQL queries, the mapping phase produces
matches for a query from all relevant partitions, which are
then reduced i.e. combined incrementally into intermediate
query solutions up to the final answer.
The partitions are simply represented as individual files. An
individual file can be used to represent various levels of ab-
straction over the triples. Each subject can be stored as
one line in a file, containing all properties associated with
the subject which is sometimes known as horizontal parti-
tioning [7]. To execute a query on such a data structure

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

82 doi: 10.2313/NET-2018-11-1_11



Name Approach Basis Partitioning Architecture

H2RDF+ MapReduce HBase Vertical (permutations) Master-Slave
EAGRE MapReduce e.g. Cassandra Space-Filling Curve Master-Slave
S2RDF Data Parallel Computation Spark (Hadoop) ExtVP/Vertical Master-Slave
Trinity.RDF Graph Exploration Trinity Horizontal Master-Slave
TriAD Graph Exploration Custom Implementation Horizontal Master-Slave
gStore Local Partial Match Custom Implementation Index-based Master-Slave / Decentralized
DREAM Join Vertices Any N/A Master-Slave

Table 1: An overview of distributed RDF databases

may require a full scan of the data. Alternatively, exten-
sive indexing can be used to represent any constellation of
the triples and facilitate direct access for any query, but not
without massive data duplication. A popular scheme is the
storage of all six possible permutations of subject, predicate,
object, each as the key of a key-value store without associ-
ated value as used by Zheng et al. [19].
Another popular ordering is the partitioning of one file per
property, so all edges of a certain kind can be found in one
place without redundant data. Such a vertical partitioning
scheme is employed by Husain et al. [5] among others. For
the purpose of stability, each partition is usually replicated
over several storage points.

3.1.1 H2RDF+
An example of a MapReduce based distributed RDF store
was introduced with H2RDF+ by Papailliou et al. [11]. It
builds upon the NoSQL key-value store HBase, which in
turn employs HDFS for data storage. All six permutations
of subject, predicate, object per triple are stored as keys
with empty values. A separate store is used as a dictionary
to map string labels to IDS with different lengths, where
more common values receive shorter IDs, utilizing byte level
variable length encoding. The partitioning of the data is left
to the underlying HBase implementation, which distributes
its input into several ranges of key-value mappings.
When using MapReduce for RDF queries, results are pro-
duced by joining triple patterns over a join variable which
they share. H2RDF+ focuses on two efficient merge join
algorithms, one for multi-way merge join and one for sort-
merge join. For the sorted content of the index table the
“MapReduce Merge Join Algorithm” joins multiple triple
patterns which have a variable in common. The biggest
partition produces its share of the queried range via a map-
only job and the other partitions are merge-joined by local
scanners.
Intermediate results are unsorted, or rather not ordered by
the variable to join over, therefore they are handled by the
“MapReduce Sort-Merge Join Algorithm”. The biggest par-
tition over the join variable is used to generate a global or-
dering for the reducers, which can then operate on sorted
ranges. If only intermediate results are joined, hash parti-
tioning can be used to perform a hash join instead. The
joins can be performed in a distributed or a centralized ver-
sion, depending on the workload.
To minimize query execution time, the optimal join order is
decided for every step iteratively by an online planner which
calculates costs based on statistics from previous queries.
Only joins of a certain size profit from distributed execu-
tion, smaller ones are run centrally. The planner runs on a

master node, but centralized joins can also be executed on
any slave node.
The merits of the adaptive join execution are more mea-
surable for big inputs and complex queries where it yields
performance benefits over simpler approaches. Especially
for less selective queries, the use of sorted ranges is useful
and it also enables various range queries. Complex reason-
ing tasks are possible, but they may require an inflationary
number of joins, so they can quickly become unfeasible.

3.1.2 EAGRE
For distributed queries in a cloud based system, I/O opera-
tions need to be coordinated with care, or they represent a
significant bottleneck. A MapReduce based implementation
with the aim to target that issue is EAGRE (“Entity-Aware
Graph compREssion”) [19]. EAGRE strives to incorporate
semantic and structural data into its data format in a more
sophisticated way than a simple key-value store of previous
cloud-based RDF databases such as Trinity which will be
described in 3.2.1. Queries are answered with the MapRe-
duce method, with a focus on minimizing disk I/O and net-
work traffic or rather on a desirable trade off between net-
work traffic costs and the benefit of distributed I/O.
To limit the expenses of MapReduce, intermediate results
are estimated using a Bloom Filter and the special Consult-
ing protocol which facilitates the exchange of information
about the specific value ranges of each compute node, so
the search space can be limited in the scheduling phase. To
leverage this range based optimization, the data needs to be
partitioned while keeping its inherent order. Zhang et al.
[19] limit the evaluation of SPARQL to SELECT queries, but
for those the partitioning is favorable for range and order
constraints.
EAGRE’s approach to modeling RDF data focuses on the
subjects and describes them as Entities, each with a key-
value collection of its properties and respective objects.
Based on shared description keys, the entities are catego-
rized into Entity Classes, by which they can then be grouped
to generate a so called “Compressed RDF Entity Graph”.
The grouping is first performed in a randomized distributed
fashion, and subsequently the resulting structure is parti-
tioned using METIS while preserving the data locality as
well as possible. Within each compute node the layout of
the entity classes is determined using the Space Filling Curve
algorithm for high dimensional data, to effectively place the
connected entities together and save unnecessary disk I/O.
This rather involved partitioning scheme revolves around
I/O optimization, but because of its complexity, it has its
downsides when used with dynamic data, as updates of the
data set become expensive.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

83 doi: 10.2313/NET-2018-11-1_11



The evaluation of a query then utilizes the Consulting to
minimize the variable ranges to be read so only a minimum
amount of data blocks needs to be read. The final MapRe-
duce is postponed until the most beneficial variable set has
been determined, so it operates on a minimal data set and
network payload is as small as possible.
While disk I/O speeds have increased since EAGRE was
first introduced, network communication continues to moti-
vate elaborate scheduling optimization [1].

3.1.3 S2RDF
The last implementation to be discussed here, which is based
on a cloud store, is S2RDF [14]. Under the realization that
the query patterns usually encountered with cloud-based
triple stores are in practice more limited than what the
SPARQL specification allows, because the full range of pos-
sible queries is often undesirably slow to execute, the rela-
tional partitioning schema ExtVP, which strives to minimize
the input sizes of any kind of query pattern.
The underlying in-memory cluster computing system Spark
runs on top of Hadoop data sources. It uses Resilient Dis-
tributed Datasets to store the data, which allows parallel op-
erations on the contained elements and provides fault toler-
ance. Like MapReduce the data parallel computation model
operates on multiple records of data in parallel, and on top
of this, Spark comes with multiple utilities like the Cataclyst
optimizer, which is originally intended for heavily optimized
computations in a relational database interface. The data is
stored in a column layout, with the benefit of performance
improving compression while the table schema is preserved.
The ExtVP extended vertical partitioning scheme was de-
signed to minimize I/O, as well as the number of necessary
join operations, while not catering to any particular query
shape (such as specifically star-shaped queries). The basic
vertical partitioning uses one table per property, with one
column each for the occurring subjects and objects. This
leads to rather unbalanced tables and many intermediate
results which are discarded later. To avoid a good part of
these, ExtVP uses precomputed joins for all pairs of prop-
erty tables, which was found to be still more space efficient
than e.g. storing all six permutations of tuples, as presented
in 3.1.1. The possible benefit is greatest, if the join is of high
selectivity, which also leads to a memory efficient represen-
tation, which provides a good heuristic for cases that justify
precomputation.
Queries are processed as algebraic trees, which are traversed
bottom-up. The joins are ordered to provide maximum se-
lectivity, i.e. triples with common variables are preferably
joined, to limit necessary network traffic.
Schätzle et al. [14] found S2RDF to be significantly faster
than previous frameworks for common query shapes. They
also found the speed up for the less common query shapes,
which motivated the development in the first place, to be
even more pronounced. That also means that complex infer-
ence tasks can be performed efficiently, as the precomputed
joins reduce the necessary workload. S2RDF is a good ex-
ample, how synergies between meticulously optimized tradi-
tional relational database engines and RDF systems can be
utilized, in this case in the form of Spark.

3.2 Graph based triple stores
Many of newer additions to the plethora of RDF data man-
agement systems are found in the family of graph based

variants. They are usually based on cloud architectures as
well, but they use less of their native features, and utilize
custom implementations of e.g. index structures instead, as
in the work of Zou et al. [20]. They are motivated by the de-
mand for graph operations, which are not trivially supported
in MapReduce systems, where the connections between the
vertices have to be derived from joins as discussed by Zheng
et al. [18]. In graph-oriented storage schemes, the nouns of
the triples readily provide all edges connected to them by
means of adjacency lists. This way, less duplication of data
is required and especially more complex queries can be exe-
cuted faster.
The partitioning is usually done by METIS, a software pack-
age for graph partitioning where the number of adjacent ver-
tices distributed to separate compute nodes is minimized [8].
Independently of the partitioning scheme, a nonzero amount
of fragment boundary crossing edges can not be avoided in
general. One possible way of dealing with this is to replicate
the n-hop neighboring nodes of a partition’s border nodes
for each partition. In a federated method, a query then
will have to be able to crawl through any number of parti-
tions, crossing between them when an edge spanning frag-
ment boundaries is followed. However, the federated ap-
proach has only limited potential for parallelization [7]. A
more efficient use of clustered computing power is achieved
by the Partial Evaluation method, where matches are first
computed for every partition independently, accepting also
sub-matches of only parts of the query, and then combin-
ing them to reach a final solution. The combination of the
partial matches can either be performed on a central server,
or in a distributed fashion, which makes better use of the
available computing power and also puts less contention on
the network connections, but not without an overhead in
scheduling and synchronizing network communication [10].

3.2.1 Trinity.RDF
Trinity.RDF was first presented by Zeng et al. [18] as an
attempt to store graph data in its native graph form instead
of a set-based approach, in order to support the full range
of operations only available for graphs, such as reachability
queries. The graph is stored in memory, distributed in a
cloud to make random accesses feasible.
The“Sideways Information Passing” technique or SIP is em-
ployed in conjunction with graph exploration for dynamic
optimization of parallel execution. It lets filters on identi-
fiers be shared between compute nodes processing similar
such identifiers. The main assumption of Zeng et al. [18]
is that graph exploration can be performed more efficiently
than equivalent joins in a table-based storage format.
The data is partitioned by randomly hashing the nodes
across a cluster, where each machine receives a disjoint par-
tition of the graph. The data is committed to Trinity key-
value stores. One machine is called a “proxy” and represents
a master node which coordinates the query plan and assem-
bles the final result from the slaves holding the data parti-
tions. A special server holds mappings from literal strings to
unique IDs, so the Trinity stores only need to retain fixed-
size identifiers and the partitions are more memory efficient.
Every RDF entity is represented by a node whose identifier
is the key for the key-value store, and is used to retrieve
adjacency lists of all incoming and outgoing edges, which
represent the predicates and respective subjects or objects.
In the context of Trinity.RDF this key-value store is con-

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

84 doi: 10.2313/NET-2018-11-1_11



sidered a “local predicate index”, where predicates can be
found for any subject or object. On top of that, the “global
predicate index” of each machine maps each predicate to all
occurring subjects and objects with that predicate.
Because the random partitioning may incur massive costs
in network traffic, the adjacency lists are further split up
depending on the machine owning the edge’s receiver node,
so the internal nodes on one machine can be explored first,
and the collective information leading the exploration to the
next machine can be sent as a block.
Trinity.RDF was found to be more memory efficient than
other more heavily indexed implementations, but it is im-
portant to know that the assumption that graph exploration
outperforms join-based query processing proved to be cor-
rect only for rather specific complex queries.

3.2.2 TriAD
Introduced by Gurajada et al. [3], the TriAD (for “Triple
Asynchronous Distributed”) RDF engine puts a strong fo-
cus on parallelization as its shared-nothing architecture en-
ables several nodes in a cluster, as well as several cores on
the same machine to operate on part of a query completely
autonomously. It is presented as a direct successor to Trin-
ity.RDF, trying to avoid its perceived shortcomings.
The essential proposition to enable this high level of scala-
bility is TriAD’s custom asynchronous message passing pro-
tocol, which allows strongly multithreaded query execution
without a big synchronization overhead. Still, the compute
nodes are hierarchically ordered, with a master node whose
purpose it is to receive and optimize all queries. The master
node is also keeping track of the summary graph, a simplified
mapping of the RDF data graph, where each summarized
node contains enough information about a set of data nodes
to prune the nodes which do not contain relevant triples
from a query plan.
The slave nodes contain indices for all six permutations of
the triples, so all possible point queries can be answered
directly via the most appropriate index structure. To par-
tition the graph between the slave nodes, triples are hashed
and distributed horizontally, depending on the summarized
super-node they belong to, to allow for pruning.
The horizontal partitioning is suited for graph exploration,
which is used to answer queries starting from opportune
nodes and collecting data while traversing potentially many
of the graph partitions. Practically, the range of exploration
is still limited enough to be efficient because of the locality-
preserving partitioning scheme and the join-ahead pruning
algorithm. However, there is only direct support for point
queries, and range queries may require a scan of the entire
graph, as the ranges may spread over several partitions.

3.2.3 gStore
Another interesting graph based representation of RDF data
is gStore [20]. More so than other implementations pre-
sented here, gStore stores data in custom data structures
specifically tailored to the needs of RDF graphs. At their
core is the vertex signature representation of the entities
and classes present in the graph. This binary representation
works similarly to a Bloom Filter over the adjacent edges
and neighboring vertices. Each vertex is identified by an
adjacency list, where edges and neighbors are hashed and
the results are combined via bitwise OR.
This encoding is used to create a signature graph. The

query graph is encoded analogously, and a VS*-tree, a vertex
signature tree, is used to answer the query. The VS*-tree
summarizes the signature graph at different resolutions, so
while it is matched against the query down to the leaf nodes,
the search space can be pruned efficiently on each level
Eventually the positive matches generate small materialized
aggregates. For caching purposes all transactions are col-
lected in a transaction database managed by a trie struc-
ture called T-index. The queried predicates are ordered by
frequency in order to minimize the number of materialized
views that have to be maintained.
While the problem of updating the used data structures effi-
ciently is addressed, there is no way to avoid updating entire
paths in both the VS*-tree and the T-index when a single
triple changes, which makes maintenance of highly dynamic
data rather expensive.
In its original form gStore is not a distributed system but
an addition to gStore has been introduced by Peng et al.
[12] with the distributed Local Partial Match technique, al-
though it could also be employed in conjunction with other
graph-based query engines. It is motivated by the problem
of finding matches which cross compute node boundaries in
an efficient way.
The idea is that, given a complete query graph, each node ex-
plores its local data set and maximizes the sub-graph match-
ing the query. The partitions are disjoint, so nodes do not
share any vertices, but crossing edges between the partitions
are available at both ends. If an incomplete match is actu-
ally a fragment of a solution to the query, any edge where
only one end has a match in the current partition must be a
crossing edge. Based on this proposition, all compute nodes
produce maximal local partial matches in parallel. Special
NULL values which match anything are introduced for cross-
ing edges.
Once the partial matches have been found, the assembly
phase is started. Assembly can be performed either centrally
or in a distributed manner, employing the Bulk Synchronous
Parallel model. If the final assembly is performed centrally
by a master node, an iterative pairwise join of local partial
matches is performed. First, matches are partitioned into
sets where each sets only contains matches which cannot
be joined with each other to reduce the amount of possi-
ble joins to be considered. Then, crossing edges need to be
closed with matches from other sets until a complete match
for the query is found, or the partial match can be refuted
because there is no viable join partner left.
Distributed assembly works similarly, but each compute
node only evaluates joins for a subset of the matches and
then sends the results to other nodes for which they are rel-
evant, indicated by shared crossing edges. Distributed as-
sembly still implies that queries are scheduled by a master
node and executed by slaves, but introduces a higher level
of peer to peer communication.
This approach shifts the bulk of the network communication
away from graph exploration, as the boundaries between
partitions are only crossed once the maximally available lo-
cal information has been computed already. The authors
benchmarked this method in comparison to previous imple-
mentations and found the greatest speed gain when used
for complex queries. Their benchmark results show though,
that the scalability of Local Partial Match strongly depends
on the cost of communication during the assembly phase, so
highly selective queries perform better due to the reduced

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

85 doi: 10.2313/NET-2018-11-1_11



amount of information to be transmitted.

3.2.4 DREAM
The “Distributed RDF Engine with Adaptive Query Plan-
ner and Minimal Communication” by Hammoud et al. [4]
presents a paradigm shift compared to the other systems
mentioned here. Instead of partitioning the RDF data set, it
simply replicates it over distributed compute nodes and par-
titions incoming queries instead in an attempt to avoid com-
munication overhead and data passing as well as scheduling
issues.
By the time of DREAM’s introduction, it was the first sys-
tem to employ this approach of partitioning, motivated by
the fact that the largest RDF data sets did not exceed 2.5
TB in size, which makes replication of the entire set feasible.
The unique feature of DREAM is its query planner, which
is run on a central master node, while the slave nodes are
kept agnostic as to which storage system is deployed to them
locally.
The query planner first generates a query graph and then
partitions it into basic sub-graphs, which may be exclusive
or shared depending on the query as a property of their join
vertices, where one join vertex represents an exclusive sub-
graph, and multiple of them a shared one. From the sets of
join vertices a directed set graph is generated, where each
node represents a set of join vertices, and considering the di-
rection of their associated edges. On the directed set graph
the most opportune query plan is determined using a cost
function. The join vertex sets of the query plan are then sent
to one slave node each, where the query is started in parallel.
Once the candidates for a join vertex set are known on one
machine, only their IDs need to be broadcast to the other
machines who share them, as every one of them holds the
full data graph. The cost function deciding the lowest cost
plan takes the interdependencies into account and strives to
minimize the idle time of slaves waiting for auxiliary data
from other sub-graphs. The query planner can adapt the
number of slave nodes deployed for any particular query to
the involved workload, bounded by the number of join ver-
tices.
The DREAM approach is most suited for minimizing query
response times and adaptive work-balancing, but does not
put much emphasis on memory efficiency, and the join ver-
tex approach is not a good fit for range queries.

4. CONCLUSION
All of the presented systems address different issues in the
organization of RDF data. While it may seem like there is
a trend towards graph based systems, that may be caused
by them leaving more room for variation, because there is
more development from the ground up. Future development
will likely be directed by technological progress, e.g. work
by Mittal et al. [9] indicates that the widespread availability
of Storage Class Memory will have a strong impact on the
architecture of database systems in general, and especially
systems like triAD, which are already designed as in-memory
stores, can definitely profit from such hardware advances.
On the front of network communication cost, traditional
RDBMS have already paid attention to faster interconnec-
tion technologies like InfiniBand [13], which require software
changes to reap their full potential benefits, which might be-
come more relevant for RDF systems as well.
There is also the sector of IoT applications, where different

technological parameters require a stronger focus on memory
efficiency as presented by Jiang et al. [6], where an archi-
tecture for IoT data storage based on Hadoop is introduced.
Those memory constraints imply that implementations like
DREAM are not the best match. IoT also puts different
constraints on network data exchange, so optimizations like
those in EAGRE are quite relevant for the sector.
It appears that future research in the field of RDF data stor-
age systems has to focus on adapting to hardware paradigms
which seem to be yet unexplored for triple stores. Possibly,
synergies with relational database systems can be used fur-
ther to the advantage of RDF systems, as discussed in the
context of S2RDF, since those tend to be on the forefront of
technological advances.

5. REFERENCES
[1] L. Cheng, S. Kotoulas, T. E. Ward, and

G. Theodoropoulos. Improving the robustness and
performance of parallel joins over distributed systems.
J. Parallel Distrib. Comput., 109(C):310–323, Nov.
2017.

[2] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[3] S. Gurajada, S. Seufert, I. Miliaraki, and
M. Theobald. Triad: A distributed shared-nothing rdf
engine based on asynchronous message passing. In
Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14,
pages 289–300, New York, NY, USA, 2014. ACM.

[4] M. Hammoud, D. A. Rabbou, R. Nouri, S.-M.-R.
Beheshti, and S. Sakr. Dream: Distributed rdf engine
with adaptive query planner and minimal
communication. Proc. VLDB Endow., 8(6):654–665,
Feb. 2015.

[5] M. Husain, J. McGlothlin, M. M. Masud, L. Khan,
and B. M. Thuraisingham. Heuristics-based query
processing for large rdf graphs using cloud computing.
IEEE Transactions on Knowledge and Data
Engineering, 23(9):1312–1327, Sept 2011.

[6] L. Jiang, L. D. Xu, H. Cai, Z. Jiang, F. Bu, and
B. Xu. An iot-oriented data storage framework in
cloud computing platform. IEEE Transactions on
Industrial Informatics, 10(2):1443–1451, May 2014.

[7] Z. Kaoudi and I. Manolescu. Rdf in the clouds: A
survey. The VLDB Journal, 24(1):67–91, Feb. 2015.

[8] G. Karypis and V. Kumar. Metis—a software package
for partitioning unstructured graphs, partitioning
meshes and computing fill-reducing ordering of sparse
matrices. 01 1997.

[9] S. Mittal and J. S. Vetter. A survey of software
techniques for using non-volatile memories for storage
and main memory systems. IEEE Transactions on
Parallel and Distributed Systems, 27(5):1537–1550,
May 2016.

[10] M. T. Özsu. A survey of RDF data management
systems. CoRR, abs/1601.00707, 2016.

[11] N. Papailiou, I. Konstantinou, D. Tsoumakos,
P. Karras, and N. Koziris. H2rdf+: High-performance
distributed joins over large-scale rdf graphs. In 2013
IEEE International Conference on Big Data, pages
255–263, Oct 2013.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

86 doi: 10.2313/NET-2018-11-1_11



[12] P. Peng, L. Zou, M. T. Özsu, L. Chen, and D. Zhao.
Processing sparql queries over distributed rdf graphs.
The VLDB Journal, 25(2):243–268, Apr. 2016.

[13] W. Rödiger, T. Mühlbauer, A. Kemper, and
T. Neumann. High-speed query processing over
high-speed networks. Proc. VLDB Endow.,
9(4):228–239, Dec. 2015.

[14] A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, and
G. Lausen. S2rdf: Rdf querying with sparql on spark.
Proc. VLDB Endow., 9(10):804–815, June 2016.

[15] W3C. Sparql 1.1 overview.
https://www.w3.org/TR/sparql11-overview/, 2013.
Accessed: 2018-04-01.

[16] W3C. Rdf 1.1 semantics.
https://www.w3.org/TR/rdf11-mt/, 2014. Accessed:
2018-04-01.

[17] W3C. Rdf schema 1.1. https:
//www.w3.org/TR/2014/REC-rdf-schema-20140225/,
2014. Accessed: 2018-04-01.

[18] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A
distributed graph engine for web scale rdf data. In
Proceedings of the 39th international conference on
Very Large Data Bases, PVLDB’13, pages 265–276.
VLDB Endowment, 2013.

[19] X. Zhang, L. Chen, Y. Tong, and M. Wang. Eagre:
Towards scalable i/o efficient sparql query evaluation
on the cloud. In 29th International Conference on
Data Engineering. IEEE, Apr. 2013.

[20] L. Zou, M. T. Özsu, L. Chen, X. Shen, R. Huang, and
D. Zhao. gstore: A graph-based sparql query engine.
The VLDB Journal, 23(4):565–590, Aug. 2014.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

87 doi: 10.2313/NET-2018-11-1_11


