
Use case study on machine learning for network anomaly
detection

Edin Citaku
Advisor: Simon Bauer

Seminar Future Internet SS2018
Seminar Innovative Internet Technologies and Mobile Communications

Chair of Network Architectures and Services
Departments of Informatics, Technical University of Munich

Email: citaku@in.tum.de

ABSTRACT
Technological advancement has reached the point where the
vast majority of businesses rely on computer networks. Thus
businesses are exposed to a manifold of network security
threats such as network intrusions which can pose a seri-
ous threat to them. Network intrusions can be very hard
to detect and stop since attackers are steadily developing
new ways to intrude into a system. Anomaly detection is a
promising approach in solving this problem. Any deviations
from the normal state of the system are interpreted as harm-
ful. Thus even novel forms of attacks that alter the system
in an unusual way will be detected. This assumption can
also backfire and lead to a high rate of false positives since
networks often show a lot of variation in their traffic. We
will discuss possible ways to circumvent this downside of our
approach. Machine learning has shown to be an useful tool
for generating an effective notion of what normal or abnor-
mal behaviour in a network system is. Since using machine
learning for network anomaly detecting is a hot topic and
new research has been accumulating steadily we have de-
cided to review the most common applications of machine
learning used for anomaly detection and explain how they
were implemented in recent research. In the end we discuss
which challenges still remain and propose possible ways to
overcome them.

Keywords
machine learning, anomaly detection, intrusion detection

1. INTRODUCTION
Network Intrusion Detection(NID) is an issue that has huge
concern in network security. Victims of such intrusions can
range from small businesses to military facilities. These at-
tacks can cause tremendous costs and can even be a danger
to national security thus new development in this area is of
great interest. Network intrusions are unauthorized activ-
ities on a computer network that attempt to compromise
the integrity, confidentiality or availability of resources on
said network. Network Intrusion Detection Systems(NIDS)
are programs which actively try to detect those intrusions.
Network Intrusion detection can be divided into two cate-
gories misuse detection and anomaly detection. In the for-
mer, abnormal behaviour is defined first and then all other
behaviour is defined as normal. This approach works well
in recognizing already known attack patterns but it is not
suitable to detect novel forms of attack. Since NIDS and

attackers are in a constant arms race and new forms of at-
tacks are developed steadily, anomaly detection shows to be
a promising approach. Here normal behaviour is defined
first and behaviour deviating from this norm is interpreted
as harmful. The primary objective of this technique is to
find a suitable way to define what normal behaviour exactly
is.
Machine Learning(ML) has helped to advance many differ-
ent areas of research in the past decades thus using it for
anomaly detection does seem like a suitable approach. Like
many other areas of research Network Anomaly Detection
comes with its unique properties which make it necessary to
tweak the methods of ML in such a way that their use for
this particular problem becomes practical. ML is a type of
algorithm, where the solution for a problem is not explicitly
programmed but the algorithm learns its task with the use
of training data and progressively improves its performance.
In this paper we will look at the different use cases of ML
in anomaly detection. For this we will first explain the dif-
ferent types of ML and then for each method of ML we will
show a use case, that was developed in current research and
explain their unique properties. Later on we will discuss the
current state of ML in anomaly detection and explain the
different hurdles that still remain and propose ways to over-
come them.
The remainder of the paper will be structured as follows. In
Section 1 we will explain different background studies rele-
vant to ML and anomaly detection. Later in Section 2 we
will talk about work already published related to this pa-
per. Then in Section 3 we will explain different types of
ML-techniques that are relevant to network anomaly detec-
tion. In Section 4 we analyse implementations of A-NIDS.
Finally in section 5 we will discuss the obstacles that still
remain in NID using ML and possible ways to overcome
them.

2. RELATED WORK
In the recent past numerous researches have published re-
views about the current state of ML in anomaly detection.
Chih-Fong Tsai et al.[28] wrote such a review where the fo-
cussed on the time span between 2000 and 2007. They com-
pared the different studies by their designs, datastes and
other experimental setups. A major focus of their paper
was to observe how the focus of the research community has
evolved in those years. Animesh Patcha et al.[21] worked on
a very thorough review of the uses cases of anomaly detec-

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

9 doi: 10.2313/NET-2018-11-1_02

tion research where they also looked at ML approaches. A
major difference this paper shows compared to the related
work listed is the thorough discussion of the challenges of
ML in anomaly detection. Major conclusions from this dis-
cussion come from the work of Robin Sommer et al. [26]

3. BACKGROUND STUDIES
3.1 Types of classification
When classifying data traffic as either normal or abnormal
there are two types learning we can use. These are namely
supervised and unsupervised learning. In the former the
training data given to the algorithm is already labelled, while
in the unsupervised approach it is not labelled. A label in
this context is some kind of additional information that indi-
cates to what class a specific dataset belongs. Unsupervised
learning is common in the use case of anomaly detection
since actual data of an attack is hard to come by.[19]

3.2 Commonly used Datasets
The most commonly used datasets in network anomaly de-
tection research are the DARPA Intrusion Detection Data
Sets [17], that were generated by simulating a Airforce net-
work, and the KDD Cup 1999 Data[5], which is data derived
from the DARPA Data sets. These datasets are supposed
to measure how well an algorithm performs under real life
circumstances. Furthermore, it is possible to compare dif-
ferent algorithms if they have been evaluated on the same
datasets.In the recent past a lot of criticism about these
datasets has been voiced since they are not gathered from
a real networks, but from a simulation and also are already
considerably old. Despite this criticism, most of current
researchers still uses these datasets to evaluate their ap-
proaches.

3.3 Measures of Accuracy
When evaluating an algorithm for anomaly detection, the
most important metric is its accuracy. We distinguish be-
tween two different types of errors, false positives and false
negatives. False negatives occur when an intrusion is taking
place but is not detected. A false positive on the other hand
means, that an anomaly is detected, but no attack is hap-
pening. One could assume, that diminishing false negatives
is of primary concern to researchers, since an undetected
attack is a serious danger for the integrity of a network.
While this is certainly the case, it must be noted, that high
rates of false positives are a major problem in the field of
anomaly detection and diminishing it, is of high priority for
researchers.[7]

4. MACHINE LEARNING TECHNIQUES
There are two different approaches on using ML for network
anomaly detection. With single classifiers only one kind of
ML is, while for hybrid classifiers multiple tools of ML are
used in conjunction.

4.1 Single classifiers
We will take a further look at the following ML approaches
for network anomaly detection:

• Decision Tree Learning

Figure 1: A simple decision tree[13]

• Bayesian Networks

• Genetic Algorithms

• K-nearest neighbor

• Support Vector Machines

• Artifical Neural Networks

4.1.1 Decision Tree Learning
A decision tree is a tool commonly used for classification,
where a tree-like graph models different decisions and their
consequences. In this graph the attributes of the target are
assigned to each node, while the leaf represents a possible
classification of the object. In anomaly detection each leaf
would be either labelled as ”normal” or as ”abnormal”, al-
though it would be possible to add classes, that specify the
type of anomaly. The edges in the graph correspond to dif-
ferent attribute values. To classify an object, you simply
traverse the tree, picking the edge, that corresponds to its
attribute value. The leaf you reach in the end decides the
class your object belongs to. An example for a decision tree
can be found in Figure 1. The decision tree is built according
to the training data, where different algorithms are possible
to use, the so called ID3-algorithm being the most commonly
used. Joong-Hee Lee [13] built a model based on decision
trees, and showed their performance on the KDD 99 Dataset.
The data from the KDD 99 Dataset was first preprocessed,
by selecting specific features, that suitably characterize the
data. The researchers decided on selecting features, that are
already selected in other IDS systems like snort [1], to de-
tect intrusions. To built the tree the researches choose the
commonly used ID3 algorithm.

4.1.2 Bayesian Networks
A Bayesian Network[9] is a graphical model representing
probabilistic relationships among variables via directed acyclic
graphs (DAG). In the DAG the vertices represent events and
the edges represent relationships between these events. A
numerical component is added with links in the DAG, that
represent conditional probabilities of each node in context

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

10 doi: 10.2313/NET-2018-11-1_02

of its neighbors. Bayesian networks both have probabilistic
as well as causal components making them suitable for clas-
sification, even if data is missing.
Figure 2 shows such a bayes network. Rain has an influence
on whether the sprinkler is activated. Both the rain and the
sprinkler influence whether the grass is wet.
To build a suitable Bayesian network, prior knowledge about
the dependencies in the problem are required. It has to be
noted, that the prior knowledge the researcher has to bring
can show to be a downside since wrong assumptions can
decrease the performance and accuracy of the system. A
major upside of Bayesian Networks is that they show signifi-
cantly less computational time in construction and classifica-
tion compared to other methods of ML. Nahla Ben Amor et
al.[3] compared Naive Bayesian Networks to decision trees.
They showed, that both had comparable accuracy, while the
Bayesian network was computationally much cheaper than
the decision tree. Valdes et al. proposed[2] an NADS using
naive Bayesian networks. Their model, that is implemented
in EMERALD[22] has the capability to detect distributed
attacks, where individual attacks are not suspicious enough
to generate an alert. One down side of Bayesian networks
is that they still show similiar accuracy to simple threshold
based systems while still being computationally much more
demanding as pointed out by Kruegel et al. [12]. Another
problem Kruegel et. al [12] identified is the high percentage
of false positives which make the use of traditional Bayesian
networks in real life situations impractical. They propose a
solution to this problem where they aggregate the outputs
of different IDS sensors to produce one single alarm. They
assume that one singular sensor is not enough to effectively
detect intrusions.

4.1.3 Genetic Algorithms
Genetic algorithms(GA) [30]are a heuristic inspired by the
process of natural selection. They are commonly used for
optimisation and search problems. GA use techniques in-
spired by biology, such as mutations, crossover and natural
selection. Thus with GA it is possible to derive classification
rules or select appropriate features or optimal parameters for
the detection process. In recent research Wei Li[15] showed
advancements in using GA for intrusion detection. In his
research he introduced an algorithm that constructed rules
in the form:
if {condition} then{act}
These rules are represented as genes in a chromosome, where
up to fifty-seven genes make up a chromosome. In the first
generation of the algorithm multiple individuals with a set
number of chromosomes and random genes are generated.
By only letting individuals with the best fitting rule set,

Figure 2: Simple example of a bayesian network[4]

represented by their genes, move forward to the next gen-
eration the accuracy of the detection gets gradually better.
After each generation the individuals reproduce generating
offspring with new sets of genes where the chromosomes of
its parents are mixed together. When mixing chromosome
sets so called cross-overs can occur with a certain probabil-
ity where parts of chromosomes can be exchanged between
each other. On top of that there is a chance for random
mutations introducing singular changes in genes. With all
these mechanics it is ensured that the algorithm gradually
finds the optimal rule set for the given problem.

4.1.4 K-nearest neighbor
k-nearest neighbor[16] (k-NN) is an algorithm used for clas-
sification and regression. It computes the distance between
different points in the input vectors and assigns the point to
a cluster of its k-nearest neighbors. k is an important pa-
rameter which can have a huge impact on the performance
of the algorithm. Typically k is chosen through empirical
measures, e.g. different instances of k are tried out, and the
instance which yields the best results is chosen. To measure
the distance between two data points typically euclidean dis-
tance is used, but metrics, such as the Hamming distance
can be suitable to. k-NN is called instance based learning or
lazy learning which means that new problems are directly
compared to the data seen in training without any steps of
explicit generalization. Once the algorithm has been trained,
the classification of new data is simple: A majority vote is
done where the new data point is assigned the class chosen
by the majority of its k-nearest neigbors. One use case is
the research of Yihua Liao and V. Rao Vemuri [16]. The
Algorithm used system calls in the network as input data
and generated individual program profiles. The researchers
achieved a false positive rate as low as 0.44%, while detect-
ing all intrusions. For training they used the 1998 DARPA
BSM audit data. Another interesting approach using k-NN
was done by Sutharshan Rajasegarar et al. [23]. They used
k-NN to detect anomalies in wireless sensor networks and
applied clustering before the actual anomaly detection to
minimize computational overhead.

4.1.5 Support Vector Machines
SVM are supervised learning tools used for classification.
Objects are represented as hyper dimensional vectors. The
SVM maps the training vectors into a hyper dimensional
space and then derives an optimal hyper plane dividing the
different classes. The decision boundaries are obtained by
the support vectors representing the hyper planes rather
than the whole training samples. Thus it is robust to out-
liers. The SVM is mainly designed as a tool for binary classi-
fication where training data for both classes is present. Since
it is very hard to obtain network data representing an at-
tack different approaches have been made to modify SVMs
in such a way that only the data for one class is needed.
This type of SVM is called One-class SVM[24]. Such a SVM
is able to detect whether an input vector is similar to the
dataset it was trained on. Kun-Lun Li et al.[14] developed
an approach of ML for anomaly detection where they im-
proved the traditional one-class SVM. In regular one-class
SVMs the origin of the hyperplane is defined as the second
classification type. The researches modified this method in
such a way, that also points ”close enough” to the origin, are
detected as anomalies, as seen in Figure 3.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

11 doi: 10.2313/NET-2018-11-1_02

4.1.6 Artificial Neural Networks
Artificial Neural networks(ANN) are information process-
ing units inspired by biological neural networks in animal
brains. These ANN constitute of connected nodes called
artificial neurons each having the ability to process an in-
put signal and then send it to other neurons connected to
it. Multilayer Perceptron(MLP) is a architecture of ANN
where the neurons are ordered in layers. It consists of input
nodes, called sensory nodes more hidden computation nodes
and an output layer of computation nodes. Each connection
between the nodes is associated to a scalar weight which
is initially assigned at random. During the training stage
those scalar weights are adjusted usually with the so called
back propagation algorithm. An example for an MLP can
be seen in Figure 4. Another common architecture of ANN
is the so called self-organizing feature map(SOFM)[11]. In
this ANN two dimensional discretized representations of the
input space of the training data, called maps, are gener-
ated. Chandrika Palagiri[20] proposed an NIDS using arti-
ficial neural networks. They both implemented MLP and
SOFM. The results were as expected all anomalies were be-
ing detected with the main concern of a high false positive
rate. 76% of detected anomalies were false positives. The
researcher suggested, that the high rate of false positives
stems from the lack of training data for each individual type
of attack. The classification times of the program were fast
making them suitable for real time classification.

4.2 Hybrid Classifiers
An approach to network anomaly detection gaining rapid
popularity is the so called hybrid classification where multi-
ble tools of ML are used in different steps of the algorithm.
Typically raw data is being preprocessed to some kind of
intermediate result. Those results will be taken as input for
the second ML tool to produce the final classification. It is
possible for example to simply use the step of preprocessing
to eliminate unrepresentative training data to then do the
actual learning in the second step. You can also use hybrid
classification to integrate two different techniques in which
the first one aims to optimize the learning performance(e.g.
parameter tuning) of the second model of prediction.[29]

4.2.1 Hybrid classification with enhanced SVM
One example of such a hybrid classifier is found in the work
of Taeshik Shon et al. [25]. The researchers first use a
SOFM to create a profile of normal traffic packets for the

+1 Class

-1 Class

Figure 3: Improved one-class SVM[14]

Figure 4: Example of an ANN[8]

SVM. After using a packet filtering scheme to reject incom-
plete network traffic they apply feature selection using GA
on this data to extract optimized data from the raw inter-
net traffic. Once all of this preprocessing is done they use an
enhanced SVM to classify the data. The enhanced SVM is
a derivative of the traditional SVM which is used for unsu-
pervised learning. The researchers deem this enhancement
as necessary because in the traditional SVM approach both
normal and abnormal data is needed. Since the goal is to
detect novel attacks such data is not easily available, and
the traditional approach must be modified.

4.2.2 Decision Tree Classifier with GA-based Fea-
ture Selection

Gary Stein et al.[27] proposed a NIDS based on decision tree
classification where the data is preprocessed with GA before
the decision tree is generated. The preprocessing step has
the purpose of feature selection and is based on the wrapper
model.[10] Between each generation of the GA the optimal
features, represented by individuals with specific genes are
selected for the next generation. This selection is done by
constructing a decision tree based on the feature selection
each individual represents. These decision trees are then
evaluated by their performance. The individuals, whose cor-
responding decision tree yields the best results then repro-
duce offspring carrying their genes to the next generation.
The feature selection is coded into the genes with binary
values where 0 means that a feature is not selected and 1
means that the feature is selected. The researchers showed,
that this GA based feature selection improved the accuracy
of the final decision tree, compared to a decision tree, where
no feature selection was done.

5. CHALLENGES OF MACHINE LEARN-
ING IN NIDS

Despite numerous advancements in the past decades ML
for NIDS is still purely a topic of interest for researchers.
No NIDS using ML is widely used in industrial settings.
This hints that there are still challenges to overcome before

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

12 doi: 10.2313/NET-2018-11-1_02

Table 1: Types of ML and their characteristics
Type of ML Generation Classification
Decision Tree Treelike Structure, generated on the basis of

training data
The tree is traversed, according to at-
tribute values

Bayesian Network Directed Acyclic Graph built according to the
input data and with additional knowledge by
researcher

Decision is done according to the graph

Genetic Algorithms Features of the classification are first picked
at random, then they gradually improve with
mechanisms inspired by evolutionary biology,
like selection, mutations and crossover.

Rules generated by algorithm are followed.

k-Nearest Neighbor Input vectors are assigned to a cluster of its
k-nearest neighbors

Classification is done, by majority vote. A
new object belongs to the same class as the
majority of its k-nearest neighbors.

Support Vector Machine Assigns training vectors a to hyperspace, and
computes an hyperplane that divides points
into two classes

Classification is simply done by checking
what side of the hyper plane the observed
vector belongs too.

Artificial Neural Networks Artificial Neurons, inspired by their biological
counter parts, are simulated. These neurons
adapt to training data .

Neurons communicate their classification
decision with output nodes .

widespread use is viable. In the following we want to discuss
these hurdles and what steps have to be taken to overcome
them.[26]

5.1 Outlier Detection and Closed World as-
sumption

Machine learning tools are best at finding similarities be-
tween data sets. They generally do not exceed at finding
outliers in a given dataset. Finding outliers is what net-
work anomaly detection at its core is. We try to find pat-
terns in network flow that do not match the normal state of
the network. One could argue that NIDS are doing simple
classification because they classify their input data into two
categories namely ”normal” and ”abnormal”. This compar-
ison still does not hold, since in traditional ML approaches
training data of all classes in large quantities are required.
This requirement is impossible to fulfil for network anomaly
detection because we specifically try to find novel attacks.
In the approach of anomaly detection we deem all abnormal
behaviour as potentially harmful. This assumption does not
hold true in real life networks. As quoted by Witten et
al.[31]:” The idea of specifying only positive examples and
adopting a standing assumption that the rest are negative is
called the closed world assumption. . . . [The assumption]
is not of much practical use in real- life problems because
they rarely involve ”closed” worlds in which you can be cer-
tain that all cases are covered.” Specifically this flawed as-
sumption is the reason for the biggest problem in Network
anomaly detection: The high rate of false positives. This
make them impossible to use in the real world which leads
us to the next problem.

5.2 High cost of errors
Generally an error in intrusion detection is associated with
a much higher cost compared to other applications of ML.
Thus even if the anomaly detection has the same accuracy,
or even better than applications of ML in other domains,
it is not necessary that such a method is of any real world
value. A false positive, meaning detecting an anomaly that

is not there costs extensive time of analysis just to deter-
mine it was innocent behaviour after all. Even a small rate
of false positives can render a NIDS unusable.[6]. High false
positive rates are a major problem of anomaly detection.
False negatives on the other hand, have potential of caus-
ing serious damage: Even a single compromised system can
seriously undermine the integrity of the IT structure. Thus
researches have to juggle between false positives and false
negatives. To reduce the amount of false positives the al-
gorithm at hand must become more sensitive to abnormal
behaviour thus raising the rate of false positive at the same
time. According to Robin Sommer et al.[26] the number one
priority should be to reduce the rate of false positives since
they are a big reason why business are not willing to use
ML driven anomaly detection. A possible way to reduce the
rate of false positives as suggest by Robin Sommer et al.[26]
is to reduce the scope of the algorithm so that the algorithm
only detects a specific kind of anomaly instead of anomalies
in general. This approach also circumvents the problem of
juggling between false positives and false negatives. By re-
ducing the scope the relations between the data get much
tighter making it easier to differentiate between normal and
abnormal behaviour.

5.3 Diversity of Network Traffic
Another problem is that network traffic is more diverse than
one would intuitively expect. The networks basic character-
istics like bandwidth or duration of connections can vary
greatly throughout the day. A solution to this problem is
to simply apply aggregation to the input data. This makes
it easier for the tool at work to find a notion of normal be-
haviour and does not waste any valuable information since
network data is most of the time noisy anyway. For exam-
ple in a business where bandwidth usage around the time of
lunch is heavily reduced from other times in the day a spike
in network flow could be of concern and should be detected
as an anomaly. But in a lot of other cases, such anomalies
are not a concern of network security. This Network diver-
sity in fact makes it really hard for systems to find a suitable
notion of normal.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

13 doi: 10.2313/NET-2018-11-1_02

5.4 High computational demand
A major issue of ML tools is the high computational de-
mand they take while not providing any major performance
improvements compared to much simpler methods. In fact
in a lot of cases simple threshold based systems provide solu-
tions with comparable detection accuracy compared to their
ML counterparts. This can mean higher cost for a business
since more computational time is needed to set up the sys-
tem. Not only is setting up the system by applying the
training data computationally demanding also the actual
classification can take a considerable amount of time. Time
that could be crucial in stopping an attack. On top of that
in a threshold based systems detected anomalies are easy
to understand and deciding what further actions have to be
taken is simple. On the other hand with ML based systems
the sheer complexity makes understanding why an anomaly
was detected very hard and thus makes it harder to react
accordingly. Thus the accuracy of ML tools has to increase
in order to justify their high complexity and computational
demand.

5.5 Difficulties of Evaluation
One big concern in anomaly detection is that the datasets
most commonly used for evaluation are not representative
to current real world networks. The two most common used
datasets are the DARPA/Lincoln Lab packet traces and the
KDD Cup dataset derived from them which are both pub-
licly available. Both datasets are almost two decades old
making studies of current forms of attack impossible. Fur-
thermore the DARPA dataset was artificially generated, by
simulating an Air Force network. Whether one can derive
conclusions for real world networks by researching synthetic
datasets is highly doubtful. The KDD Cup datasets which
are directly derived from the DARPA datasets show the
same problems. On top of that, both datasets show sim-
ulation artefacts.[18]. These artefacts can heavily bias the
evaluation, since it is possible that the ML tool at hand
learns through these artefacts. In that case any deduction
to the real world is impossible. A commonly used exam-
ple that illustrates the issue pretty well is a story where US
researchers were trying to detect tanks in images using neu-
ral networks.[32] The mistake they made was that all the
pictures of tanks were made on a cloudy day, while the pic-
tures of images without tanks were made on a sunny day.
What happened was that the neural network was trained
on detecting the weather instead of detecting the tanks. In
our case the equivalent would be that our algorithm is not
trained on detecting anomalies but on detecting artefacts in
the dataset. Thus it is necessary to find another source of
data to evaluate IDS. Some researchers choose to use data
gathered from their own networks. This solution is not sat-
isfactory since big networks, commonly used by businesses,
are fundamentally different than smaller scale networks in
research facilities. [26] A way to gather suitable data for
evaluation would be to directly gather it from businesses.
The problem is that most businesses are not willing to share
data regarding their networks, since a lot of sensitive infor-
mation can be deduced from it which in turn can hurt these
businesses. Thus the data has to be anonymized, preferably
in such a way that no information relevant to anomaly de-
tection is lost.

6. CONCLUSION
Network anomaly detection is of high importance to busi-
nesses since a network intrusion can have catastrophic con-
sequences. Machine Learning shows to be a promising ap-
proach because novel forms of attack can be effectively de-
tected. Through Machine Learning the system learns what
normal and abnormal behaviour in the network means. Since
most attacks alter the system in an unusual way they will
be detected. This paper briefly describes the foundations of
different machine learning approaches, such as support vec-
tor machines or artificial neural networks and explains how
they can be used to detect network anomalies. To do this
we present recent research for each approach and explain the
most important details of it. Later we discuss the hurdles
that still remain in network anomaly detection and how to
overcome them. It is clear that the whole research commu-
nity will benefit from more reliable datasets. More work has
to be done in this area. With new approaches of ML be-
ing developed steadily and computers getting faster there is
still hope that Machine Learning in anomaly detection will
be widely used in the near future.

7. REFERENCES
[1] https://www.snort.org/[Online, accessed

01-April-2018].

[2] V. A. and S. K. Adaptive, model-based monitoring for
cyber attack detection. In Recent Advances in
Intrusion Detection. RAID 2000. Lecture Notes in
Computer Science. 2000.

[3] N. B. Amor, S. Benferhat, and Z. Elouedi. Naive bayes
vs decision trees in intrusion detection systems. In
Proceedings of the 2004 ACM symposium on Applied
computing, pages 420–424. ACM, 2004.

[4] AnAj. Simplebayesnetnodes.svg.
https://commons.wikimedia.org/wiki/
File:SimpleBayesNetNodes.svg, 2013. [Online, accessed
01-April-2018].

[5] T. U. K. Archive. Kdd cup 1999 data.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,
1999.

[6] S. Axelsson. The base-rate fallacy and its implications
for the difficulty of intrusion detection. In Proceedings
of the 6th ACM Conference on Computer and
Communications Security, pages 1–7. ACM, 1999.

[7] D. Colquhoun. The reproducibility of research and the
misinterpretation of p-values. Royal Society Open
Science, 4(12), 2017.

[8] Glossar.ca. Colored neural network.svg.
https://commons.wikimedia.org/wiki
/File:Colored neural network.sv, 2013. [Online,
accessed 01-April-2018].

[9] F. V. Jensen. Bayesian Networks and Decision
Graphs. 2001.

[10] R. Kohavi and G. H. John. The wrapper approach. In
Feature extraction, construction and selection, pages
33–50. Springer, 1998.

[11] T. Kohonen. The self-organizing map. Proceedings of
the IEEE, 78(9):1464–1480, 1990.

[12] C. Kruegel, D. Mutz, W. Robertson, and F.Valeur.
Bayesian event classification for intrusion detection. In
Computer Security Applications Conference, 2003.
Proceedings. 19th Annual.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

14 doi: 10.2313/NET-2018-11-1_02

[13] J.-H. Lee, J.-H. Lee, J.-H. R. Seon-Gyoung Sohn, and
T.-M. Chung. Effective value of decision tree with kdd
99 intrusion detection datasets for intrusion detection
system. In 10th International Conference on Advanced
Communication Technology, 2008.

[14] K.-L. Li, H.-K. Huang, S.-F. Tian, and Xu. Improving
one-class svm for anomaly detection. In Proceedings of
the 2003 International Conference on Machine
Learning and Cybernetics (IEEE Cat. No.03EX693),
volume 5, pages 3077–3081 Vol.5, Nov 2003.

[15] W. Li. Using genetic algorithm for network intrusion
detection. Proceedings of the United States Department
of Energy Cyber Security Group, 1:1–8, 2004.

[16] Y. Liao and V. Vemuri. Use of k-nearest neighbor
classifier for intrusion detection11an earlier version of
this paper is to appear in the proceedings of the 11th
usenix security symposium, san francisco, ca, august
2002. Computers & Security, 21(5):439 – 448, 2002.

[17] R. Lippmann, R. K. Cunningham, D. J. Fried, I. Graf,
K. R. Kendall, S. E. Webster, and M. A. Zissman.
Results of the 1998 darpa offline intrusion detection
evaluation. Proc. Recent Advances in Intrusion
Detection, 1999.

[18] M. V. Mahoney and P. K. Chan. An analysis of the
1999 darpa/lincoln laboratory evaluation data for
network anomaly detection. In International
Workshop on Recent Advances in Intrusion Detection,
pages 220–237. Springer, 2003.

[19] N. M. Nasrabadi. Pattern recognition and machine
learning. Journal of electronic imaging, 16(4):049901,
2007.

[20] C. Palagiri. Network-based intrusion detection using
neural networks. Department of Computer Science
Rensselaer Polytechnic Institute Troy, New York,
pages 12180–3590, 2002.

[21] A. Patcha and J.-M. Park. An overview of anomaly
detection techniques: Existing solutions and latest
technological trends. Computer networks,
51(12):3448–3470, 2007.

[22] P. A. Porras and P. G. Neumann. Emerald: Event
monitoring enabling responses to anomalous live
disturbances. In 20th NIST-NCSC National
Information Systems Security Conference (1997).

[23] S. Rajasegarar, C. Leckie, M. Palaniswami, and
J. Bezdek. Distributed anomaly detection in wireless
sensor networks. pages 1 – 5, 11 2006.

[24] B. Schoelkop, J. C. Platt, J. Shawe-Taylor, and A. J.
Smola. Estimating the support of a high-dimensional
distribution. pages 1443–1471, 2001.

[25] T. Shon and J. Moon. A hybrid machine learning
approach to network anomaly detection. Information
Sciences, 177(18):3799–3821, 2007.

[26] R. Sommer and V. Paxson. Outside the closed world:
On using machine learning for network intrusion
detection. In Security and Privacy (SP), 2010 IEEE
Symposium on, pages 305–316. IEEE, 2010.

[27] G. Stein, B. Chen, A. S. Wu, and K. A. Hua. Decision
tree classifier for network intrusion detection with
ga-based feature selection. In Proceedings of the 43rd
annual Southeast regional conference-Volume 2, pages
136–141. ACM, 2005.

[28] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin.

Intrusion detection by machine learning: A review.
Expert Systems with Applications, 36(10):11994–12000,
2009.

[29] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin.
Intrusion detection by machine learning: A review.
Expert Systems with Applications, 36(10):11994–12000,
2009.

[30] D. Whitley. A genetic algorithm tutorial. Statistics
and computing, 4(2):65–85, 1994.

[31] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal.
Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2016.

[32] E. Yudkowsky. Artificial intelligence as a positive and
negative factor in global risk. Global catastrophic risks,
1(303):184, 2008.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

15 doi: 10.2313/NET-2018-11-1_02

