
Hypervisor- vs. Container-based Virtualization

Michael Eder
Betreuer: Holger Kinkelin

Seminar Future Internet WS2015/16
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: edermi@in.tum.de

ABSTRACT
For a long time, the term virtualization implied talking about
hypervisor-based virtualization. However, in the past few
years container-based virtualization got mature and espe-
cially Docker gained a lot of attention. Hypervisor-based
virtualization provides strong isolation of a complete opera-
ting system whereas container-based virtualization strives to
isolate processes from other processes at little resource costs.
In this paper, hypervisor and container-based virtualization
are differentiated and the mechanisms behind Docker and
LXC are described. The way from a simple chroot over a
container framework to a ready to use container management
solution is shown and a look on the security of containers
in general is taken. This paper gives an overview of the two
different virtualization approaches and their advantages and
disadvantages.

Keywords
virtualization, Docker, Linux containers, LXC, hypervisor,
security

1. INTRODUCTION
The paper compares two different virtualization approaches,
hypervisor and container-based virtualization. Container-
based virtualization got popular when Docker [1], a free tool
to create, manage and distribute containers gained a lot of
attention by combining different technologies to a power-
ful virtualization software. By contrast, hypervisor-based
virtualization is the alpha male of virtualization that is wi-
dely used and around for decades. Both technologies have
advantages over each other and both come with tradeoffs
that have to be taken into account before deciding which of
the both technologies better fits the own needs. The paper
introduces hypervisor- and container-based virtualization in
Section 2, describes advantages and disadvantages in Secti-
on 3 and goes deeper into container-based virtualization and
the technologies behind in Section 4. There is already a lot
of literature about hypervisor-based virtualization whereas
container-based virtualization started to get popular in the
last few years and there are fewer papers about this topic
around, so the main focus of this paper is container-based
virtualization. Another focus of the paper is Docker which is
introduced in Section 4.3, because it traversed a rapid deve-
lopment over the last two years and gained a lot of attention
in the community. To round the paper out, general securi-
ty risks of container-based virtualization and Docker and
possible ways to deal with them are elaborated in Section 5.
Section 6 gives a brief overview to related work on this topic.

2. DISTINCTION: HYPERVISOR VS. CON-
TAINER-BASED VIRTUALIZATION

When talking about virtualization, the technology most peo-
ple refer to is hypervisor-based virtualization. The hypervisor
is a software allowing the abstraction from the hardware. Eve-
ry piece of hardware required for running software has to be
emulated by the hypervisor. Because there is an emulation of
the complete hardware of a computer, talking about virtual
machines or virtual computers is usual. It is common to be
able to access real hardware through an interface provided
by the hypervisor, for example in order to access files on a
physical device like a CD or a flash drive or to communicate
with the network. Inside this virtual computer, an operating
system and software can be installed and used like on any
normal computer. The hardware running the hypervisor is
called the host (and the operating system host operating
system) whereas all emulated machines running inside them
are referred to as guests and their operating systems are
called guest operating systems. Nowadays, it is usual to get
also utility software together with the hypervisor that allows
convenient access to all of the hypervisor’s functions. This
improves the ease of operation and may bring additional
functionalities that are not exactly part of the hypervisor’s
job, for example snapshot functionalities and graphical inter-
faces. It is possible to differentiate two types of hypervisors,
type 1 and type 2 hypervisors. Type 1 hypervisors are run-
ning directly on hardware (hence often referred to as bare
metal hypervisors) not requiring an operating system and
having their own drivers whereas type 2 hypervisors require
a host operating system whose capabilities are used in or-
der to perform their operations. Well-known hypervisors or
virtualization products are:

• KVM [2], a kernel module for the Linux kernel allowing
access to virtualization capabilities of real hardware
and the emulator usually used with KVM, qemu [3],
which is emulating the rest of the hardware (type 2),

• Xen [4], a free hypervisor running directly on hardware
(type 1),

• Hyper-V [5], a hypervisor from Microsoft integrated
into various Windows versions (type 1),

• VMware Workstation [6], a proprietary virtualization
software from VMware (type 2)

• Virtual Box [7], a free, platform independent virtuali-
zation solution from Oracle (type 2).

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

1 doi: 10.2313/NET-2016-07-1_01



From now on, this paper assumes talking about type 2 hy-
pervisors when talking about hypervisors.
Container-based virtualization does not emulate an entire
computer. An operating system is providing certain features
to the container software in order to isolate processes from
other processes and containers. Because the Linux kernel pro-
vides a lot of capabilities to isolate processes, it is required by
all solutions this paper is dealing with. Other operating sys-
tems may provide similar mechanisms, for example FreeBSD’s
jails [8] or Solaris Zones. Because there is no full emulation
of hardware, software running in containers has to be com-
patible with the host system’s kernel and CPU architecture.
A very descriptive picture for container-based virtualization
is that “containers are like firewalls between processes“ [9].
A similar metaphor for hypervisor-based virtualization are
processes running on different machines connected to and
supervised by a central instance, the hypervisor.

3. USE CASES AND GOALS OF BOTH
VIRTUALIZATION TECHNOLOGIES

Hypervisor and container-based virtualization technologies
come with different tradeoffs, hence there are different goals
each want to achieve. There are also different use cases for
virtualization in general and both hypervisor and container-
based virtualization have therefore special strengths and
weaknesses relating to specific use cases. Because of abstrac-
ting from hardware, both types of virtualization are easy to
migrate and allow a better resource utilization, leading to
lower costs and saving energy.

3.1 Hypervisor-based virtualization
Hypervisor-based virtualization allows to fully emulate ano-
ther computer, therefore it is possible to emulate other types
of devices (for example a smartphone), other CPU architec-
tures or other operating systems. This is useful for example
when developing applications for mobile platforms — the
developer can test his application on his development system
without the need of physically having access to a target de-
vice. Another common use case is to have virtual machines
with other guest operating systems than the host. Some users
need special software that does not run on their preferred
operating system, virtualization allows to run nearly every
required environment and software in this environment inde-
pendently from the host system. Because of the abstraction
from the hardware, it is easier to create, deploy and maintain
images of the system. In the case of hardware incidents, a
virtual machine can be moved to another system with very
little effort, in the best case even without the user noticing
that there was a migration. Hypervisor-based virtualization
takes advantage of modern CPU capabilities. This allows the
virtual machine and its applications to directly access the
CPU in an unprivileged mode [10], resulting in performance
improvements without sacrificing the security of the host
system.

Hypervisors may set up on the hardware directly (type 1)
or on a host operating system (type 2). Figure 1 shows a
scheme where the hypervisor is located in this hierarchy.
Assuming a type 1 Hypervisor, all operating systems were
guests in Figure 1 whereas a type 2 hypervisor was on the
same level than other userspace applications, having the

operating system (not shown in the figure) and the real
hardware on the layers below it.

Figure 1: Scheme of hypervisor-based virtualization.
Hardware available to guests is usually emulated.

3.2 Container-based virtualization
Container-based virtualization utilizes kernel features to
create an isolated environment for processes. In contrast
to hypervisor-based virtualization, containers do not get
their own virtualized hardware but use the hardware of the
host system. Therefore, software running in containers does
directly communicate with the host kernel and has to be
able to run on the operating system (see figure 2) and CPU
architecture the host is running on. Not having to emulate
hardware and boot a complete operating system enables con-
tainers to start in a few milliseconds and be more efficient
than classical virtual machines. Container images are usual-
ly smaller than virtual machine images because container
images do not need to contain a complete toolchain to run a
operating system, i.e. device drivers, kernel or the init system.
This is one of the reasons why container-based virtualization
got more popular over the last few years. The small resource
fingerprint allows better performance on a small and larger
scale and there are still relatively strong security benefits.

Shipping containers is a really interesting approach in soft-
ware developing: Developers do not have to set up their
machines by hand, instead of that a build system image may
be distributed containing all tools and configuration required
for working on a project. If an update is required, only one
image has to be regenerated and distributed. This approach
eases the management of different projects on a developers
machine because one can avoid dependency conflicts and
separate different projects in an easy way.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

2 doi: 10.2313/NET-2016-07-1_01



Figure 2: Scheme of container-based virtualization.
Hardware and Kernel of the host are used, contai-
ners are running in userspace separated from each
other.

4. FROM CHROOT OVER CONTAINERS
TO DOCKER

Container-based virtualization uses a lot of capabilities the
kernel provides in order to isolate processes or to achieve other
goals that are helpful for this purpose, too. Most solutions
build upon the Linux kernel and because the paper’s focus lies
on LXC and Docker, a closer look at the features provided
by the Linux kernel in order to virtualize applications in
containers will be taken. Because the kernel provides most
of the capabilities required, container toolkits usually do
not have to implement them again and the kernel code is
already used by other software that is considered stable and
already in production use. In case of security problems of
the mechanisms provided by the kernel, fixes are getting
distributed with kernel updates, meaning that the container
software does not need to be patched and the user only has
to keep its kernel up to date.

4.1 chroot
The change root mechanism allows to change the root di-
rectory of a process and all of its subprocesses. Chroot is
used in order to restrict filesystem access to a single folder
which is treated as the root folder (/) by the target process
and its subprocesses. On Linux, this is not considered a se-
curity feature because it is possible for a user to escape the
chroot [11].

Apart from that, chroot may prevent erroneous software from
accessing files outside of the chroot and — even if it is possible
to escape the chroot — it makes it harder for attackers to
get access to the complete filesystem. Chroot is often used
for testing software in a somehow isolated environment and
to install or repair the system. This means chroot does not
provide any further process isolation apart from changing the
root directory of a process to a different directory somewhere
in the filesystem.

Compared to a normal execution of processes, putting them
into a chroot is a rather weak guarantee that they are not
able to access places of the filesystem they are not supposed
to access.

4.2 Linux containers
Linux containers [12] (LXC) is a project that aims to build
a toolkit to isolate processes from other processes. As said,
chroot was not developed as a security feature and it is possi-
ble to escape the chroot — LXC tries to create environments
(containers) that are supposed to be escape-proof for a pro-
cess and its child processes and to protect the system even
if an attacker manages to escape the container. Apart from
that, it provides an interface to fine-grained limit resource
consumption of containers. Containers fully virtualize net-
work interfaces and make sure that kernel interfaces may
only be accessed in secure ways. The following subsections
are going to show the most important isolation mechanisms
in greater detail. The name Linux containers (LXC ) may be
a little bit confusing: It is a toolkit to create containers on
Linux, of course there are other possibilities to achieve the
same goal with other utilities than LXC and to create isola-
ted processes or groups of them (containers) under Linux.
Because LXC is a popular toolkit, most of the statements of
this paper referring to Linux containers apply to LXC, too,
but we are going to use the term LXC in order to specifically
talk about the popular implementation and Linux containers
in order to talk about the general concept of process isola-
tion as described in this paper on Linux. The capabilities
introduced in the following are difficult to use meaning that
proper configuration requires a lot of reading documentation
and much time setting everything up. Deploying complex
configuration of system-level tools is a hard task. Easily ad-
opting the configuration to other environments and different
needs without endangering security of the existing solution is
nearly impossible without a toolkit providing access to those
features. LXC is a toolkit trying to fulfill these requirements.

4.2.1 Linux kernel namespaces
By now, processes are only chrooted but still see other pro-
cesses and are able to see information like user and group
IDs, access the hostname and communicate with others. The
goal is to create an environment for a process that allows
him access to a special copy of this information that does not
need to be the same that other processes see, but the easy
approach of preventing the process to access this information
may crash it or lead to wrong behaviour. The kernel provi-
des a feature called namespaces (in fact, there are several
different [13] namespaces) in order to realize these demands.
Kernel namespaces is a feature allowing to isolate processes,
groups of processes and even complete subsystems like the
interprocess communication or the network subsystem of the
kernel. It is a flexible mechanism to separate processes from
each other by creating different namespaces for processes
that need to be separated. The kernel allows passing glo-
bal resources such as network devices or process/user/group
IDs into namespaces and manages synchronization of those
resources. It is possible to create namespaces containing pro-
cesses that have a process ID (PID) that is already in use on
the host system or other containers. This simplifies migration
of a suspended container because the PIDs of the container
are independent from the PIDs of the host system. User
namespaces allow to “isolate security-related identifiers and
attributes, in particular, user IDs and group IDs [. . . ], the
root directory, keys [. . . ], and capabilities“ [14]. Combining
all these features makes it possible to isolate processes in a
way that

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

3 doi: 10.2313/NET-2016-07-1_01



• process IDs inside namespaces are isolated from process
IDs of other namespaces and are unique per-namespace,
but processes in different namespaces may have the
same process IDs,

• global resources are accessible via an API provided by
the kernel if desired,

• there is abstraction from users, groups and other se-
curity related information of the host system and the
containers.

In fact, kernel namespaces are the foundation of process sepa-
ration and therefore one of the key concepts for implementing
container-based virtualization. They provide a lot of features
required for building containers and are available since kernel
2.6.26 which means they are around for several years and are
used in production already [15].

4.2.2 Control groups
Control groups (further referred to as cgroups) are a feature
that is not mandatory in order to isolate processes from other
processes. In the first place cgroups is a mechanism to track
processes and process groups including forked processes. [16]
In the first instance, they do not solve a problem that is
related to process isolation or making the isolation stron-
ger, but provided hooks allow other subsystems to extend
those functionalities and to implement fine-grained resource
control and limitation which is more flexible compared to
other tools trying to achieve a similar goal. The ability to
assign resources to processes and process groups and manage
those assignments allows to plan and control the use of con-
tainers without unrestricted waste of physical resources by a
simple container. The same way it is possible to guarantee
that resources are not unavailable because other processes
are claiming them for themselves. At first this might look
like a feature primarily targeting at hosts serving multiple
different users (e.g. shared web-hosting), but it is also a po-
werful mechanism to avoid Denial of Service (DoS) attacks.
DoS attacks do not compromise the system, they try to ge-
nerate a useless workload preventing a service to fulfill its
task by overstressing it. A container behaving different than
suspected may have an unknown bug, be attacked or even
controlled by an attacker and consuming a lot of physical
resources — having limited access to those resources from
the very beginning avoids outages and may safe time, money
and nerves of all those involved. As said, controlling resources
is not a feature required for isolation but essential in order
to compete with hypervisor-based virtualization. It is very
common to restrict resource usage in hypervisor-based vir-
tualization and being able to do the same with containers
allows to better utilize the given resources.

4.2.3 Mandatory Access Control
On Linux (and Unix), everything is a file and every file has
related information about which user and which group the
file belongs to and what the owner, the owning group and
everybody else on the system is allowed to do with a file.
Doing in this context means: reading, writing or executing.
This Discretionary Access Control (DAC ) decides if access
to a resource is granted solely on information about users
and groups. Contrary, Mandatory Access Control (MAC )
does not decide on those characteristics. Mandatory Access

Control is a set of concepts defining management of access
control which is gaining more and more attention over the
past years. The need for such systems is generally to improve
security and in this case MAC is used to harden the access
control mechanisms of Linux/Unix. Instead, if a resource
is requested, authorization rules (policies) are checked and
if the requirements defined by the policy are met access is
granted. There are different approaches on how to implement
such a system, the three big ones are namely SELinux [17],
AppArmor [18] and grsecurity’s RBAC [19]. MAC policies
are often used in order to restrict access to resources that
are sensitive and not required to be accessed in a certain
context. For example the chsh1 userspace utility on Linux
has the setuid bit set. This means that a regular user is
allowed to run this binary and the binary can elevate it self
to running with root privileges in order to do what it is
required to do. If a bug was found in the binary it may be
possible to execute malicious code with root privileges as a
normal user. A MAC policy could be provided allowing the
binary to elevate its rights in order to do its legitimate job
but denying everything root can do but the library does not
need to do. In this case, there is no use case for the chsh
binary to do networking but it is allowed to because it can
do anything root can do. A policy denying access to network
related system components does not affect the binary but
if it was exploited by an attacker, he wouldn’t be able to
use the binary in order to sniff traffic on active network
interfaces or change the default gateway to his own box
capturing all the packets because a MAC policy is denying
the chsh tool to access the network subsystem. There are a
lot of examples where bugs in software let attackers access
sensitive information or do malicious activities that are not
required by the attacked process, e.g. CVE–2007–33042 which
is a bug in the Apache webserver allowing an attacker to send
signals to other processes which gets mitigated already by
enabling SELinux in enforcing mode [10]. Especially network
services like web- or mail servers, but also connected systems
like database servers are receiving untrusted data and are
potential attack targets. Restricting their access to resources
to their minimal requirements increases the security of the
system and all connected systems. Applying these security
improvements to containers adds another layer of protection
to mitigate attacks against the host and other containers
from inside of the container.

4.3 Docker
LXC is a toolkit to work with containers saving users from
having to work with low level mechanisms. It creates an
interface to access all the features the Linux kernel is pro-
viding while reducing the learning curve for users. Without
LXC, a user needs to spend a lot of time to read the kernel
documentation in order to understand and use the provided
features to set up a container by hand. LXC allows to auto-

1chsh allows a user to change its login shell. This is a task
every user is allowed to do on its own but requires modifica-
tion of the file /etc/passwd which is accessible for root only.
chsh allows safe access to the file and allows a user to change
his own login shell, but not the login shells of other users
2Common Vulnerabilities and Exposures is a standard to
assign public known vulnerabilities a unique number in order
to make it easy and to talk about a certain vulnerability and
to avoid misunderstandings by confusing different vulnerabi-
lities

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

4 doi: 10.2313/NET-2016-07-1_01



mate the management of containers and and enables users
to build their own container solution that is customizable
and fits even exotic needs. For those who want to simply
run processes in an isolated environment without spending
too much time figuring out how the toolkit works, this is
still impractical. This is were Docker [1] comes in: It is a
command line tool that allows to create, manage and de-
ploy containers. It requires very little technical background
compared to using LXC for the same task and provides va-
rious features that are essential to work with containers in
a production environment. Docker started in March 2013
and got a lot of attention since then, resulting in a rapid
growth of the project. By combining technologies to isolate
processes with different other useful tools, Docker makes it
easier to create container images based on other container
images. It allows the user to access a public repository on
the internet called Docker Hub [20] that contains hundreds
of ready usable images that can be downloaded and started
with a single command. Users have the ability to change
and extend those images and share their improvements with
others. There is also an API allowing the user to interact
with Docker remotely. Docker brings a lot of improvements
compared to the usage of LXC, but introduces also new at-
tack vectors on a layer that is not that technical anymore
because now users and their behaviour play a bigger part in
the security of the complete system. Before talking about
that in greater detail, some major improvements over LXC
Docker introduced are outlined.

4.3.1 One tool to rule them all
LXC is a powerful tool enabling a wide range of setups and
because of that, it is hard to come by when not being deep
into the topic and the tools. Docker aims to simplify the
workflow. The Docker command line tool is the interface for
the user to interact with the Docker daemon. It is a single
command with memorizable parameter names allowing the
user to access all the features. Depending on the environment,
there is little to no configuration required to pull (download)
images from the online repository (Docker Hub) and run
it on the system. Apart from not being required, it is of
course possible to create a configuration file for Docker and
specific images in order to ease administration, set specific
parameters and to automate the build process of new images.

4.3.2 Filesystem layers generated and distributed in-
dependently

One major improvement over classical hypervisor-based vir-
tualization Docker introduced is the usage of filesystem layers.
Filesystem layers can be thought of as different parts of a file-
system, i.e. the root file system of a container and filesystems
containing application specific files. There may be different
filesystem layers, for example one for the base system which
may be always required and additional layers containing
the files of e.g. a webserver. This means that the webserver
that is ready to run can be distributed as an independent
filesystem layer. By way of illustration a web service is con-
sisting of a SQL database server like MySQL, a webserver
like Apache, a programming language and the framework a
web application is built on like python using Django and a
mail transfer agent like sendmail is assumed. Of course it
is possible to a certain extent to split those tools and run
them in different environments (mail, web and database may

run on completely different machines), this example assumes
that the setup is the developers setup and differs from the
deployment in production use. So, after installing Docker, it
is possible to fetch the filesystem layers of all of those tools
and combine them to one image that runs all the software
presented above and may now be used in order to develop
the web app. The web app itself may now be the content of
a new filesystem layer allowing to be deployed in the same
manner later on. If a new version of one of the components
is released and the developer wants to update its local layer,
only the updated layer has to be fetched. The configuration
of the user usually remains in a separate layer and it is not
affected by the update. Because there is no need to fetch the
data for other layers again, space and bandwidth is saved. If
another user wants to use the web app the developer pushed
to the Docker Hub, but he prefers PostgreSQL over MySQL
and nginx over Apache webserver and the web app is capable
of being used with those alternatives to the developer’s setup,
he may use the respective filesystem layers of the software
he wants to use.

4.3.3 Docker Hub
As said, one of the novelties Docker introduced to the vir-
tualization market was the Docker Hub [20]. It is one of the
things nobody demanded because it was simply not there
and everybody was fine reading documentation and creating
virtual machines and container images from scratch over and
over again. The Docker Hub is a web service that is fully in-
tegrated into the Docker software and allows to fetch images
that are ready to run from the Docker Hub. Images created
or modified by users may be shared on the Docker Hub, too.
The result is that the Docker Hub contains a lot of images of
different software in different configurations and every user
has the ability to fetch the images and documentation of the
images, use and improve them and get in touch with other
users by commenting on images and collaborating on them.
The Docker Hub can be accessed via a web browser, too. To
ease the choice of the right images of often used images like
Wordpress, MongoDB and node.js, the Docker Hub allows
such projects to mark their images as official images that
come directly from declared project members. The ability
for everyone to push their images to the Docker Hub led to
a great diversity and a lot of software available as container
images. Even more complex or very specific configurations of
some programs can be found there. The Hub introduces also
some security problems that are covered in Section 5. Users
are not tied to the Docker Hub. It is possible to set up private
registries that can be used natively the same way, but are e.g.
only accessible for authenticated users in a company network
or in order to build a public structure that is independent to
the already existing structure.

4.4 Managing great numbers of containers
Running containers is cheap regarding resource consumption.
Building large-scale services relying on container structures
may involve thousands of containers located on different ma-
chines all over the world. Today this may still be a corner
case, but some companies are already facing management
problems because they have too much containers to admi-
nistrate them by hand. Google introduced Kubernetes [21]
in order to ease the administration, group containers and
automate working with groups of containers.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

5 doi: 10.2313/NET-2016-07-1_01



5. SECURITY OF CONTAINER-BASED VS.
HYPERVISOR-BASED VIRTUALIZATI-
ON

Hypervisor-based virtual machines are often used in order
to introduce another layer of security by isolating resources
exposed to attackers from other resources that need to be
protected. “Properly configured containers have a security
profile that is slightly more secure than multiple applications
on a single server and slightly less secure than KVM virtu-
al machines.“ [10] The better security profile compared to
multiple applications next to each other is because of the
already mentioned mechanisms making it harder to escape
from an isolated environment, but all processes in all contai-
ners still run together with other processes under the host
kernel. Because KVM is a hypervisor emulating complete
hardware and another operating system inside, it is consi-
dered even harder to escape this environment resulting in a
slightly higher security of hypervisor-based virtualization.

It is possible to combine both technologies and due to the
small resource fingerprint and the introduced security layer of
container-based virtualization, this is considered a good idea.
Nevertheless, container-based virtualization is not proven to
be secure and container breakouts already happened in the
past [22].

Multiple security issues arise from the spirit of sharing images.
Docker has for a long time not had sufficient mechanisms
to check the integrity and authenticity of the downloaded
images, meaning that the authors of the image are indeed
the people who claim they are and that the image has not
been modified without being recognized, to the contrary their
system exposed attack surface and it may has been possible
for attackers to modify images and pass Docker’s verification
mechanisms [23]. Docker addressed this issues by integrating
a new mechanism called Content Trust that allows users
to verify the publisher of images [24]. There is nothing like
the Docker Hub for hypervisor-based virtualization software,
meaning that it is usual to build the virtual machines from
scratch. In case of Linux, on the one hand it is common that
packages are signed and the authenticity and integrity can be
validated, on the other hand each virtual machine contains a
lot of software that needs to be taken care off by hand all
the time.

One of the biggest problems of Docker is that it is hard to
come to grips with the high amount of images containing
security vulnerabilities. Origin of this problem is that images
on the Docker Hub do not get updated automatically, every
update has to be built by hand instead. This is a rather
social problem of people not updating their software neither
updating the containers they pushed to the Docker Hub in
the past. This is a somehow harder problem compared to
the same phenomenon of software not being up to date on a
virtual machine: There is actually no update available on the
Docker Hub, the latest image contains vulnerabilities. On
virtual machines when running an operating system that is
still taken care of, someone needs to log in and install the
security updates, which may be forgotten or simply ignored
because of various reasons, but building the fixed container
as a user is usually way more effort.

A study [25] found out that “Over 30% of Official Images in
Docker Hub Contain High Priority Security Vulnerabilities“.
The numbers were generated by a tool scanning the images
listed on the Docker Hub for known vulnerabilities. More
than 60% of official images, which means they come from
official developers of the projects contained in the container,
contained medium or high priority vulnerabilities. Analyzing
the vulnerabilities of all images on the Hub showed that 75%
contained vulnerabilities considered medium or high priority
issues. Overcoming these problems requires permanent analy-
sis of the containers which means scanning them for security
problems regularly and inform their creators and users about
problems found. This means that it may be easier to come
by the problem of outdated containers because the fact that
they are stored centrally allows to statically scan all images
in the repository.

Mr. Hayden points out how to build a secure LXC container
from scratch that can be used as foundation for further
modifications [10].

6. RELATED WORK
One of the use cases for hypervisor and container-based
virtualization is improving security by isolating processes
that are untrusted or are connected to other systems and
expose attack surface, i.e. a webserver on a machine connected
to the internet. Of course, there are different ways to improve
security that may be applied additionally to virtualization.

The already described Mandatory Access Control (see Sec-
tion 4.2.3) goes already into the direction of hardening the
operating system. This means to add new or improve already
present mechanisms in order to make it harder to successful-
ly attack systems. On Linux, the grsecurity [19] project is
well-known for their patch set adding and improving a lot
of kernel features, for example MAC through their RBAC
system, Address Space Layout Randomization (ASLR) and
a lot of other features making it harder to attack the kernel.

Another approach of separating applications can be found in
the Qubes OS [26] project. They build an operating system
based on Linux and the X11 window system on top of XEN
and allow to create AppVMs that run applications in dedi-
cated virtual machines — somehow similar to the container
approach, but with hypervisor-based virtualization instead
of mechanisms built inside a standard Linux kernel. Accor-
ding to their homepage, it is even possible to run Microsoft
Windows based application virtual machines.

MirageOS [27] is also an operating system setting up on XEN,
but deploying applications on MirageOS means deploying
a specialized kernel containing the application. Those uni-
kernels [28] contain only what is needed in order to perform
their only task. Because there are no features not absolutely
required, unikernels are usually really small and performant.
MirageOS is a library operating system that may be used in
order to create such unikernels. The probably biggest weak-
ness of this approach is that applications need to be written
specifically to be used with unikernels.

7. CONCLUSION
Container-based virtualization is a lightweight alternative to
hypervisor-based virtualization for those, who do not require

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

6 doi: 10.2313/NET-2016-07-1_01



or wish to have separate emulated hardware and operating
system kernel — a system in a system. There are many sce-
narios where speed, simplicity and only the need to isolate
processes are prevalent and container-based virtualization
fulfills these needs. By using mostly features already present
in the Linux kernel for several years, container-based virtua-
lization builds on a mature codebase that is already running
on the user’s machines and kept up to date by the Linux
community. Especially Docker introduced new concepts that
were not associated and used together with virtualization.
Giving users the social aspect of working together, sharing
and reuse the work of other users is definitely one of Dockers
recipes for success and a completely new idea in the area
of virtualization. Because it is relatively easy to run a huge
number of containers, there are already tools allowing to
manage large groups of containers.

When it comes to security, there is no need for a “vs.“ in
the title of this paper. Generally, it is of course possible
to run containers on an already (hypervisor-) virtualized
computer or to run your hypervisor in your container. The
hypervisor layer is considered a thicker layer of security
than the application of the mechanisms described above.
Nevertheless, applying these lightweight mechanisms adds
additional security at literally no resource cost.

Both approaches and of course their combination is hardware-
independent, allows a better resource utilization, improves
security and eases management.

8. REFERENCES
[1] Docker project homepage, https://www.docker.com/,

Retrieved: September 13, 2015

[2] KVM project homepage, http://www.linux-kvm.org/
page/Main_Page, Retrieved: September 16, 2015

[3] qemu project Homepage,
http://wiki.qemu.org/Main_Page, Retrieved:
September 16, 2015

[4] XEN project homepage, http://www.xenproject.org/,
Retrieved: September 16, 2015

[5] Microsoft TechNet Hyper-V overview,
https://technet.microsoft.com/en-us/library/

hh831531.aspx, Retrieved: September 16, 2015

[6] VMware Homepage, http://www.vmware.com/,
Retrieved: September 16, 2015

[7] VirtualBox project homepage,
https://www.virtualbox.org/, Retrieved: September
16, 2015

[8] M. Riondato FreeBSD Handbook, Chapter 14. Jails,
https://www.freebsd.org/doc/handbook/

jails.html, Retrieved: September 26, 2015

[9] E. Windisch: On the Security of containers,
https://medium.com/@ewindisch/on-the-security-

of-containers-2c60ffe25a9e, Retrieved: August 18,
2015

[10] M. Hayden: Securing Linux containers,
https://major.io/2015/08/14/research-paper-

securing-linux-containers/, Retrieved: August 18,
2015

[11] chroot (2) manpage, release 4.02 of Linux man-pages
project, http://man7.org/linux/man-
pages/man2/chroot.2.html, Retrieved: September 16,
2015

[12] LXC project homepage,
https://linuxcontainers.org/, Retrieved:
September 13, 2015

[13] namespaces (7) manpage, release 4.02 of Linux
man-pages project, http://man7.org/linux/man-
pages/man7/namespaces.7.html, Retrieved:
September 16, 2015

[14] user namespaces (7) manpage, release 4.02 of Linux
man-pages project, http://man7.org/linux/man-
pages/man7/user_namespaces.7.html, Retrieved:
September 16, 2015

[15] Docker Docs: Docker Security,
https://docs.docker.com/articles/security/,
Retrieved: August 18, 2015

[16] P. Menage, P. Jackson, C. Lameter: Linux Kernel
Documentation, https://www.kernel.org/doc
/Documentation/cgroups/cgroups.txt, Retrieved
September 13, 2015

[17] SELinux project homepage,
http://selinuxproject.org/page/Main_Page,
Retrieved: September 26, 2015

[18] AppArmor project homepage,
http://wiki.apparmor.net/index.php/Main_Page,
Retrieved: September 26, 2015

[19] grsecurity project homepage,
https://grsecurity.net/, Retrieved: September 16,
2015

[20] Docker Hub, https://hub.docker.com/, Retrieved:
September 26, 2015

[21] Kubernetes project homepage, http://kubernetes.io/,
Retrieved: September 16, 2015

[22] J. Turnbull: Docker container Breakout
Proof-of-Concept Exploit,
https://blog.docker.com/2014/06/docker-

container-breakout-proof-of-concept-exploit/,
Retrieved: August 18, 2015

[23] J. Rudenberg: Docker Image Insecurity,
https://titanous.com/posts/docker-insecurity,
Retrieved: August 18, 2015

[24] D. Mónica: Introducing Docker Content Trust,
https://blog.docker.com/2015/08/content-trust-

docker-1-8/, Retrieved: August 18, 2015

[25] Jayanth Gummaraju, Tarun Desikan and Yoshio
Turner: Over 30% of Official Images in Docker Hub
Contain High Priority Security Vulnerabilities,
http://www.banyanops.com/blog/analyzing-docker-

hub/, Retrieved: August 18, 2015

[26] Cubes OS project homepage,
https://www.qubes-os.org/, Retrieved: September
16, 2015

[27] MirageOS project homepage, https://mirage.io/,
Retrieved: September 16, 2015

[28] XEN Unikernels wiki page,
http://wiki.xenproject.org/wiki/Unikernels,
Retrieved: September 16, 2015

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

7 doi: 10.2313/NET-2016-07-1_01


