Chair for Network Architectures and Services—Prof. Carle

Department of Computer Science
TU Minchen

Analysis of System Performance
IN2072
Chapter 2 — Random Process
Part 2

Dr. Alexander Klein
Prof. Dr.-Ing. Georg Carle

Chair for Network Architectures and Services

Department of Computer Science
Technische Universitat Minchen
http://www.net.in.tum.de




ey,
;ﬁ" Renewal Process

Process routines in distributed (communication) systems are usually
described by arrival processes. Arrival processes are often
characterized by renewal processes.

Random
Arrival events observation

sl o

t*
to t1 t2 i3 ti ti+1 t
«— Rp —3< Ri =

Definition:
A point process is called renewal process if the distances between
consecutive events is independent and identically distributed (iid).

A1) = A(t), Vi
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Random
Arrival events observation

e =[] ]

to t1t ts ti
“— Rp —3< Rt >

Variables:

o A :Random variable of the interrarrival time
a A(t) : Distribution function of the RV

a a(t) : Probability density function of the RV

o t* : Random point of observation

0

Rt : Forward recurrence time — time intervall between random
ovservation time and next event

a0 Rb : Backward recurrence time — time intervall between previous
event and random observation time
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o Distribution function:

The probability density function r(t) of the recurrence time R of a
renewal process can be calculated from the distribution function A(t) of
the interrarrival time A .

(D) = —— (1= A(t)) = AAS (1) = A Ta(r)dr

E[A]
Random
Arrival events observation
A —> : /
A1 | A2 A3 I
I
: . >
to t1 t2 ts ti :
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Event: Observation point t* falls within an interval with duration A=7
a(r) Probability density of occurrance of an interval with duration

d. =a(r)-7-n, Probability that the observation point falls within an
interval of length 7. The probabillity is proportional to
the interval duration since a longer time interval is
observed with a higher probability.

n, Constant used to normalise the density function

I:> TqrdT: Ta(r)-r-nodr: n, Ta(r)-r.dr: n,E[A] =1
r=0 r=0 r=0

—> nozﬁ:ﬂ —> g, =4-7-a(r)
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Observation point t* lies random distributed within the interval of

length A=r.

The conditional probability of the recurrence time is

then given by:

r(t|A=7)=1

-

1 furte(0,7)
.

The probability de
calculated by appl

o0

|0 sonst.

nsity function of the recurrence time can then be
ying the law of total probability.

—> 1= [ rt|A=7)-gdr = J‘%-Z-a(r)drz/l [a(e)dr = 22° ()

7=0

g.e.d.

7=t
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o Characteristics:

= Probability density function of the recurrence time r(t) can be calculated if
the probability density function of the interarrival time a(t) is known

= Distribution function of the interarrival time A(t) cannot be calculated from
the pdf of the recurrence time r(t).

@ The pdf of the interarrival time a(t) can be calculated if the pdf of the
recurrence time and the mean of the interarrival time E[A] are known.

() = ——— (1= A(t)) = AAS (1) = A Ta(r)dr

E[A]
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o Mean of recurrence time:

_E[A’] i+l ?
EIRI= 2E[A] 2 ELA

N

> Co<1l E[R] < E[A]
|:> c,>1 ; E[R] > E[A]

The mean of the recurrence time of a renewal process is larger than
the mean of the interarrival time, if the variaton coefficient of the
interarrival time is larger than one (c, >1).

:> A high variation of the interarrival time leads to large intervals
which are likely to be hit by the observer. These intervals
contribute more to the recurrence time.
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o Definition:

Poisson process is a renewal process which has a negativ-exponential
distributed interarrival time.

Alt)=1-e", a(t)=1e™
> r(t)=AA°(t) = A(1—- A(t)) = A(1-1+e*) = 2e* =a(t)

—> R(t)=A(t)

» The interarrival time and the recurrence time of a poisson process follow
the same distribution time.

= The time until the next event, from the perspective of an independent

observer, corresponds to the interarrival time. Thus, the process develops
independent from its past.

= Poisson process is memoryless (markov property).




Point of observation

fo {1 tn th+1 Time t

[ €= m - mmm oo | .

Process development in the past Process development in the future
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This section describes time continuous renewal processes (markovian
processes) with discrete states.

a Transient behavior of markovian processes:

The future development of a markovian process only depends on its
current state and not on its behavior in the past.

P{X (tn+1) = Xn+1‘X (tn) = Xn,..., X(tO) = XO}:
P{X (o) = Xt | X (£,) = X, },to <t <..<t <t ..

o Markov chain:

A markov chain is a markovian process ¢
with finite or countable (discrete) “\a‘\(o‘l s
state space.




'4" Markovian process

a Transition probability:

Transition probability represents the probility that a process changes
from state i at time t  to state jattime t .,

Time t, t.,, =t +At
- Transition
State @ >@
At
State X(t,)=I > X(t,) =]
transition

The state changes from i to | within the time interval At with the state
transition probability:

pij (tn ’tn+1) = P{X (tn+1) = J | X (tn) — I}




e

O Homogeneous random Process.

A process is called homogenous if its transition behavior is
independent of the oberservation time.

|::> i (tn’tn+1) = Py (tn _tn+l) = Py (At)
Law of total probability:

—> Zpij(At):l, At>0, Vi
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The transition probability p; (At) represents the transition behavior of
the process during the time interval with duration At.The transition

probabilities for every state can be summarized in a transition matrix
as follows:

|:> pij (tn ’tn+1) - pij (tn _tn+1) — pij (At)

State transition probability

pll(At) plZ(At) plj(At)
p21(At) pzz(At) ij(At)

—> P(At)=

pil(At) piZ(At) pij(At)
L : : :

State transition matrix
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o Transition

Time 0 t t+ At

State

Time interval




ig'.‘ State equations and probabilities

Considerations: .

a The state of a system changes from one state to
another within a certain time interval. During this
time interval the system may pass different
Jintermediate“ states. s o

a Assume that a system starts in state | at time t1 and reaches state | at
time t2. Thus, the system was in an ,intermediate” state k during the
time t1 <s <t2.

a The probability that the system changes from state | to state j during
time t1 and t2 can be described as follows:

Probability of changing from state i to ANY state k within t1 and s
multiplied by the probability of changing from state k to state |
within s and t2.

Q Intermediate state k can be any state of the system.

a The product of the state change has to be summarized over all
possible ,ways" between state i and state |.
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ig"‘ Chapman-Kolmogorov Equation

o Kolmogorov-Forward:

Assume a process which is in a start state i at time t0 and develops to
a state jattime t+At.

The transition probabilities for the intervals t and delta t are P(t) and
P( At ), respectively. The transition matrix is then given by their
product:

> P(t+At)=P(t)- P(At)

|:> p; (t+At) = Z Pi (1) - P (AL)




ig"‘ Chapman-Kolmogorov Equation

|:> p; (t+At) = Z Pu (1) - P (AL)

pij(t+At)_pij(t):Z (t)- pkj( t) p(t)l_pjj(At)

At o ' At
) with At—0
Deviation of transition _ pt+A)—p;(t) d
probabilities pj; (t) at time t ALs0 At dt
Transition probability density Oy K# |

for state change k — j

Transition probability lim 1-p; (At) =Yg
density for leaving state j At—0 At jk

kK]




'4" Chapman-Kolmogorov Equation

o Kolmogorov-Forward:

With At — 0 the state change probability transforms into a state
change probability density or state change rate. It describes the
possibility that a state changes within an infinitesimal time interval At.

Kolmogorow forward equation = 2, = Y dy - Pu®—1,p,

K= j

for transition probabilities
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Transition probability density matrix / rate matrix:

Ooo Doz - Qo
O O - qu
:> Q=| : : :
qu qu qjj
L : : :

|:> quk =0 Probility density for entering and leaving state |
K

|:> ;i = quk J; Probility density for remaining in state |
K= j

dP(t
I:> d’f) P(t)-Q Kolmogorov-Forward

Kolmogorov-Forward equation is typically used to
analyze the state probabilities of a system.
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o Kolmogorov-Forward:

The Kolmogorov-Forward equation is used to evaluate the future
development of a process from ist current state.

o Kolmogorov-Backward:

The Kolmogorov-Backward equation is used to evaluate the
development (path) of a process from its current state.
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o Transition

Time —t—At -t 0

State

Time interval <— At




ig"‘ Chapman-Kolmogorov Equation

o Kolmogorov-Backward:

Assume a process which is in state j at the point of observation t =0.
The start state at time —t—At is I. Its development path goes through
various intermediate states k.

The transition probabilities for the intervals t and At are P(t) and
P(At) , respectively. The transition matrix is then given by their
product:

> P(t+At)=P(At)-P(t)

|:> p; (t+At) = Z Pu (At) - py; (1)




ig'“ Chapman-Kolmogorov Equation

|:> p; (t+At) = Z Pu (At) - py (t)

(t) 1- th(At)

p; (t+AD) -y (1) - py (A1)
At o

@ with At —0

Deviation of transition d _ . _
probabilities p; (t) at time t dt Py (1) = Zq“‘ Py (1) = Py (t

= Zqik * Py (t) o
dP(t) ‘

I::> T =Q-P(t) Kolmogorov-Backward

P () — p;

Kolmogorov-Backward equation is often applied to
evaluate the retention time.




ig"‘ State probabillities

0 Kolmogorov-forward equation for state probabilities:

The equation describes the development of a state process X(t) which
IS In state | at time t.

X(J,)=P{X({t)=]}, J=012,...

The start state x(i,0) can be derived from X(],t) by applying
the law of total probability.

X(j,1) =2 P{X(®) = j| X(0) =i} P{X (0) =i}=>_x(i,0)- p; (1)

o ,. : . Kolmogorov-forward
— aX(J’t):quj'X(k’t)_qj'X(J’t)’ VI equation for state

K= j pe
J probabilities

—> 2x(iy=1




ig"‘ Stationary state - system of equation

Steady state:

A state process has reached its steady state if its state probabilities do
not change anymore.

d S 0 .
— P{X(t) = J}=—x(J,t)=0
—> i~ {X(@t)=j} ~ (J,1)
Steady state — state probability:

> x()=limP{X(t)=j} V] 2 x(i)=1

—> 9;-x()= Y a4 -x(k), Vi  Stationary state equation

kK#j

[ \

Probability of Probability of
leaving state | entering state |




ig'“ Steady state

i Probability density of leaving state j, weighted with
——— > state probability x(j) .

quj X(k)  Probability density of reaching state j from all other
states k = |, weighted with the corresponding state

probability X(K).
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a Micro state:
A single state that cannot be further be divided is called micro state.

o Macro state:
Multiple micro states can be combined into larger macro states.

I:> Macro states are typically used to reduce the
complexity of a model.

I:> Macro states should be used if no detailed information
about a system is available.




X/
;i{. Macro state

a Equilibrium of macro states

Macro state S




X/
;i{' Macro state

Steady state:

The weighted probability densities for entering
and leaving the macro state S are equal, if the
process is in a steady state.

Sum of stationary system of equilibrium for
every micro state within the macro state

(G + O + Gy ) - X(0) = Gy - X@) + 0 - X)) + g - X (K)
(0, + 95 +0;) - X(J) =0y - X(2) + 0y - X(K) + 0 - X(1)
\(ka + 0y + ) - X(K) = 0y - X(3) + Gy - X(1) + - X(J)

-

+

Oiy - X(1) + ;5 - X(J) + Q5 - X(K) =y - X(Q) + 0 ; - X(2) + 0 - X(3)

Welighted probability density  Weighted probability density
of leaving macro state S. of entering macro state S.
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0 General state equation of a macro state:

245 x(0) =2 ay,x(u)

jeS jeS
/ ues ueS \
Weighted probability density Weighted probability density
of leaving macro state S. of entering macro state S.

I:> The equation only contains the state probability of the
micro states.

|:> The state probability of the macro state cannot be
calculated from the formulas.

|:> The macro state probability is given by the sum of the
state probabilities if its micro states: Zx(j)
jes




