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 Process routines in distributed (communication) systems are usually 

described by arrival processes. Arrival processes are often 

characterized by renewal processes. 

 

 

 

 

 

 

 

 

Definition: 

 A point process is called renewal process if the distances between 

consecutive events is independent and identically distributed (iid). 
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Recurrence time 

Variables: 

 A : Random variable of the interrarrival time 

 A(t) : Distribution function of the RV 

 a(t) : Probability density function of the RV 

 t* : Random point of observation 

 Rf : Forward recurrence time – time intervall between random   

   ovservation time and next event 

 Rb : Backward recurrence time – time intervall between previous    

   event and random observation time 
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Recurrence time - Analysis 

 Distribution function: 

 The probability density function       of the recurrence time      of a 

renewal process can be calculated from the distribution function        of 

the interrarrival time    . 
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Recurrence time - Analysis 

Event: Observation point t* falls within an interval with duration 

 

  Probability density of occurrance of an interval with duration 

 

        Probability that the observation point falls within an  

       interval of length . The probability is proportional to  

       the interval duration since a longer time interval is  

       observed with a higher probability. 

 

  Constant used to normalise the density function 
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Recurrence time - Analysis 

  Observation point t* lies random distributed within the interval of 

 length          . The conditional probability of the recurrence time is 

 then given by: 

 

 

 

 

   

 The probability density function of the recurrence time can then be 

calculated by applying the law of total probability. 
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Recurrence time - Analysis 

 Characteristics: 

 Probability density function of the recurrence time        can be calculated if 

the probability density function of the interarrival time        is known 

 Distribution function of the interarrival time         cannot be calculated from 

the pdf of the recurrence time         .   

 The pdf of the interarrival time         can be calculated if the pdf of the 

recurrence time and the mean of the interarrival time           are known. 
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Recurrence time - Analysis 

 Mean of recurrence time: 

 

 

 

 

 

 

 

 

 The mean of the recurrence time of a renewal process is larger than 

the mean of the interarrival time, if the variaton coefficient of the 

interarrival time is larger than one (          ). 

 

     A high variation of the interarrival time leads to large intervals   

    which are likely to be hit by the observer. These intervals    

    contribute more to the recurrence time. 
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Poisson process 

 Definition: 

 Poisson process is a renewal process which has a negativ-exponential 

distributed interarrival time. 

 

 

 

 

 

 

 

 The interarrival time and the recurrence time of a poisson process follow 

the same distribution time. 

 The time until the next event, from the perspective of an independent 

observer, corresponds to the interarrival time. Thus, the process develops 

independent from its past. 

 Poisson process is memoryless (markov property). 
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Markovian process 
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Markovian process 

 This section describes time continuous renewal processes (markovian 

processes) with discrete states. 

 

 Transient behavior of markovian processes: 

 The future development of a markovian process only depends on its 

current state and not on its behavior in the past. 

 

 

 

 

 

 Markov chain: 

 A markov chain is a markovian process                                                              

with finite or countable (discrete)                                                                

state space. 
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Markovian process 

 Transition probability: 

 Transition probability represents the probility that a process changes 

from state i at time       to state j at time       . 

 

 

 

 

 

 

 

 

 

 The state changes from i to j within the time interval       with the state 

transition probability:  

nt 1nt

})(|)({),( 11 itXjtXPttp nnnnij  

t

Time 

State 

State  

transition 

ttt nn 1nt

i j 
t

Transition 

itX n )( jtX n  )( 1



Network Security, WS 2008/09, Chapter 9   13 IN2072 – Analysis of System Performance, SS 2012   13 

Markovian process 

 Homogeneous random process: 

 A process is called homogenous if its transition behavior is 

independent of the oberservation time. 

 

 

 

  Law of total probability: 
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Markovian process 

 The transition probability                represents the transition behavior of 

the process during the time interval with duration      .The transition 

probabilities for every state can be summarized in a transition matrix 

as follows: 
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State equations and probabilities 

 Transition 
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State equations and probabilities 

Considerations: 

 The state of a system changes from one state to                              

another within a certain time interval. During this                                         

time interval the system may pass different                                          

„intermediate“ states. 

 Assume that a system starts in state i at time t1 and reaches state j at 

time t2. Thus, the system was in an „intermediate“ state k during the 

time t1 < s < t2. 

 The probability that the system changes from state i to state j during 

time t1 and t2 can be described as follows: 
 

  Probability of changing from state i to ANY state k within t1 and s 

 multiplied by the probability of changing from state k to state j 

 within s and t2. 
 

 Intermediate state k can be any state of the system. 

 The product of the state change has to be summarized over all 

possible „ways“ between state i and state j. 
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Chapman-Kolmogorov Equation 

 Kolmogorov-Forward: 

 Assume a process which is in a start state i at time t0 and develops to 

a state j at time           . 

 

 The transition probabilities for the intervals t and delta t are P(t) and   

P(     ), respectively. The transition matrix is then given by their 

product: 
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Chapman-Kolmogorov Equation 

)()()( tptpttp
k

kjikij  

t

tp
tp

t

tp
tp

t

tpttp jj

ij

kj

jk

ik

ijij

















)(1
)(

)(
)(

)()(

with 0t

)(
)()(

lim
0

tp
dt

d

t

tpttp
ij

ijij

t








Deviation of transition 

probabilities          at time t )(tpij

Transition probability density 

for state change k  j 
jkqkj ,

Transition probability 

density for leaving state j 









jk

jkj

ij

t
qq

t

tp )(1
lim

0



Network Security, WS 2008/09, Chapter 9   19 IN2072 – Analysis of System Performance, SS 2012   19 

Chapman-Kolmogorov Equation 

 Kolmogorov-Forward: 

 With               the state change probability transforms into a state 

change probability density or state change rate. It describes the 

possibility that a state changes within an infinitesimal time interval     .  
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Kolmogorov-Forward 

 Transition probability density matrix / rate matrix: 
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Kolmogorov-Forward vs. Kolmogorov-Backward 

 Kolmogorov-Forward: 

 The Kolmogorov-Forward equation is used to evaluate the future 

development of a process from ist current state. 

 

 

 Kolmogorov-Backward: 

 The Kolmogorov-Backward equation is used to evaluate the  

development (path) of a process from its current state. 
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Kolmogorov-Backward 

 Transition 
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Chapman-Kolmogorov Equation 

 Kolmogorov-Backward: 

 Assume a process which is in state j at the point of observation         . 

The start state at time              is i. Its development path goes through 

various intermediate states k. 

 

 

 The transition probabilities for the intervals     and       are         and                               

dsdd  , respectively. The transition matrix is then given by their 

product: 
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Chapman-Kolmogorov Equation 
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State probabilities 

 Kolmogorov-forward equation for state probabilities: 

 The equation describes the development of a state process X(t) which 

is in state j at time t. 

 

 

      The start state            can be derived from            by applying     

     the law of total probability. 
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Stationary state - system of equation 

Steady state: 

 A state process has reached its steady state if its state probabilities do 

not change anymore. 

 

 

 

Steady state – state probability: 
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Steady state 
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Micro state and Macro state 

 Micro state: 

 A single state that cannot be further be divided is called micro state. 

 

 Macro state: 

 Multiple micro states can be combined into larger macro states. 

Macro states are typically used to reduce the 

complexity of a model. 

Macro states should be used if no detailed information 

about a system is available. 
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Macro state 

 Equilibrium of macro states 
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Macro state 

Steady state: 

 The weighted probability densities for entering 

and leaving the macro state S are equal, if the 

process is in a steady state. 
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Macro state 

 General state equation of a macro state: 
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