
Graphical Abstract

Performance Evaluation of Containers for Low-Latency Packet Pro-
cessing in Virtualized Network Environments

Florian Wiedner, Max Helm, Alexander Daichendt, Jonas Andre, Georg
Carle

Chair of Network Architectures and Services
School of Computation, Information and Technology
Technical University of Munich

PERFORMANCE EVALUATION OF CONTAINERS FOR
LOW-LATENCY PACKET PROCESSING IN VIRTUAL-
IZED NETWORK ENVIRONMENTS
Motivation

Low-Latency Network Applications
on Hardware

I Expensive
I Limited availability
I Long delivery times

Low-Latency Network Applications
on Virtual Machines

I Substantial overhead
I Complete Operating System

for every machine
I Long boot times

Background

Virtualization of systems is possible using:
I Full virtualization, e.g., virtual machines (VMs)
I OS-level virtualization, e.g., container

Hardware

Host OS

Container Engine

Container
Application

Libraries

Container
Application

Libraries

Virtual Machine
Application

Libraries

Guest OS

Raise of latency is according to [2] mostly caused by:
I Interrupts raised on the same core as the virtualization
I Energy-saving mechanism during idle times
I Other applications running on the same cores as the virtualization

Measurement Setup

LoadGen

DuT

DuT

Container
I

J

I

J

Timestamper

J J

I Loadgen runs a packet generator (MoonGen [1]) creating UDP
packets

I Device under Test (DuT) contains to be analyzed system
I Timestamper records ingress/egress traffic using passive optical

traffic access points (TAPs)
– Hardware-timestamping of entire network traffic (resolution

1.25 ns)
– Determine worst-case latencies on a per-flow basis

Evaluation: Optimized Container in two scenarios

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

La
te

nc
y

[µ
s]

LXC scenario 1
VM scenario 2

Virtual machines in comparison to LXC container on AMD and Intel Main-
boards

I Using optimizations such as to:
– reduce interrupts
– disable energy-saving-mechanism

I Latency until 110 µs.
I Difference on AMD- and Intel-based system negligible

Modeling: Extreme Value Theory

Platform Opt. RT NoHz Vanilla Exceedances

VM X × × X 1.25
VM × × × X 2.58

Container X X × × 1.42
Container × X × × 7.67
Container X × X × 1.25
Container × × X × 1.67
Container X × × X 2.92
Container × × × X 2.29

Kernel Netw. X X × × 2.50
Kernel Netw. × × × X 22.73

I Model tail-latencies
using Extreme Value
Theory

I Predict behavior four-
fold into the future

I Optimized containers
are the most pre-
dictable virtualization
technique

Conclusion

Container are possible for low-latency applications when:

1. the cache system is carefully selected

2. optimizations such as disabling energy-saving are utilized

Carefully selection of Hardware architecture and optimizations required

I Container are more relying on the underlying hardware system
I In general, more fine-grained optimizations on container needed

More analysis especially towards concurrent container and optimizations
required.

[1] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle. MoonGen: A Scriptable High-Speed Packet Generator. In Internet Measurement Conference 2015 (IMC’15), Tokyo, Japan,
Oct. 2015.

[2] S. Gallenmüller, F. Wiedner, J. Naab, and G. Carle. How low can you go? A limbo dance for low-latency network functions. J. Netw. Syst. Manag., 31(1):20, 2023.

Florian Wiedner wiedner@net.in.tum.de



Highlights

Performance Evaluation of Containers for Low-Latency Packet Pro-
cessing in Virtualized Network Environments

Florian Wiedner, Max Helm, Alexander Daichendt, Jonas Andre, Georg
Carle

• Overhead caused by virtualization, including light and full virtualiza-
tion, is negligible in tail latencies.

• Containerized packet processing systems can traffic with low-latency
requirements depending on the underlying hardware cache design and
utilized optimizations.

• Latencies over time processed through container can be modeled more
precisely than other virtualization techniques.

• Latencies on containers are more prone to influences from the underly-
ing hardware than virtual machines.



Performance Evaluation of Containers for Low-Latency

Packet Processing in Virtualized Network Environments

Florian Wiedner∗, Max Helm, Alexander Daichendt, Jonas Andre, Georg
Carle

aTechnical University of Munich
School of Computation, Information, and Technology

Department of Computer Engineering, Boltzmannstr. 3, Garching by
Munich, 85748, Bavaria, Germany

Abstract

Packet processing in current network scenarios faces complex challenges due
to the increasing prevalence of requirements such as low latency, high relia-
bility, and resource sharing. Virtualization is a potential solution to mitigate
these challenges by enabling resource sharing and on-demand provisioning;
however, ensuring high reliability and ultra-low latency remains a key chal-
lenge. Since bare-metal systems are often impractical because of high cost
and space usage, and the overhead of virtual machines (VMs) is substantial,
we evaluate the utilization of containers as a potential lightweight solution for
low-latency packet processing. Herein, we discuss the benefits and drawbacks
and encourage container environments in low-latency packet processing when
the degree of isolation of customer data is adequate and bare metal systems
are unaffordable. Our results demonstrate that containers exhibit similar
latency performance with more predictable tail-latency behavior than bare
metal packet processing. Moreover, deciding which mainboard architecture
to use, especially the cache division, is equally vital as containers are prone
to higher latencies on more shared caches between cores especially when
other optimizations cannot be used. We show that this has a higher impact

∗Corresponding author,
©2024, This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

Email addresses: wiedner@net.in.tum.de (Florian Wiedner), helm@net.in.tum.de
(Max Helm), daichend@net.in.tum.de (Alexander Daichendt), andre@net.in.tum.de
(Jonas Andre), carle@net.in.tum.de (Georg Carle)

Preprint submitted to Performance Evaluation August 29, 2024



on latencies within containers than on bare metal or VMs, resulting in the
selection of hardware architectures following optimizations as a critical chal-
lenge. Furthermore, the results reveal that the virtualization overhead does
not impact tail latencies.

Keywords: low-latency, container, virtualization, packet processing

1. Introduction

Low-latency packet processing applications are driving improvements in
areas such as autonomous driving or real-time industrial automation. These
applications frequently utilize specialized hardware to fulfill the demands of
these applications. However, specialized machines create scalability chal-
lenges, affecting the cost per service rate when real-time requirements are
in play. The 5G ultra-reliable low-latency communications (URLLC) profile
provides a framework for systems that require ultra-low latency, defined as
<1ms end-to-end latency and 99.999th percentile of traffic must be within
this limit [1]. Using dedicated hardware to run applications for such purposes
is not an economically efficient solution for the customer or provider.

Therefore, a solution that offers on-demand provisioning and resource
sharing for low-latency network services is required. Virtualization of com-
puter systems is one such solution requiring only general-purpose hardware.
However, using virtual machines (VMs) with a complete operating system
(OS) results in significant performance, memory, and disk space usage over-
head. Gallenmüller et al. [2] compared packet processing between bare metal
and VMs on commodity hardware and reported that tuning Linux to reduce
interrupts and other influences significantly reduces tail latency in packet
processing. VMs offer a high level of isolation that is unnecessary in many
cases. Hence, a lighter version is preferred to improve resource usage.

Containers offer a lightweight virtualization alternative for resource shar-
ing with other containers and host OS on the same system. While contain-
ers do not virtualize the complete OS, several lightweight software isolation
mechanisms are available [3]. Both solutions, VMs and containers, and their
induced latency may vary between base systems and vendors.

Given the significance of low latency and high reliability in critical sys-
tems, evaluating the tail-latency behavior of packet processing during the
long-term execution of applications in containers is essential. Moreover, ana-
lyzing the influence of the general hardware mainboard architectural system

2



is needed for an in-depth understanding of influences outside of the used soft-
ware systems towards bare-metal, container, or VMs as solutions. Herein,
we provide

1. an investigation of the influence of optimization techniques on tail-
latency using full- and light-virtualization utilizing different hardware
system architectures,

2. a model for tail-latency behavior in packet processing within containers
and VMs,

3. a comparison of using network packet processing applications on bare
metal, containers, and VMs for low-latency optimized, commercial off-
the-shelf systems for the use with URLLC, and

4. an analysis of virtualization techniques on selected hardware architec-
tures and their influence on latency.

This work is based on our work presented at International Teletraffic
Congress 35 (ITC-35) 2023 in Torino, Italy [4]. We extended our work with
additional recommendations based on the cache model of the system’s ar-
chitecture and an analysis of different vendor’s additional mainboard archi-
tectural system for a complete comparison and analysis. Moreover, we addi-
tionally analyzed a layer-3 forwarding application, extending our analysis of
layer-2 forwarding applications towards the additional overhead due to more
heavy packet processing on the upper layer.

The article is structured as follows: Section 2 offers background informa-
tion and presents the current development and research progress in virtual-
ization and latency optimizations, including software- and hardware-based
ones. Section 3 outlines optimization techniques for containers. Section 4
describes the measurement setup and Section 5 evaluates the proposed ap-
proach’s results. We provide models of the tail latencies in Section 6. Sec-
tion 7 recommends using specific virtualization techniques in low-latency
packet processing. Sections 8 to 10 conclude the paper by presenting limita-
tions, reproducibility information, a conclusion, and future scope for research
and development.

2. Background and Related Work

This section analyzes relevant literature in containers, VMs, low-latency
applications and optimization, and tail-latency models. For simpler readabil-
ity are all acronyms used throughout the article summarized in Table 1.

3



Table 1: List of acronyms.

ADF Augmented Dickey-Fuller
BM Block Maxima
DPDK Data Plane Development Kit
DuT Device under Test
EVT Extreme Value Theory
GEV Generalized Extreme Value
GPD Generalized Pareto Distribution
HDR High-Dynamic-Range diagram
JS Jensen-Shannon divergence
KPSS Kwiatkowski-Phillips-Schmidt-Shin test
KVM Kernel Virtual Machine
LXC Linux Container
LoadGen Load-Generator
NIC Network Interface Card
NUMA Non-Uniform-Access
OS Operating System
POS Plain Orchestration Service
PoT Points over Threshold
RT Real-Time
RX Receiver
TAP Terminal Access Point
TLB Translation Lookaside Buffer
TX Transceiver
URLLC Ultra-Reliable Low-Latency Communications
VM Virtual Machine
cgroup Control Group
timestamper Timestamping Machine

2.1. Containers and VMs

Using a single hardware machine for each customer or application is nei-
ther cost-effective nor flexible. Therefore, virtualization is a crucial technol-
ogy that enables resource sharing and flexible, on-demand provisioning of
resources. However, when executed in a virtual environment, applications
with strict low-latency and reliability requirements should perform similarly
to those implemented on bare metal.

4



Hardware

Host OS

Container Engine

Container

Application

Libraries

Container

Application

Libraries

Virtual Machine

Application

Libraries

Guest OS

Figure 1: Comparison between container (left) and VMs (right) [7].

Two commonly used architectures for virtualization are hypervisor- and
container-based. Hypervisor-based virtualizations (VMs) isolate the com-
plete OS, including the kernel. We call containers lightweight or OS-level
virtualizations as they share the kernel between host OS and containers [5].
Containers isolate mainly processes, files, and resource access [5]. As illus-
trated in Figure 1, the OS kernel and hardware features are commonly not
emulated or paravirtualized [6]. In Figure 1, the base shows the hardware
running the host OS, and the top shows the types of virtualization that are
available; the left side depicts containerization, which includes the container
engine used to manage the containers; Moreover, the right side depicts a VM,
which shows the additional overhead of the guest OS residing within each
system.

Yadav et al. [7] describe that VMs offer a strict separation using vir-
tualized hardware, and a completely separate OS providing a high level of
isolation and reducing the influence of customers on each other on the same
physical machine. However, this isolation level results in a significant over-
head in resource usage, making VMs ideal for experimental and high-security
applications, with a trade-off between security and resources necessary for
URLLC applications [8].

Moreover, Yadav et al. [7] specify containerization as flexible and less
resource-intensive than VMs. With a shared kernel, containers offer quick
startup and direct device access, as Gedia and Perigo [9] have demonstrated.
This minimized overhead makes containers ideal for performance-critical sce-
narios where multiple applications must interact with each other [6]. Linux
offers several container frameworks, such as Kubernetes, a cluster manager

5



that automates deployment and enhances application portability, or Linux
containers (LXC). LXC integrates all libraries of a complete OS but uses
a more complex setup than solutions like Docker and has less overhead [6].
Gedia and Perigo [9] have demonstrated that containers outperform VMs in
provisioning time and memory utilization. Wiedner et al [10] detailed that
the version of control groups (cgroup) matters for latency-sensitive systems
as version 2 outperforms version 1. Control groups are an integral part of
process isolation in LXC containers. Therefore, in our further analysis, we
utilize cgroups version 2.

The throughput analysis of containers and VMs is a common area of re-
search, which is evident from the considerable attention paid to it.
Barham et al. [11] studied the impact of CPU resources on XEN-based
VMs, focusing on variations induced by time slices on the CPU. Further-
more, Abeni et al. [12] analyzed the effect of tuning Linux on the maximum
packet rate of kernel virtual machine (KVMs) and achieved promising re-
sults by binding CPU affinity of interrupts to selected cores and the VMs to
remaining cores. Similarly, Tran and Kim [13] found that CPU core assign-
ment for containers is crucial for improving throughput. Morabito et al. [14]
conclude that containers challenge traditional systems regarding resource us-
age and performance. Furthermore, Cha and Kim [15] employed containers
to offer low-latency edge services and demonstrated that container setups
achieve near-optimal throughput by utilizing hardware support. To con-
clude, research on packet processing in virtualized systems primarily focuses
on throughput analysis or latency using overlay networks such as [16, 17].

Several studies have analyzed latency on VMs as demonstrated in [2, 18,
19, 20]. However, latency analysis for packet processing applications based
on containers is typically not addressed in present studies despite the ne-
cessity to examine the influences of packet processing through containers.
New research focuses on latency and real-time applications within contain-
ers. For example, Liu et al. [21] recently analyzed the usability of Docker’s
overlay network compared to the host network mode for real-time applica-
tions. They conclude that the overall performance of the host-network mode
is better on average, but tail latency was not further analyzed. Furthermore,
Wiedner et al. [4, 10] analyzed the latency performance of LXC containers
in comparison to VMs and hardware, concluding that optimized LXC can
achieve similar tail latencies as the other two variants. This work extends
the paper from Wiedner et al. [4], demonstrating that low-latency appli-
cations on containerized systems are possible. However, they used only one

6



potential system architecture of mainboards, leaving the comparison to other
architectures for future work.

2.2. Low-latency Applications

Packet-processing applications with end-to-end latency requirements of
<1ms in general-purpose traffic networks are becoming increasingly impor-
tant with new technologies such as the 5G URLLC profile [22]. Therefore,
packet processing applications must improve latency and reliability.

Gallenmüller et al. [23] analyzed latency implications on intrusion detec-
tion systems and found that using a specific OS, reducing interrupts, and
using a specific network interface card (NIC) help to reduce latency spikes.
As Bozilov et al. [24] reported, adding security features into the network in-
troduces additional latency, but they are increasingly important. Therefore,
it is crucial to reduce network-induced latency to allow security mechanisms
within networks. Jain et al. [25] have shown that improving the data plane on
specialized network function virtualization systems utilizing the data plane
development kit (DPDK) can significantly reduce latency.

Other examples of low-latency applications include data center internal
communication [26], communication phases in distributed machine learning
applications [27], and cloud systems providing centralized services to multiple
users as outlined by Gandhi et al. [28].

2.3. Low-latency OS Optimizations

Tuning and optimizing OS is essential to enable predictable, reliable,
and low-latency applications on any system type, whether container, VM, or
bare metal. Previous studies report that tunings in specific areas are possi-
ble, such as reducing the impact of processing IO on a container and reducing
the influences of the system itself. For instance, Gallenmüller et al. [23] have
demonstrated that interrupts on the packet-processing core have a signifi-
cant impact on latency. Turning off timer ticks, isolating cores, and reducing
energy-saving mechanisms on VMs can minimize the impact on packet pro-
cessing through virtualization [8]. Which optimizations are available and
needed depends on the used hardware and its architecture, including mem-
ory locality, cache design, or hardware-supported optimizations as depicted
by [29]. Using poll mode instead of interrupt-based drivers improves latency
and reduces the number of context switches. Handley et al. [30] found that
using DPDK [31], a framework for poll-mode networking significantly reduces
processing latency as the application can be isolated from the OS kernel.

7



Like VMs, container performance can be improved by reducing inter-
rupts and adding predictability [32]. Herein, we evaluate and demonstrate
the optimization potential for containers compared to packet processing on
VMs or bare metal, including exploring further optimizations for low-latency-
networking.

2.4. Hardware-dependent optimizations

Software optimizations are needed for enabling low latency on generic-
purpose hardware, but their impact depends heavily on the underlying hard-
ware and its design [29]. Moreover, most detailed implementation informa-
tion is not available to the public for hardware systems as vendors protect
themselves for economic reasons such that most impacts leading to hardware
details remain a black box for the researcher. Based on this, finding the rea-
son behind the measurement results of hardware differences takes much work.
Therefore, analyzing results on different systems and system architectures is
required to draw clear conclusions on their influence.

Architectures such as AMD’s chiplet-based design, initially introduced
with the first generation AMD EPYC processors, pioneered a new area of
distributed processing and memory access [33]. In this case, each chiplet de-
fines one non-uniform-access (NUMA) area with attached IO devices. Based
on related work, this design provides improved performance but unlocked
new challenges towards inter-chip communication, memory, cache access, and
synchronization of hardware clock timings [33]. The interconnection mainly
provides a higher cost regarding memory access latency, which also impacts
network performance when not pinned to a core directly connected to the
specific NUMA node. The cache is divided into the different NUMA nodes,
which can be divided even within the NUMA nodes.

Another substantial vendor in computer mainboards is Intel, which pro-
vides the Intel Xeon server architectures. Intel adhered to a monolithic com-
puter architecture, such as Skylake, without chiplets and the challenges of
inter-chiplet communication, providing enhanced possibilities for optimiza-
tion of cache access [34]. Those different systems provide advantages and
disadvantages based on the specific use case. We conclude that analyzing
differences based on hardware machines is done on a use-by-use basis, as the
advantages and disadvantages significantly depend on individual needs.

Until now, only two selected systems have been presented, and the chal-
lenge is: On the one hand, vendors improve architectures incrementally,
leading to new generations of system architectures. On the other hand,

8



companies such as ARM offer an entirely different architecture that is not
binary-compatible with x86. Different vendors such as Intel, ARM, or AMD
adapt their architectures over time to overcome their challenges and provide
enhancements for their user [35]. Depending on the hardware machines, the
conclusion drawn from measurements can be quite different, which makes the
selection and evaluation process of hardware machines significantly harder.

Optimizing the systems differs due to hardware-specific optimizations and
constraints. For example, Intel provides the Intel Cache Allocation Technol-
ogy [36], a way to highly customize the cache’s access and usage. In contrast,
AMD does not provide a similar scheme resulting from the physically more
divided cache. This technology can be further used for improving the ap-
plication’s performance, such as in [37]. Optimizing the assignment of cores
to VMs or containers is more important for AMD due to its chiplet design
based on NUMA-nodes [33]. Using these approaches, we will further ana-
lyze the systems using, in general, the same optimizations as applicable, but
also leverage hardware-specific optimizations based on results from previous
works.

2.5. Low-latency on container

Using containers for low latency and highly reliable systems can be chal-
lenging but feasible. The processing time on the container node is prolonged
due to interrupts needed for the container engine. To mitigate this issue,
one method is to use poll-mode drivers that minimize context switches and
interrupts. DPDK [31] provides user-space, poll-mode networking to accel-
erate packet processing, with a broad range of available applications such as
MoonGen [38], a high-speed packet generator, and Snort [39], an intrusion
detection system. Using user-space networking within containers requires
additional tasks outside the container as selected operations require privi-
leged access, such as binding interfaces to the user-space drivers [13]. They
must be performed initially on the host OS, after which the interface can be
moved into the container’s namespace. Tran and Kim [13] have demonstrated
that DPDK applications can be used with containers after performing these
additional steps.

Moreover, containers cannot be entirely isolated from the host OS as
a shared kernel is used, and interrupts are needed on the specific cores,
resulting in the challenge of optimizing them for low-latency operations while
reducing the influence of operations performed outside of the containers. The

9



10−5 10−3 10−1

Normalized Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

(a) Latency

10−5 10−3 10−1

Normalized Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

(b) Precipitation

10−5 10−3 10−1

Normalized Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

(c) Water Discharge

Figure 2: Histograms of normalized datasets for latency-, precipitation-, and water dis-
charge measurements [40, 41]. The measurements were selected for their exemplary nature.

challenges presented herein illustrate the trade-off between resource sharing
and URLLC.

2.6. Tail-latency Behavior and Models

Distributions of measured latencies in communication networks typically
exhibit a long tail [8]. This long tail is not unique to latencies; for ex-
ample, it exists in measured precipitation [40] and water discharge in river
networks [41] as shown in Figure 2. We can observe three long-tailed distri-
butions with varying scale and location factors; note the log scale. Both pre-
cipitation and water discharge are commonly modeled using Extreme Value
Theory (EVT).

EVT is a statistical technique used to model the behavior of distribution
tails [42]. It relies on historical data to predict the probability and magnitude
of rare events like natural disasters, e.g., floods as indicated by precipitation
or water discharge. In the networking domain, EVT can be utilized to model
tail latencies since they constitute similarly rare events. Previous studies
have successfully applied EVT to analyze time sequences in both wired and
wireless networks [43, 44, 45, 46].

Within EVT, a distribution’s tail is determined using either the Block
Maxima (BM) approach or the Points over Threshold (PoT) approach. The
BM method uses a Generalized Extreme Value (GEV) distribution as a
model, while the PoT method uses a Generalized Pareto Distribution (GPD)

10



model. The connection between the selection method and type of model is
described by the Fisher–Tippett–Gnedenko- [47] and Pickands–Balkema–De
Haan [48, 49] theorems respectively. The PoT method is less wasteful with
data; therefore, it is typically preferred over the BM method [42]. As a result,
we only consider the PoT method and GPD model.

Our study adopts a similar approach to previous studies to predict and
validate the likelihood of latency spikes. The validation shows an accurate
predictive power of such models when extrapolating tail-latency magnitudes
and frequencies to extended measurement periods. Additionally, we evaluate
the convergence of these predictions.

3. Optimization Analysis

In computer systems, processes can be affected, among others, by inter-
rupts, the sleep state of CPUs, or concurrent processes. While throughput
in packet processing is unaffected by these influences, latency, specifically
tail latency, is significantly impacted. Having examined optimizations in
both bare-metal and VM environments, we evaluate the suitability of these
optimizations for container environments.

Several studies have examined network latency optimization techniques in
VMs and bare-metal systems [8, 50, 29]. The host OS manages the scheduling
of applications in containers, which means achieving complete isolation from
interrupts is impossible. Consequently, optimizations such as a tick-less-
kernel and isolation of selected CPUs are not feasible as a shared kernel
is used, requiring access to the specific cores. Due to these difficulties in
isolating containers, it is essential to explore new approaches and conduct
assessments of the suitability of these optimizations in containers.

To minimize the impact of the host OS on the container and between con-
tainers, LXC provides a method for reserving cores and memory exclusively.
Additionally, automatic load balancing in LXC can be turned off to reduce
overhead and ensure no additional scheduling is needed [3]. To summarize,
these specialized container isolation techniques help to minimize the external
influence on a container.

Fine-tuning the poll mode for idle CPUs, disabling energy-saving mech-
anisms, and turning off audit messages can improve container performance
like VMs. Interrupts affinity can be set to a specific core, and logging of
backtraces can be reduced to improve latency. Turning off simultaneous mul-
tithreading improves latency for all systems. Table 2 presents the suggested

11



Table 2: Latency optimized boot parameters for Host OS running containerized systems.

Parameter Value Description

rcu nocbs [cores ] No RCU callbacks
rcu nocbs poll No RCU callback threads wakeup
irqaffinity 0 Interrupts on specific core
idle poll Poll mode when core idle
tsc reliable Rely on TSC without check
mce ignore ce Ignore corrected errors
audit 0 Disable audit messages
nmi watchdog 0 Disable NMI watchdog
skew tick 1 No simultaneous ticks for locks
nosoftlookup Disables logging of backtraces
nosmt Disables hyperthreading

list of boot parameters. The list is based on the presented container adop-
tions of optimizations for VMs in the study of Gallenmüller et al. [23]. Using
the program taskset, it is possible to pin the affinity of all ready-copy-update
processes to a core to reduce their scheduling on container cores. However,
when resources are limited, the CPUs should be shared between containers,
increasing tail latencies.

Furthermore, Intel provides additional optimization possibilities for its
systems that are not available for AMD-based systems to our current knowl-
edge. Gallenmüller et al. [23] performed their measurements on an Intel-
based system, and their additional optimizations will be acquired in this
paper for Intel-based machines. We additionally turn off the dynamic volt-
age and frequency scaling with pstates, which can introduce additional delay
when a core is idling or not fully utilized on Intel-based machines [29]. More-
over, we will use all optimization boot parameters outlined in Table 2 on
all analyzed systems. This setup enables us to compare results obtained
from systems of different vendors towards latency performance with packet
processing systems inside containers.

Moreover, different papers and articles describe additional performance
optimizations for containers to improve the latency, such as [16, 17]. Sev-
eral cache optimizations for overlay and bridge networks are available, such
as [16]. We cannot use them directly in our case, as we plan to overcome this
issue by using direct-attached NICs inside the containers providing direct-

12



LoadGen

DuT

DuT

Container

▶

◀

▶

◀

Timestamper

◀ ◀

Figure 3: Measurement-setup structure.

memory access from the container and hardware device. Using this, we aim
to directly attach the NIC to the container’s namespace. Therefore, isolate
it from access to other containers, which is different than the host network
mode Docker provides. Moreover, analyzing this paper’s performance im-
provements, we conclude that cache design and usage can be an issue based
on different cache and system designs. However, our utilized methodology
does not allow us to utilize the optimization techniques from [16, 17]. Direct
access to the NIC reduced scalability by providing higher performance and
reduced overhead.

4. Measurement Setup

For precise measurements, load generation and timestamping are per-
formed on separate machines, as depicted in Figure 3. We adopt two scenarios
with distinct hardware to extract differences based on hardware architecture.
The setup shown in Figure 3 is the same for both scenarios, only differing
in utilizing other hardware machines. We utilize our results from [4] as
scenario 1, and scenario 2 provides insights into an additional hardware
architecture when utilizing a container for low-latency networking.

In scenario 1, the load-generator (LoadGen) features an Intel Xeon Sil-
ver 4116 CPU, 192 GB RAM, and a dual-port Intel 82599ES 10-Gigabit
SFP+ NIC connected to the Device-under-Test (DuT) using optical fibers.
In scenario 2, the LoadGen runs on an Intel Xeon Gold 6130 CPU, 384 GB
RAM, and the same NIC and connections as in scenario 1. The differences
do not influence our results as we utilize only a single core for packet gen-
eration in both scenarios and use hardware rate-limiting based on the NICs
capabilities. Moreover, using an external timestamping machine (timestam-
per), latencies are measured after the packets leave the LoadGen.

We use a timestamper linked to the fibers between DuT and LoadGen

13



with passive optical terminal access points (TAPs) to ensure high precision
measurements per packet at line rate. These TAPs introduce a constant delay
to the timestamps on both ends and can be neglected. The timestamper
in scenario 1 is equipped with an AMD EPYC 7542 32-Core Processor,
500GB of memory, and an Intel E810-XXVDA4 25Gbit/s NIC flashed to
10Gbit/s offering a precision of 1.25 ns [51]. This ability takes timestamps in
the hardware using the precision of the Intel E810 NIC. Timestamps taken in
software are prone to the same interrupts and kernel operations as our DuT;
therefore, using hardware timestamping significantly reduces the influence
of the timestamping method on the results. In scenario 2 a machine with
the same CPU is used, 128Gbit of RAM and instead of a 4-port Intel E810-
XXVDA4 25Gbit/s NIC we have a dual-port Intel E810-XXV 25Gbit/s NIC
as well flashed to 10Gbit/s. Both cards provide the same capabilities but
differ in the number of available ports. As we utilize hardware timestamping,
the available memory does not influence the results as it is not a bottleneck.
The original hardware from scenario 1 was not longer available under our
measurements for scenario 2.

The DuT in scenario 1 is equipped with an AMD EPYC 7551P 32-
Core Processor, 128 GB RAM, and 2 × Intel X710 10GbE SFP+ NICs,
where one port each is linked to the LoadGen. In scenario 2, the DuT is
equipped with two Intel Xeon Silver 4116 CPUs, 192 GB RAM, and 2 × Intel
X710 10GbE SFP+ NICs, cabled in the same way as scenario 1. To utilize
differences based on the hardware design of the DuT, we utilized different
scenarios based on different DUTs with different mainboards.

With this setup, any measured differences can be traced back to the
mainboard and CPU, as the same NICs are used in both scenarios. On
the DuT, we execute our experiments using bare-metal, VM, or container.
The used solutions access the interfaces directly. Finally, we summarize the
hardware configurations in Table 3.

To retrieve more information about the architectural differences of both
DuT scenarios, we utilized the tool lstopo from the hwloc package [52]. Fig-
ures 4 and 5 are showing information about architecture, cache design, and
bus configurations. Figure 4 shows that scenario 1 machine consists of one
mainboard entity divided into four NUMA chiplets with four cores sharing a
8MB layer three cache. The used NIC ports are distributed on node 1 (TX)
and node 3 (RX) with enp33s0f0 and enp100s0f0. This setup requires copy-
ing data to send and receive over the Infinity Fabric interconnects between
NUMA nodes.

14



Table 3: Hardware configuration of scenario 1 and scenario 2.

scenario 1 scenario 2

DuT
CPU AMD EPYC 7551P Intel Xeon Silver 4116
RAM 128 GB 192 GB
NIC 2 × Intel X710 10GbE SFP+ NICs

LoadGen
CPU Intel Xeon Silver 4116 Intel Xeon Gold 6130
RAM 192 GB 384 GB
NIC Intel 82599ES 10-Gigabit SFP+ NIC

timestamper
CPU AMD EPYC 7551P 32-Core
RAM 500 GB 128 GB
NIC Intel E810-XXVDA4 NIC Intel E810-XXV NIC

In scenario 2 (cfg. Figure 5), the NICs are both connected to node 0
(enp24s0f0, enp25s0f0) over the same PCIe bus. A second CPU is installed
in another socket, declared as NUMA node 2. However, as no PCIe device
is connected to it, it has no relevance to our measurements. Each CPU has
only one shared layer three cache of 17MB. In conclusion, the significant
differences between the two sampled systems lie in different amounts and
kinds of NUMA nodes and cache architectures.

The configuration in Figure 3 facilitates precise analysis of packet pro-
cessing tail-latency and lets us compare different hardware and software con-
figurations accurately. We use PostgreSQL for evaluation to enable easy
extension and evaluation of the analysis. Further, we employ MoonSniff
scripts [38] of MoonGen on LoadGen and timestamper to transmit and record
minimally sized packets with 64B. We assign identifier numbers to transmit-
ted packets for correlation and timestamp the packets using the respective
hardware timestamping features. Previous studies suggest that the primary
factor relevant for packet processing is the number of packets, and not their
size [18, 20].

We use Debian Bullseye 11 (kernel 5.10) and execute a libmoon [38] layer
two (l2) forwarding application to minimize the impact of the application
itself unless specified otherwise. The forwarding application runs inside the
container to analyze the impact of packet processing within the container
itself. All experiments employ the packet rates from 10-1000 kpackets/s to
analyze the effect on latencies. The number of data points collected depends

15



Machine (126GB total)

Package L#0

Die L#0

L3 L#0 (8192KB)

L2 L#0 (512KB)

L1d L#0 (32KB)

L1i L#0 (64KB)

Core L#0

PU L#0

4x total

L2 L#3 (512KB)

L1d L#3 (32KB)

L1i L#3 (64KB)

Core L#3

PU L#3

L3 L#1 (8192KB)

L2 L#4 (512KB)

L1d L#4 (32KB)

L1i L#4 (64KB)

Core L#4

PU L#4

4x total

L2 L#7 (512KB)

L1d L#7 (32KB)

L1i L#7 (64KB)

Core L#7

PU L#7

NUMANode L#0 (31GB)

Die L#1

L3 L#2 (8192KB)

L2 L#8 (512KB)

L1d L#8 (32KB)

L1i L#8 (64KB)

Core L#8

PU L#8

4x total

L2 L#11 (512KB)

L1d L#11 (32KB)

L1i L#11 (64KB)

Core L#11

PU L#11

L3 L#3 (8192KB)

L2 L#12 (512KB)

L1d L#12 (32KB)

L1i L#12 (64KB)

Core L#12

PU L#12

4x total

L2 L#15 (512KB)

L1d L#15 (32KB)

L1i L#15 (64KB)

Core L#15

PU L#15

7.9 7.9

7.9

PCI 21:00.0

Net enp33s0f0

PCI 21:00.1

Net enp33s0f1

NUMANode L#1 (31GB)

Die L#2

L3 L#4 (8192KB)

L2 L#16 (512KB)

L1d L#16 (32KB)

L1i L#16 (64KB)

Core L#16

PU L#16

4x total

L2 L#19 (512KB)

L1d L#19 (32KB)

L1i L#19 (64KB)

Core L#19

PU L#19

L3 L#5 (8192KB)

L2 L#20 (512KB)

L1d L#20 (32KB)

L1i L#20 (64KB)

Core L#20

PU L#20

4x total

L2 L#23 (512KB)

L1d L#23 (32KB)

L1i L#23 (64KB)

Core L#23

PU L#23

NUMANode L#2 (31GB)

Die L#3

L3 L#6 (8192KB)

L2 L#24 (512KB)

L1d L#24 (32KB)

L1i L#24 (64KB)

Core L#24

PU L#24

4x total

L2 L#27 (512KB)

L1d L#27 (32KB)

L1i L#27 (64KB)

Core L#27

PU L#27

L3 L#7 (8192KB)

L2 L#28 (512KB)

L1d L#28 (32KB)

L1i L#28 (64KB)

Core L#28

PU L#28

4x total

L2 L#31 (512KB)

L1d L#31 (32KB)

L1i L#31 (64KB)

Core L#31

PU L#31

7.9 7.9

7.9

PCI 64:00.0

Net enp100s0f0

PCI 64:00.1

Net enp100s0f1

NUMANode L#3 (31GB)

Figure 4: Logical View of the hardware machine in Scenario 1 with only used PCI lanes.

on the packet rate; for example, with 1Mpkts/s, we collect 160 million data
points per experiment in 160 s.

To provide simple automation and reproducible test execution, we adopt
the plain orchestration service (POS) for testbed management and experi-
ment execution [53]. Using this concept, we could use the same scripts and
technologies as in [4] to perform comparable measurements. In Section 9,

16



Machine (188GB total)

Package L#0

L3 L#0 (17MB)

L2 L#0 (1024KB)

L1d L#0 (32KB)

L1i L#0 (32KB)

Core L#0

PU L#0

12x total
L2 L#11 (1024KB)

L1d L#11 (32KB)

L1i L#11 (32KB)

Core L#11

PU L#11

7.9

7.9

7.9

7.9

PCI 18:00.0

Net enp24s0f0

PCI 18:00.1

Net enp24s0f1

7.9

7.9

PCI 19:00.0

Net enp25s0f0

PCI 19:00.1

Net enp25s0f1

NUMANode L#0 (93GB)

Package L#1

L3 L#1 (17MB)

L2 L#12 (1024KB)

L1d L#12 (32KB)

L1i L#12 (32KB)

Core L#12

PU L#12

12x total
L2 L#23 (1024KB)

L1d L#23 (32KB)

L1i L#23 (32KB)

Core L#23

PU L#23

NUMANode L#1 (94GB)

Figure 5: Logical View of the hardware machine in Scenario 2 with only used PCI lanes.

we describe the access to the different data and scripts to enable reproduc-
ing all of our results simply and easily. We encourage readers of this paper
to analyze the webpage1 and the provided extra materials to gain a deeper
understanding of the evaluation and the utilized technologies.

5. Evaluation

Our evaluation of tail latency behavior in packet-processing containers
utilizes the optimizations described in Section 3 and focuses on the two hard-
ware scenarios described in Section 4, including the influence of OS kernel
variants, such as a real-time (RT) kernel, and a vanilla kernel. We assess dif-
ferent packet rates, compare the outcomes to those of VMs and bare-metal

1https://wiednerf.github.io/container-in-low-latency/

17



and analyze if the observed behavior allows the usage within URLLC appli-
cations. Furthermore, we evaluate all measurements in comparison between
an AMD architecture in scenario 1 and an Intel architecture in scenario

2. scenario 1 and its evaluation have already been published in [4]; we use
the results obtained there to compare them to scenario 2.

5.1. Scenario

We devised a straightforward scenario depicted in Figure 3 to examine
precise low-latency behavior in container setups. Packets are generated ex-
ternally, transmitted to the DuT, and forwarded through a basic packet pro-
cessing application—a l2 forwarding application of libmoon—before being
sent back over another link. The forwarding application operates within the
analyzed system.

With the libmoon l2 forwarding application, we examine the latency in-
duced by network processing, hardware, and virtualization rather than the
application itself. Utilizing, for example, layer three (l3) forwarding appli-
cation adds a constant additional delay on top of the results examined in
this article such as [23] have described for Surricata, an intrusion detection
system operating on layer three. Moreover, all l3 and upper layer forward-
ing and packet processing applications must process at least l2 and manage
the forwarding tasks. Therefore, a l2 forwarding application provides a valid
baseline for our measurements and comparison of optimization techniques.
We analyzed a l3 sample forwarding application and compared the results
with the l2 variant resulting in lower maximum packet rate and shifted la-
tency. This approach enables the evaluation of the effect of optimization
techniques and the underlying hardware system in isolation. We compare
the same application on VMs and bare-metal. Through these results, we
provide recommendations for using low-latency container applications and
identify any limitation

We investigated packet processing in containers using a vanilla Debian OS
without optimizations and studied the occurrence of latency spikes over time,
as is shown in Figure 6. The figure displays the 5000 worst latency events
over time with high peaks induced by interrupts and rescheduling. High la-
tency spikes occur at specific points in time, with all other latencies below
200µs. A periodic, recurring pattern can be seen in the worst-case delays
below 200 µs caused by rescheduling interrupts regularly emitted on all cores.
When we analyze now the worst-case latency based on the requirements of

18



−10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
0

200

400

600

800

1,000

1,200

Measurement time [s]

L
a
te
n
cy

[µ
s]

Figure 6: 5000 worst latency events for measurements using LXC-containers based on
Debian 11 in scenario 1 with1Mpkts/s.

URLLC for flows to have end-to-end-latencies of <1ms at the 99.999th per-
centile, we already break these requirements with a one-hop scenario without
further optimizations. To establish the validity of our findings, we repeated
all experiments multiple times, selecting the measurement with the worst tail-
latency for evaluations to ensure the capture of rare events. These results
show why examining different options, optimizations, and hardware configu-
rations is essential to provide valid suggestions for using specific technologies
for different use-case scenarios.

5.2. Packet Rates

We analyze the latency by comparing the effects on systems with and
without optimizations discussed in Section 3, starting with comparing differ-
ent packet rates. Figure 7a illustrates the behavior of non-optimized vanilla
compared to the optimized RT variant presented in Figure 7c in scenario 1.
The logarithmic plots show the latency against the percentiles using high-
dynamic-range (HDR) diagrams [54]. By using HDRs in our evaluation (e.g.,
Figures 7a and 7c), we focus on tail latency events to analyze rare latency
spikes by providing a logarithmic scale on both axes to focus on the differ-
ences in the tail-latencies specifically. Across all the rates, the optimized and
non-optimized systems in scenario 1 exhibit similar tail-latency behavior
at the 99.99th percentile and 99.9995th percentile, respectively. Lower packet
rates are more susceptible to high latencies in lower percentiles; for instance,
at 200 kpkts/s, more than 50% of all packets reach a maximum latency of
110µs. Additionally, all measurements indicate higher median latencies when
the packet rate is decreased, which is suspected to be due to the lower num-
ber of measured packets. The measurements of scenario 2, presented in

19



0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

10 50 200

400 600 800

1000

(a) Non-optimized Vanilla kernel in scenario 1.

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

(b) Non-optimized Vanilla kernel in scenario 2.

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

(c) Optimized Linux RT kernel in scenario 1.

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

(d) Optimized Linux RT kernel in scenario 2.

Figure 7: HDR diagram of latency for selected packet rates (kpkts/s), legend in Figure 7a.

Figures 7b and 7d, depict a similar behavior until the 99.99th percentile is
the optimized and non-optimized behavior similar to each other.

In general, in the non-optimized variant, the results in both scenarios
show significant spikes. These spikes are caused by a higher number of Trans-
lation Lookaside Buffer (TLB)-shootdown interrupts on the respective core
and rescheduling events. These shootdowns are executed when the proces-
sor changes the mapping between virtual and physical memory addresses to
notify all other processors with associated caches to invalidate their respec-
tive mapping. This high number of TLB shootdowns issuing a higher spike
difference in scenario 2 is caused by the different designs of the layer three
caches between cores in our used machine in Figure 5 and, therefore, results
in the recommendation to consider cache design when deciding if containers
can be used for low-latency especially when optimizations are not possible
due to scalability issues. Figure 8 shows the corresponding recorded inter-
rupts over time in a normalized function and the 5000 worst-case events of
the exact measurement using a vanilla non-optimized kernel in scenario 2.
Here, the highest outliers clearly result from a mixture of TLB shootdowns
and rescheduling interrupts called next to each other.

At lower packet rates, the impact on percentiles for rare events is higher

20



0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

Latency

Measurement time [s]

L
at
en

cy
[m

s]

0

0.2

0.4

0.6

0.8

1

IRQ work

Rescheduling

Machine check polls

TLB shootdownsFunction call

Non-maskable

N
or
m
al
iz
ed

in
te
rr
u
p
t
co
u
n
t

IRQ work interrupts Rescheduling interrupts Machine check polls

TLB shootdowns Function call interrupts Non-maskable interrupts

Figure 8: 5000 worst case events over time and corresponding interrupt events normalized
over time in scenario 2.

because fewer packets are captured within the same measurement time and
the amount of packets leaves more space for delays due to the reduced number
of packets processed. Hence, we conclude that rare occurrences have a higher
impact at lower rates, and no further observations of reasons for the system
were made. Therefore, higher packet rates are more suitable for tail-latency
analysis, whereas higher rates are insufficient for median analysis due to the
significant differences in median behavior. Similar to the measurements in
scenario 1, the differences in scenario 2 between the different rates are
more significant until the 99.99th percentile than in the tail-latency. The
tail-latency ranges from 5µs to 50µs across the different rates. Overall,
measurements indicate that all evaluated variants can process 1Mpkts/s with
minimally sized packets without packet loss used in the following evaluations.

21



0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

RT image

nohz image

vanilla image

(a) Non-optimized kernel in scenario 1.

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

(b) Non-optimized kernel in scenario 2.

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

(c) Optimized kernel in scenario 1.

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

(d) Optimized kernel in scenario 2.

Figure 9: HDR diagram of Debian kernel variants at 1Mpkt/s, legend in Figure 9a.

5.3. Optimizations

Additionally, we investigate the difference in OS kernel variants by in-
cluding experiments with vanilla, nohz, and RT kernel. The nohz kernel uses
a kernel configuration parameter to remove timer ticks from cores with only
one active process. To utilize this kernel features, the kernel must be built
with the CONFIG NO HZ FULL parameter and the nohz full bootparame-
ter needs to be added. The bootparameter describes which cores should be
isolated from the timer tick, similar to the isolcpu parameter. In contrast, the
RT kernel provides deterministic behavior, which should improve latency re-
liability behavior. For the RT kernel we used the specific RT-preempt kernel
shipped with Debian 11 available via the package repositories. This allows
us to utilize a common-used RT image available for broad usage without
requiring us to build the kernel extra.

The results of the three kernel variants are presented in Figure 9. Fig-
ure 9a shows the measurement results for scenario 1 for the non-optimized
OS in the three kernel variants, revealing a high tail-latency spike towards
1000µs at the 99.999th percentile when using the nohz and vanilla kernel. All
kernel variants exhibit latency spikes at the 99.9th percentile. The RT ker-
nel variant records a maximum latency of around 140µs. When comparing

22



these results to scenario 2 in Figure 9b, we can see similar behavior with
the RT variant compared to the vanilla variant providing lower latencies as
in scenario 1 until at least the 99.999th percentile; The RT variant is in
scenario 2 in general lower compared to scenario 1, which is in line with
results from previous studies on similar machines such as [23]. In contrast,
Figure 9c shows the results for the optimized OS in scenario 1, where the
RT variant had a slightly lower maximum latency of 110µs compared to
the non-optimized RT variant. Moreover, the nohz and vanilla kernel vari-
ants lead to significantly lower tail latencies at around 510µs compared to
the measurements using kernels without optimization. When analyzing the
optimized results of scenario 2, the latencies up to the 99.99th percentile
remain below the limit of 10 µs compared to the non-optimized version and
the optimized version in scenario 1 which only stays until the 99.5th per-
centile below this margin. Moreover, the tail-latency for scenario 2 is still
receiving multiple TLB-shootdowns over time, resulting in a high tail-latency
spike reaching even higher tail-latencies in vanilla and nohz kernel-variants
compared to the non-optimized version due to more batched interrupts. The
optimized RT kernel variants, however, do not receive such interrupts due
to better isolation and show stable tail latencies. In all cases, the RT kernel
provides the lowest average and tail latencies throughout the tested scenarios
and is holding the requirements for URLLC.

Concerning tail latency, the optimized variants outperform the not opti-
mized ones, which are affected by interrupts and rescheduling. Similar to the
findings of related work on bare-metal [23], our measurements indicate that
the nohz variant attains nearly the same tail latencies as the vanilla one on
Debian 11. With our measurements, we can even provide further insights:
the nohz variant with Debian 11 provides no longer improvements indepen-
dent of the underlying hardware systems in scenario 1, scenario 2, and in
the paper [23]. The RT variant displays similar results to the vanilla one up
to 99.99th percentile of latencies. However, latencies do not increase further,
limiting the tail latency in scenario 1 and scenario 2. The nohz kernel
can only provide benefits when no scheduling is needed, but LXC requires this
to schedule the container engine on the relevant cores. Meanwhile, the RT
kernel provides more stable tail latencies due to the deterministic behavior
of the OS kernel operations.

In Figure 10a, the 5000 worst-case events of our baseline measurements
using the non-optimized vanilla variant are compared to those of an optimized
RT one in scenario 1. The behavior of the optimized RT kernel variant is

23



0 20 40 60 80 100 120 140 160 180
0

200

400

600

800

1,000

1,200

Measurement time [s]

L
a
te
n
cy

[µ
s]

Not optimized, vanilla

optimized, RT

(a) scenario 1

0 20 40 60 80 100 120 140 160 180
0

200

400

600

800

Measurement time [s]

L
a
te
n
cy

[µ
s]

(b) scenario 2

Figure 10: 5000 worst latency events for measurements using LXC-containers based on
Debian 11.

similar to that of the non-optimized vanilla kernel variant without the rare,
significant outliers that are caused by rare interrupts scheduled on the packet
processing core, which is similar to the results in Figure 10b for scenario 2,
especially in the optimized RT variant. Here, the outliers correlate in terms
of time nearly to the distances seen in the non-optimized version. Due to
different setup times, this observed movement of worst-case events over time
cannot be depicted in the optimizations, whereas the reduced higher laten-
cies, especially after 4 s, are dependent on rescheduling interrupts as well as
the optimizations in this case as well show that the outliers are minimal lower
in comparison. In all scenarios when utilizing the optimized variant with RT-
kernel, we can stay below the 1ms at the 99.999th percentile supporting the
URLLC target in comparison to the vanilla, non-optimized variant.

5.4. Container vs. VMs

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

LXC scenario 1

VM scenario 2

(a) non-optimized, vanilla variant

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

(b) optimized RT-based variant

Figure 11: HDR diagram of latency on VMs and LXC containers.

Figure 11 compares measurements between container and VM setups us-
ing an optimized RT and a non-optimized vanilla variant. We execute the
forwarding application for this experiment inside the VM compared to inside

24



the container. The VMs are operating as KVM instances on the DuT. In
our measurements, the RT kernel variant demonstrates better results, which
we attribute to the utilization of Debian 11 in contrast to Debian 10 and,
subsequently, a newer kernel used in related work [8, 2].

As presented in Figure 11a, the performance differences between VMs
and containers are insignificant concerning tail latencies in both scenarios.
When we compare the results from both scenarios, the result for VMs as
described in related work [8] shows a significant improvement using the op-
timizations compared to the non-optimized variant of reaching a maximum
of less than 30µs. This results from the better isolation properties of the
Intel-based CPU compared to reducing the kernel influence, which is impos-
sible for LXC containers due to their usage of a shared kernel. It results in a
general evaluation that VMs in the vanilla variant show lower tail latencies
due to better isolation by default in both scenarios. However, VMs with
higher overhead reach the same maximum tail latency at lower percentiles
for all measurements and scenarios. By carefully isolating and optimizing
containers, results similar to VMs can be achieved, requiring fewer resources.

5.5. Container vs. Bare-metal

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

LXC scenario 1

Bare-metal scenario 2

(a) non-optimized, vanilla variant

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

(b) optimized RT-based variant

Figure 12: HDR diagram of latency on bare-metal and LXC containers.

The forwarding application is executed directly on bare metal compared
to running inside a container for this comparison. The vanilla variant for con-
tainers, which provides minimal container isolation by default, yields slightly
lower tail latencies (Figure 12) in both scenarios. Meanwhile, optimized bare-
metal experiments slightly outperform optimized containers primarily due to
a higher degree of isolation of the forwarding application from interrupts.
Our findings differ from those reported in [23] as we use a different main-
board. Specifically, [23] used an Intel mainboard with Intel CAT for pinning

25



the cache to a specific core, which AMD does not support to our current
knowledge. Furthermore, they used a DPDK l2fwd application without Lua
as a wrapper, which can result in additional latencies caused by the wrapper.
Although bare-metal configurations are generally preferable due to better re-
source isolation, containers may be used when resource sharing is necessary.
We now utilize an Intel-based mainboard in our scenario 2. In Figure 12
in both sub-figures, the same assumptions as by [23] can be drawn for the
bare-metal case, resulting in promising results with a much lower tail-latency
in the optimized variant of lower than 30µs similar to the results using VMs.
This result stays in line with previously presented results.

To conclude, containers exhibit only a minimal overhead compared to
bare-metal, contingent on the underlying hardware, which may vary. The
overhead and improvement possibilities of containers in comparison to bare-
metal and VMs vary depending on the cache design of the individually se-
lected hardware node. Consequently, hardware selection is critical when
ultra-low-latencies are required.

5.6. L3 vs. L2 forwarding application

Moreover, to show our results on a more complex and processing-heavy
application, we additionally analyzed it using the l3-sample-forwarding ap-
plication of the DPDK project. This forwarding application adds additional
overhead and processing as to an opposite to the l2 forwarding scenario;
the program has to perform parsing of the packet until and including the l3
header. The l3 application performs a lookup process using longest-prefix-
matching in the forwarding information base. Due to unavailability to the
original timestamper in scenario 1 for the l3 forwarding scenario, we used
for both scenario 1 and scenario 2 the timestamper from scenario 2,
with specifications as shown in Table 3.

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

L2 scenario 1

L3 scenario 2

(a) non-optimized, vanilla variant

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

(b) optimized RT-based variant

Figure 13: HDR diagram of latency using l3 vs. l2 forwarding application on 600 kpkts/s.

26



Figure 13 shows a comparison between l2 and l3 forwarding application
with 600 kpkts/s as this was the last rate below reaching an overload scenario
in the non-optimized variants of the l3 forwarding application. This results
in the first major difference: the l3 forwarding application on our systems,
due to its additional processing overhead, cannot process as many packets
per second as the simple l2 forwarding application.

In Figure 13a the non-optimized, vanilla results for both scenarios with
l2 and l3 forwarding applications are shown. Until the 99.99th percentile all,
we see a clear latency shift due to the higher processing overhead. In the
worst-case delay, this differs between scenarios and l2 and l3. In scenario

1 we reach even lower latencies in the worst-case scenario. This lower tail
latency could be due to not processing a packet during a TLB shootdown
or a rescheduling interrupt. Whereas in scenario 2, the influence of those
system interrupts is the same for both forwarding applications. This result
could be due to the already high added latency from the interrupts and two
processing cores in the l3 application compared to only one in the l2 example.

When comparing this results to Figure 13b with the RT-optimized vari-
ant, we see during the whole period a clear shift similar to the non-optimized
variants, which is reduced after the 99.99th by the results from the l2 forward-
ing application and the non-optimized variants. All results show a reduced
influence of the higher processing costs on tail latencies. This evaluation
shows that analyzing a simple l2 application is not enough for the average
cases but already shows nearly the same results for tail latencies due to the
small added processing time for our sample l3 application. With this, the
influence of the network, when the processing overhead is not considerable, is
more significant. Analysis of our l3 sample application shows that retrieving
recommendations based on our baseline results is valid for further analysis,
even for applications with higher processing times.

5.7. User-space vs. Kernel-space Network Driver on Container

Thus far, networking in user space has been examined. We investigated a
Linux traffic control mirroring application for comparison with kernel-space
networking. The application enables the assessment of the impact of kernel-
space networking.

Figure 14 shows the tail latency for kernel-space networking compared
to user-space networking. The tail latency after the 99.999th percentile was
similar for both variants of packet processing in scenario 1. The optimized

27



0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

user-Space scenario 1

kernel-space scenario 2

(a) non-optimized, vanilla variant

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
a
te
n
cy

[µ
s]

(b) optimized RT-based variant

Figure 14: HDR diagram of latency on kernel- versus user-space packet processing.

variants in scenario 1 measured a maximum latency of 110µs in experi-
ments. Compared to the 99.8th percentile for user-space packet processing,
the latency increases gradually for the 50th percentile. This result suggests
that the optimizations employed for user space can be used for kernel-space
processing. Thus, container isolation enables the use of kernel drivers for
low-latency applications. Similar to the experiments on the container with
scenario 1, kernel-space networking in a container in scenario 2 are sig-
nificantly differing, wherein the optimized variant until the 99.99th percentile
user-space networking is significantly better than kernel-space until the tail-
latency, where kernel-space is exhibiting an additional spike compared to
user-space networking.

In the non-optimized variant, the tail latency in kernel-space networking
exhibits worse performance, with a difference of at least one order of mag-
nitude in scenario 1 as presented in Figure 14a. In scenario 2 kernel-
and user-space networking are in the non-optimized variant performing in
the tail-latency similar to each other. However, comparing kernel- and user-
space packet processing in containers reveals that both are valuable for low-
latency applications in containers, provided that optimization techniques are
carefully used and the hardware machines are carefully selected. Evaluating,
in general, using user-space networking is an advantage as it outperforms
kernel-space in the non-optimized variant. The tail latency in the optimized
variant does not differ significantly depending on the machine, even though
the kernel networking outperforms user-space.

6. Tail Latency Model

We apply EVT to create models of the tail-latency behavior. We evaluate
the predictive capability of these models on a four-fold time horizon.

28



0.0 0.2 0.4 0.6 0.8

p value

0.00

0.25

0.50

0.75

1.00

C
D

F

p value = 0.05

ADF

KPSS

Figure 15: p values of both ADF- and KPSS
tests, evaluated over the EVT part of all
datasets.

99.5 99.9 99.95 99.99 99.999

Threshold Percentile

0.0

0.5

1.0

J
S

D
iv

er
g
en

ce

Figure 16: Jensen-Shannon divergence be-
tween GPD model and measured latencies
over all datasets.

6.1. Prerequisites

The condition for the applicability of EVT is that the dataset needs to be
identically distributed and stationary [55]. We assume identical distribution
and apply two tests to verify stationarity. The two tests are the Augmented
Dickey-Fuller (ADF) test [56], and the Kwiatkowski-Phillips-Schmidt-Shin
(KPSS) test [57]. ADF tests for the presence of a unit root while KPSS tests
for the absence of a unit root. The absence of a unit root is interpreted as
stationarity. Figure 15 shows the distribution of the p values of the two tests
as applied to all datasets. We only consider the part of the datasets that
is used to generate the EVT models, not the part that is used to evaluate
them. We can observe that 95% of p values of the ADF test are less than
0.05 and 95% of p values of the KPSS test are larger than 0.05. This leads
us to reject the null hypothesis of the ADF and accept the null hypothesis
of the KPSS test, meaning that 95% of our datasets are stationary. We refer
to Wasserstein et al. [58] for a discussion on issues of using p values. Fur-
thermore, we compared the test statistics of both tests with their respective
critical values, leading to the same conclusion of stationarity.

6.2. Methodology

Each model is generated using the first 20% of measurement data points
and validated using the following 80%, equivalent to a four-fold time hori-
zon. The model is derived using the Peaks-over-Threshold (PoT) method
with a variably set threshold. The PoT method classifies all data points
larger than a given threshold as belonging to the tail of the latency distri-
bution. A less-used alternative is the Block Maxima approach, which selects

29



99.5 99.9 99.95 99.99 99.999

Threshold Percentile

104

106

T
h

re
sh

ol
d
µ

[n
s]

Figure 17: The absolute threshold latency values of all EVT models over the different
threshold percentiles.

maximum values from fixed-sized intervals instead. The threshold for the
PoT method is selected from the set T = {99.5, 99.9, 99.95, 99.99, 99.999}
using an entropy-based method. The entropy-based method is the Jensen-
Shannon (JS) divergence [59]. It is an adaption of the commonly used Kull-
back–Leibler divergence [60] with the additional advantages of being sym-
metric and not yielding infinite values. It is used to measure the distance
between two probability distributions. We are using it as a goodness-of-fit
test for each threshold. An alternative method for threshold selection is the
parameter-stability approach [42, 44].

Figure 17 shows the absolute threshold latency values of all EVT models
for each threshold percentile. We can observe that the mean threshold value
is approximately 70µs, i.e., latencies above 70 µs are considered for the EVT
model.

The data points obtained from the PoT method are then fit to a General-
ized Pareto Distribution (GPD) using a maximum likelihood estimator with
a confidence level of 95%. A GPD is characterized by three parameters: the
threshold (µ), the scale (σ), and the tail (ξ). The JS divergence is then used
to select the best-fitting model between the five thresholds. Figure 16 shows
the JS divergence for all datasets and all thresholds.

This GPD model can be used to calculate the return level xm [42] for an
arbitrary return period m, as shown in Equation (1), with the threshold µ,
scale σ, tail ξ, the number of latency measurements D, and the number of
latency values above the threshold Dd>µ. The fraction

Dd>µ

D
is the propor-

tion of latencies larger than the threshold. The return level represents the
magnitude of latencies, which is expected to be exceeded exactly once during
the return period [42]. It can be considered a lower bound on the expected

30



worst-case for a given run time of the system. This can be seen as a com-
plementary measure to worst-case latency bounds obtainable by analytical
methods, such as network calculus.

xm = µ+
σ

ξ
·
[(

m · Dd>µ

D

)ξ

− 1

]
. (1)

The limit of this function for m → ∞ describes the behavior of the
tail latencies on an arbitrarily long time horizon. In the following, we will
especially consider whether a model converges or diverges. This can be used
as an indicator of bounded or un-bounded expected tail latencies.

We validated the models by comparing the convergence behaviors and
the relation between the return levels and the remaining 80% of the data.

6.3. Results

Table 4 shows the results of applying the EVT models to the evaluation
data of scenario 2. First, we will consider the number of exceedances per
model. They can be used to classify the models into two classes: models
with good predictive capabilities and models with poor predictive capabili-
ties. We can observe models with good predictions for bare-metal, optimized
VMs, optimized containers with RT kernel, and NoHz containers. Decent
predictive performances are associated with models for containers and VMs
with vanilla kernel, as well as optimized kernel networking stack with a RT
kernel. Poor predictive performance is observed for containers with RT ker-
nel but without any optimizations as well as for the unoptimized version
of the kernel networking stack. This is mostly in line with the observed
experimental results in Section 5.

Next, we will consider the percentage of bounded models. A bounded
model has a finite return level for arbitrary return periods. We can observe
that all models, except for kernel networking, have at least 50% bounded
return levels, while most models have a higher percentage. Overall, there is
no clear correlation between mean number of exceedances and percentage of
bounded models with a Pearson correlation coefficient of −0.02.

A more detailed comparison of the tail parameter of the EVT model and
the boundedness of the corresponding model is shown in Figure 18. Table 5
shows the same evaluation for scenario 1, as described in [4].

We conclude that measured tail-latencies on almost all variations of of
containers, optimized and unoptimized, are more predictable than on VMs

31



−7.5 −5.0 −2.5 0.0 2.5

ξ

0.00

0.25

0.50

0.75

1.00

C
D

F

←
bounded

→
unbounded

Figure 18: Distribution of tail parameter values ξ compared to the bounded and un-
bounded model regions.

Table 4: Results of applying the derived EVT models to the evaluation data from scenario

2. The exceedances are mean values for the number of packet bursts that have exceeded the
predicted return level. This evaluation extrapolates the model to a four-fold time horizon.
The expected number of exceedances is exactly 1. The bounded column indicates the
percentage of EVT models that have a finite return value for an infinte return period.

Platform Opt. RT NoHz Vanilla # Exceedances Bounded

Bare-metal ✓ ✓ × × 0.83 58.3%
Bare-metal × × × ✓ 1.33 100.0%
VM ✓ ✓ × × 1.25 50.0%
VM × × × ✓ 2.58 66.7%
Container ✓ ✓ × × 1.42 83.3%
Container × ✓ × × 7.67 100.0%
Container ✓ × ✓ × 1.25 75.0%
Container × × ✓ × 1.67 83.3%
Container ✓ × × ✓ 2.92 75.0%
Container × × × ✓ 2.29 71.4%
Kernel Netw. ✓ ✓ × × 2.50 33.3%
Kernel Netw. × × × ✓ 22.73 63.6%

and in the kernel networking stack. The predictability between bare-metal
and containers is roughly equal.

7. Recommendations for Low-latency-sliced Applications

Table 6 presents the tail-latency of the non-optimized vanilla and the
optimized RT variant for each technology and scenario. We recommend a

32



Table 5: Results of applying the derived EVT models to the evaluation data for scenario
1.

Platform Opt. RT NoHz Vanilla Exceedances Bounded

Bare-metal ✓ ✓ × × 3.30 60.0%
Bare-metal × × × ✓ 0.33 16.7%
VM ✓ ✓ × × 4.00 58.3%
VM × × × ✓ 2.58 25.0%
Container ✓ ✓ × × 3.83 66.7%
Container × × × ✓ 1.50 16.7%

Table 6: Tail-latency values for non-optimized vanilla and optimized RT version for all
three systems with user-space networking and kernel-space networking on containers only.

Technology Scenario non-optimized vanilla optimized RT

container
kernel-space 1 9969.08 µs 100.19 µs

2 744.72 µs 414.52 µs
user-space 1 659.25 µs 108.86 µs

2 373.73 µs 36.98 µs

VM 1 840.63 µs 124.12 µs
2 1560.47 µs 37.02 µs

Bare-metal 1 1077.44 µs 101.81 µs
2 716.16 µs 36.74 µs

top-down strategy for choosing a system for URLLC based on the presented
findings. While a bare-metal solution is best suited for commodity hardware,
responding to on-the-fly demands can be resource-intensive and challenging.
Our measurements demonstrated that VMs and containers can perform sim-
ilarly to each other when selecting the best underlying hardware architecture
for the selected technology. Therefore, we recommend analyzing additional
aspects such as security, resource usage, and hardware system design. We
recommend using containers to ensure reduced resource usage and high flex-
ibility when the hardware provides a fine-granular separated cache per core
group. However, if higher security and isolation of applications are required,
VMs are recommended in all hardware scenarios. Containers and VMs can be

33



hosted on the same hardware system, providing both to customers. When an-
alyzing those scenarios toward holding the URLLC requirements, it becomes
visible that especially our non-optimized vanilla scenario in all combinations
cannot hold the URLLC requirements, whereas the optimized variant of the
RT image can hold the requirements in all versions. Using bare-metal or VMs
provides, on the other side, the most headroom for additional application-
induced latency, which needs to be kept in mind. This is, for example, already
needed when utilizing l3 forwarding instead of l2 forwarding due to the added
constant delay.

Table 7: Summarized Recommendations with ranks for each category from✓✓✓(best)

to ×××(worst).

Technology Cache Latency Security Resources

VM
optimized Separated ✓ ✓✓ ×

Shared ✓ ✓ ×
non-optimized Separated ××× ✓✓ ✓

Shared ××× ✓ ✓
Container
optimized Separated ✓✓ ✓ ✓✓
optimized Shared ✓✓ × ✓✓
non-optimized Separated × ✓ ✓✓✓
non-optimized Shared ×× × ✓✓✓

Bare-metal
optimized Separated ✓✓✓ ✓✓✓ ××
optimized Shared ✓✓✓ ✓✓✓ ××
non-optimized Separated ×× ✓✓✓ ××
non-optimized Shared × ✓✓✓ ××

Table 7 summarizes the recommendations. We have ranked the categories
for non-optimized and optimized VMs, containers, and bare-metal solutions
for each evaluated cache type. Generally, optimized variants perform better
than non-optimized variants in all systems, whereas the choice of technol-
ogy ultimately depends on the infrastructure, requirements, and available
resources.

34



8. Limitations

Our analysis of virtualization overhead was based on single instances, not
concurrent ones. Only simple applications were analyzed since we focused
on technology-induced latency.

We did not examine shared network resources, such as previous studies [8]
and [2] have analyzed for VMs. Further studies are necessary to explore po-
tential improvements and provide a more in-depth analysis of shared system
resources.

Our analysis focuses exclusively on the behavior of LXC containers since
previous studies indicate that alternative solutions introduce additional over-
head [14, 6]. However, this has yet to be verified further, and comparing
container solutions for improving latency is part of future research.

Moreover, the approach of direct access to the NIC is not generally scal-
able. In this article, we did not analyze scalability solutions further, such
as single-root IO virtualization, which allows splitting one PCIe device into
multiple ones. We leave this analysis to future work.

9. Reproducibility

The scripts, raw data, and analysis results required to reproduce our find-
ings are available online, including the raw PCAPs, the data extracted from
these PCAPs, and the plots obtained for each measurement2. The scripts
enable reproducing all measurements and calculations on other systems, pro-
vided the necessary hardware is available for per-packet timestamping and
passive optical TAPs.

10. Conclusion and Future Work

Reliable and predictable low latency is critical in applications such as
autonomous driving or remote medical procedures. Resource sharing and on-
demand service provisioning, such as network slices in 5G, are also vital. This
study demonstrates that lightweight virtualization is a suitable alternative
for high-reliability, low-latency applications. However, achieving this requires
a tactful selection of optimization parameters, such as rt-kernels.

2https://wiednerf.github.io/container-in-low-latency/

35



We can use a user-space networking application to achieve high reliabil-
ity and significantly reduce tail latency. Furthermore, VMs and containers
exhibit comparable performance; however, containers require fewer resources
but cannot be completely isolated. For containers, carefully selecting the
underlying hardware architecture, especially the cache design, is much im-
portant than for VMs. Therefore, we can recommend containers if the un-
derlying hardware supports the isolation of container resources and provides
a corresponding cache system utilizing divided spaces for different containers
and CPU cores. We employed an EVT model to assess the predictability of
tail latencies in containers. We found that an optimized system in a con-
tainer with an RT kernel converges more in models than any configuration
based on VMs or bare metal. This study presents the first in-depth analysis
of packet-processing latency in containers.

Further, we plan to analyze the influence of concurrent containers and
CPU resource sharing and evaluate the potential of SR-IOV-based NIC shar-
ing to improve low latency and high availability of resources. We also plan to
enhance predictability using statistical methods over time to enable accurate
planning. Finally, we plan to investigate and compare different container
solutions and their latencies beyond current findings and the effect of using
VMs and containers on the same system.

Acknowledgments

This work was supported in part by the European Union Horizon 2020
research and innovation programme (project SLICES-SC, 101008468, and
SLICES-PP, 101079774), the Bavarian Ministry of Economic Affairs, Re-
gional Development and Energy (project 6G Future Lab Bavaria), and the
German Federal Ministry of Education and Research (project 6G-ANNA,
16KISK107, and project 6G-life, 16KISK002).

References

[1] 5G: Study on Scenarios and Requirements for Next Generation Access
Technologies, Last accessed: May 22, 2023 (2017).

[2] S. Gallenmüller, J. Naab, I. Adam, G. Carle, 5G QoS: Impact of Security
Functions on Latency, in: NOMS 2020 - IEEE/IFIP Network Operations
and Management Symposium, Budapest, Hungary, April 20-24, 2020,
IEEE, 2020, pp. 1–9.

36



[3] RedHat, cpuset - Red Hat Enterprise Linux 6,
URL: https://access.redhat.com/documentation/en-
us/red hat enterprise linux/6/html/resource management guide/sec-
cpuset, Last accessed: Feb 29, 2024 (2023).

[4] F. Wiedner, M. Helm, A. Daichendt, J. Andre, G. Carle, Containing
Low Tail-Latencies in Packet Processing Using Lightweight Virtualiza-
tion , in: 35th International Teletraffic Congress (ITC-35), Torino, Italy,
2023, pp. 1 – 9.

[5] Z. Li, M. Kihl, Q. Lu, J. A. Andersson, Performance Overhead Compar-
ison between Hypervisor and Container Based Virtualization, in: 2017
IEEE 31st International Conference on Advanced Information Network-
ing and Applications (AINA), 2017, pp. 955–962.

[6] D. Bernstein, Containers and Cloud: From LXC to Docker to Kuber-
netes, IEEE Cloud Computing 1 (3) (2014) 81–84.

[7] A. K. Yadav, M. L. Garg, Ritika, Docker containers versus virtual
machine-based virtualization, in: A. Abraham, P. Dutta, J. K. Man-
dal, A. Bhattacharya, S. Dutta (Eds.), Emerging Technologies in Data
Mining and Information Security, Springer Singapore, Singapore, 2019,
pp. 141–150.

[8] S. Gallenmüller, F. Wiedner, J. Naab, G. Carle, Ducked Tails: Trim-
ming the Tail Latency of(f) Packet Processing Systems, in: P. Chemouil,
M. Ulema, S. Clayman, M. Sayit, C. Çetinkaya, S. Secci (Eds.), 17th
International Conference on Network and Service Management, CNSM
2021, Izmir, Turkey, October 25-29, 2021, IEEE, 2021, pp. 537–543.

[9] D. Gedia, L. Perigo, Performance evaluation of sdn-vnf in virtual ma-
chine and container, in: 2018 IEEE Conference on Network Function
Virtualization and Software Defined Networks, 2018, pp. 1–7.

[10] F. Wiedner, A. Daichendt, J. Andre, G. Carle, Control Groups Added
Latency in NFVs: An Update Needed?, in: F. H. P. Fitzek, L. J. Horner,
M. Gharbaoui, G. Nguyen, R. Gu, T. Meuser (Eds.), IEEE Conference
on Network Function Virtualization and Software Defined Networks,
NFV-SDN 2023, Dresden, Germany, November 7-9, 2023, IEEE, 2023,
pp. 40–45.

37



[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, A. Warfield, Xen and the art of virtualization, in: M. L.
Scott, L. L. Peterson (Eds.), Proceedings of the 19th ACM Symposium
on Operating Systems Principles 2003, SOSP 2003, Bolton Landing,
NY, USA, October 19-22, 2003, ACM, 2003, pp. 164–177.

[12] L. Abeni, C. Király, N. Li, A. Bianco, Tuning KVM¸ to enhance virtual
routing performance, in: Proceedings of IEEE International Conference
on Communications, ICC 2013, Budapest, Hungary, June 9-13, 2013,
IEEE, 2013, pp. 3803–3808.

[13] M.-N. Tran, Y. Kim, Network Performance Benchmarking for Con-
tainerized Infrastructure in NFV environment, in: 2022 IEEE 8th In-
ternational Conference on Network Softwarization (NetSoft), 2022, pp.
115–120.

[14] R. Morabito, J. Kjällman, M. Komu, Hypervisors vs. Lightweight Vir-
tualization: A Performance Comparison, in: 2015 IEEE International
Conference on Cloud Engineering, 2015, pp. 386–393.

[15] J.-G. Cha, S. W. Kim, Design and Evaluation of Container-based Net-
working for Low-latency Edge Services, in: 2021 International Con-
ference on Information and Communication Technology Convergence
(ICTC), 2021, pp. 1287–1289.

[16] S. Lin, P. Cao, T. Huang, S. Zhao, Q. Tian, Q. Wu, D. Han, X. Wang,
C. Zhou, XMasq: Low-Overhead Container Overlay Network Based on
eBPF, CoRR abs/2305.05455 (2023).

[17] D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Krishnamurthy,
T. Anderson, Slim: OS kernel support for a Low-Overhead container
overlay network, in: 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), USENIX Association, Boston,
MA, 2019, pp. 331–344.

[18] T. Zhang, L. Linguaglossa, J. Roberts, L. Iannone, M. Gallo, P. Giac-
cone, A benchmarking methodology for evaluating software switch per-
formance for NFV, in: 2019 IEEE Conference on Network Softwarization
(NetSoft), 2019, pp. 251–253.

38



[19] G. K. Lockwood, M. Tatineni, R. Wagner, SR-IOV: Performance Bene-
fits for Virtualized Interconnects, in: S. A. Lathrop, J. Alameda (Eds.),
Annual Conference of the Extreme Science and Engineering Discovery
Environment, XSEDE ’14, Atlanta, GA, USA - July 13 - 18, 2014, ACM,
2014, pp. 47:1–47:7.

[20] J. Liu, Evaluating standard-based self-virtualizing devices: A perfor-
mance study on 10 GbE NICs with SR-IOV support, in: 2010 IEEE
International Symposium on Parallel Distributed Processing (IPDPS),
2010, pp. 1–12.

[21] H. Liu, W. Li, Y. Pang, R. Pei, Y. Hu, Y. Liu, L. Suo, K. Li, Acceler-
ating data delivery of latency-sensitive applications in container overlay
network, IEEE Trans. Parallel Distributed Syst. 34 (12) (2023) 3046–
3058.

[22] NGMN Alliance, 5G E2E Technology to Support Verticals URLLC Re-
quirements (2019).

[23] S. Gallenmüller, F. Wiedner, J. Naab, G. Carle, How Low Can You
Go? A Limbo Dance for Low-Latency Network Functions, Journal of
Network and Systems Management 31 (20) (Dec. 2022).

[24] D. Bozilov, M. Knezevic, V. Nikov, Optimized threshold implemen-
tations: securing cryptographic accelerators for low-energy and low-
latency applications, J. Cryptogr. Eng. 12 (1) (2022) 15–51.

[25] V. Jain, H.-T. Chu, S. Qi, C.-A. Lee, H.-C. Chang, C.-Y. Hsieh, K. K.
Ramakrishnan, J.-C. Chen, L25GC: A Low Latency 5G Core Network
Based on High-Performance NFV Platforms, in: Proceedings of the
ACM SIGCOMM 2022 Conference, SIGCOMM ’22, Association for
Computing Machinery, New York, NY, USA, 2022, p. 143–157.

[26] Y. J. Liu, P. X. Gao, B. Wong, S. Keshav, Quartz: A New Design
Element for Low-Latency DCNs, SIGCOMM Comput. Commun. Rev.
44 (4) (2014) 283–294.

[27] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, J. S.
Rellermeyer, A survey on distributed machine learning, ACM Comput.
Surv. 53 (2) (mar 2020).

39



[28] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, M. Zhang,
Duet: Cloud Scale Load Balancing with Hardware and Software, SIG-
COMM Comput. Commun. Rev. 44 (4) (2014) 27–38.

[29] J. Mario, J. Eder, Low Latency Performance
Tuning for Red Hat Enterprise Linux 7, URL:
https://access.redhat.com/sites/default/files/attachments/201501-
perf-brief-low-latency-tuning-rhel7-v2.1.pdf, Last accessed: Feb 29,
2024 (Nov. 2017).

[30] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. An-
tichi, M. Wójcik, Re-Architecting Datacenter Networks and Stacks for
Low Latency and High Performance, in: Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication, SIG-
COMM ’17, Association for Computing Machinery, New York, NY,
USA, 2017, p. 29–42.

[31] DPDK Project, Home - DPDK, uRL: https://www.dpdk.org/, Last Ac-
cessed: Feb 29, 2024 (2024).
URL https://www.dpdk.org/

[32] C.-N. Mao, M.-H. Huang, S. Padhy, S.-T. Wang, W.-C. Chung, Y.-C.
Chung, C.-H. Hsu, Minimizing Latency of Real-Time Container Cloud
for Software Radio Access Networks, in: 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (CloudCom),
2015, pp. 611–616.

[33] S. Naffziger, N. Beck, T. Burd, K. Lepak, G. H. Loh, M. Subra-
mony, S. White, Pioneering chiplet technology and design for the amd
epyc™ and ryzen™ processor families : Industrial product, in: 2021
ACM/IEEE 48th Annual International Symposium on Computer Archi-
tecture (ISCA), 2021, pp. 57–70. doi:10.1109/ISCA52012.2021.00014.

[34] S. Hammond, C. Vaughan, C. Hughes, Evaluating the intel skylake xeon
processor for hpc workloads, in: 2018 International Conference on High
Performance Computing and Simulation (HPCS), 2018, pp. 342–349.
doi:10.1109/HPCS.2018.00064.

[35] K. B. Rao, Computer systems architecture vs quantum com-
puter, in: 2017 International Conference on Intelligent Com-

40



puting and Control Systems (ICICCS), 2017, pp. 1018–1023.
doi:10.1109/ICCONS.2017.8250619.

[36] Intel, URL: https://github.com/intel/intel-cmt-cat, Last accessed at
Feb 29 2024.

[37] Y. Kim, A. More, E. Shriver, T. Rosing, Application performance pre-
diction and optimization under cache allocation technology, in: 2019
Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2019, pp. 1285–1288. doi:10.23919/DATE.2019.8715259.

[38] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, G. Carle,
MoonGen: A Scriptable High-Speed Packet Generator, in: K. Cho,
K. Fukuda, V. S. Pai, N. Spring (Eds.), Proceedings of the 2015 ACM
Internet Measurement Conference, IMC 2015, Tokyo, Japan, October
28-30, 2015, ACM, 2015, pp. 275–287.

[39] Snort, Snort - Network Intrusion Detection and Prevention System,
uRL: https://www.snort.org/, Last Accessed: Feb 29, 2024 (2024).
URL https://www.snort.org/

[40] M. Ziese, A. Rauthe-Schöch, P. Finger, E. Rustemeier, S. Hänsel,
U. Schneider, Gpcc full data daily version 2022 at 1.0◦: Daily land-
surface precipitation from rain-gauges built on gts-based and historic
data. 2022.

[41] I. Godfried, K. Mahajan, M. Wang, K. Li, P. Tiwari, Flowdb a large scale
precipitation, river, and flash flood dataset (2020). arXiv:2012.11154.

[42] S. Coles, J. Bawa, L. Trenner, P. Dorazio, An Introduction to Statistical
Modeling of Extreme Values, Vol. 208, Springer, 2001.

[43] T. Hsing, On Tail Index Estimation Using Dependent Data, The Annals
of Statistics 19 (3) (1991) 1547–1569.

[44] M. Helm, F. Wiedner, G. Carle, Flow-level Tail Latency Estimation and
Verification based on Extreme Value Theory, in: M. Charalambides,
P. Papadimitriou, W. Cerroni, S. S. Kanhere, L. Mamatas (Eds.), 18th
International Conference on Network and Service Management, CNSM
2022, Thessaloniki, Greece, October 31 - Nov. 4, 2022, IEEE, 2022, pp.
359–363.

41



[45] N. Mehrnia, S. Coleri, Wireless Channel Modeling Based on Extreme
Value Theory for Ultra-Reliable Communications, IEEE Trans. Wirel.
Commun. 21 (2) (2022) 1064–1076.

[46] M. Bennis, M. Debbah, H. V. Poor, Ultrareliable and Low-Latency
Wireless Communication: Tail, Risk, and Scale, Proc. IEEE 106 (10)
(2018) 1834–1853.

[47] R. A. Fisher, L. H. C. Tippett, Limiting forms of the frequency distribu-
tion of the largest or smallest member of a sample, Mathematical Pro-
ceedings of the Cambridge Philosophical Society 24 (2) (1928) 180–190.
doi:10.1017/S0305004100015681.

[48] J. P. III, Statistical Inference Using Extreme Order Statistics, The An-
nals of Statistics 3 (1) (1975) 119 – 131. doi:10.1214/aos/1176343003.
URL https://doi.org/10.1214/aos/1176343003

[49] A. A. Balkema, L. de Haan, Residual Life Time at Great Age, The An-
nals of Probability 2 (5) (1974) 792 – 804. doi:10.1214/aop/1176996548.
URL https://doi.org/10.1214/aop/1176996548

[50] AMD, Performance Tuning Guidelines for Low Latency Re-
sponse on AMD EPYC-Based Servers Application Note, URL:
https://www.amd.com/content/dam/amd/en/documents/epyc-
technical-docs/tuning-guides/56263-EPYC-performance-tuning-app-
note.pdf, Last accessed: Feb 29, 2024 (Jun. 2018).

[51] Intel Corporation, E810 datasheet rev2.5, URL: https://cdrdv2-
public.intel.com/613875/613875 E810 Datasheet Rev2.5.pdf, Last Ac-
cessed: Feb 29, 2024.

[52] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, R. Namyst, hwloc: A generic framework for
managing hardware affinities in HPC applications, in: M. Danelutto,
J. Bourgeois, T. Gross (Eds.), Proceedings of the 18th Euromicro Con-
ference on Parallel, Distributed and Network-based Processing, PDP
2010, Pisa, Italy, February 17-19, 2010, IEEE Computer Society, 2010,
pp. 180–186.

[53] S. Gallenmüller, D. Scholz, H. Stubbe, G. Carle, The pos framework:
a methodology and toolchain for reproducible network experiments, in:

42



G. Carle, J. Ott (Eds.), CoNEXT ’21: The 17th International Confer-
ence on emerging Networking EXperiments and Technologies, Virtual
Event, Munich, Germany, December 7 - 10, 2021, ACM, 2021, pp. 259–
266.

[54] G. Tene, HDRHistogram: A High Dynamic Range Histogram, URL:
http://hdrhistogram.org/, Last accessed: Feb 29, 2024 (Aug. 2021).

[55] L. Santinelli, J. Morio, G. Dufour, D. Jacquemart, On the sustainability
of the extreme value theory for WCET estimation, in: 14th International
Workshop on Worst-Case Execution Time Analysis, Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2014.

[56] D. A. Dickey, W. A. Fuller, Distribution of the estimators for autore-
gressive time series with a unit root, Journal of the American statistical
association 74 (366a) (1979) 427–431.

[57] D. Kwiatkowski, P. C. Phillips, P. Schmidt, Y. Shin, Testing the null
hypothesis of stationarity against the alternative of a unit root: How
sure are we that economic time series have a unit root?, Journal of
econometrics 54 (1-3) (1992) 159–178.

[58] R. L. Wasserstein, A. L. Schirm, N. A. Lazar, Moving to a world beyond
“p¡ 0.05” (2019).

[59] J. Lin, Divergence measures based on the Shannon entropy, IEEE Trans-
actions on Information theory 37 (1) (1991) 145–151.

[60] S. Kullback, R. A. Leibler, On information and sufficiency, The annals
of mathematical statistics 22 (1) (1951) 79–86.

43


