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Abstract
Network modeling often relies on simulation tools due to their flex-
ibility and cost-effectiveness. However, in many cases, those tools
can only cover some aspects of real-world networks accurately.
Measurements on hardware testbeds are more accurate but require
more resources and configuration and are thus frequently impracti-
cal for real-world networks. Graph Neural Networks (GNNs) are
a promising machine learning approach proven to be especially
useful for learning the properties of computer networks. In this
paper, we present a GNN-based approach that uses simulation data
as an additional input to predict latency values measured on real
hardware. We train our model with an existing dataset from a hard-
ware testbed and show that it can predict the latency distribution in
unseen topologies with a MAPE of 27.2 % and an MdAPE of 19.8 %.
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• Networks → Network performance modeling; Network mea-
surement; Network simulations.
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1 Introduction
Network modeling is a critical aspect of designing and optimizing
modern communication systems. It enables researchers and oper-
ators to understand, predict, and enhance network performance
without the need for costly and time-consuming real-world exper-
iments. Moreover, network modeling is essential for identifying
potential bottlenecks and failure points, allowing for proactive
measures to ensure robustness and reliability. There exist multiple
approaches to network modeling. Simulation tools are often used
for their clear advantages, including cost-effectiveness, flexibility,
and repeatability. However, simulations often fall short of predict-
ing the behavior of real-world networks. This is due to abstractions
in modeling the network stack and ignoring the influence of sto-
chastic processes, such as, for example, interrupts. Some efforts
have been made to address these types of shortcomings. For ex-
ample, the network simulator ns-3 [12] has implemented direct
code execution, allowing to replace elements of the simulated net-
work stack with their counterpart implementations from the Linux
kernel.1 However, for precise simulations, many aspects need to
be considered and included, which leads to a complex simulation
design.

We aim to tackle the problem from a different angle. In this paper,
we propose an approach that is based on Graph Neural Networks
(GNNs) and uses data from a simple simulation as an additional
input. That way, imperfections that arise from abstractions during
simulation can be learned and corrected by the GNN and do not
need to be simulated explicitly. We show that including simulation
data has a positive effect on prediction accuracy. Throughout this
work, we focus on modeling end-to-end UDP flow latencies in FIFO
networks.

Our main contributions are:
(1) We propose an approach that uses data from simulations to

predict latency values measured on hardware.
(2) We apply our model to an existing dataset obtained from

close-to-hardware measurements in a testbed.
(3) We evaluate the strengths and weaknesses of the approach,

taking into account different percentiles of the predicted
latency distributions and different network properties.

1 https://www.nsnam.org/docs/dce/release/1.1/manual/singlehtml/, visited on
2024-10-05.
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Figure 1: The measurement setup for obtaining the HVNet
dataset [18], Figure from Helm and Carle [7]. Physical ca-
bles and interfaces are denoted in red and grey, respectively.
Within the hypervisor, virtual functions (orange) are used to
implement the connections (green) between the VMs.

The remainder of the paper is structured as follows. Section 2
provides an overview of the background, including relevant infor-
mation on the hardware measurements, the simulation framework
OMNeT++, and GNNs. Section 3 reviews related work in the area
of network performance prediction using GNNs. In Section 4, we
describe our approach in detail. Section 5 presents and discusses
our results. Finally, we conclude our contributions in Section 6.

2 Background
This section provides information on hardware measurements, dis-
crete event simulations, and GNNs.

2.1 Hardware Measurements
Since we want to predict the latency distribution of flows in real-
world networks, we require realistic flow data for training and eval-
uation. Obtaining such data can be costly, especially when setting
up large topologies on real hardware. Using virtualization helps to
reduce costs significantly. However, this usually comes at the price
of reduced data accuracy. Wiedner et al. [17] presented HVNet, a
framework that uses Virtual Machines (VMs) but stays close to real
hardware with respect to networking. They achieved this by using
Single Root I/O Virtualization (SR-IOV) and sending packets over
an actual physical link instead of virtualized networking.

The authors provide a dataset [18] of end-to-end flow latency
measurements for 100 random topologies. Their measurement setup
for obtaining this data is depicted in Figure 1. Three hardware
nodes are involved, a load generator (LoadGen), a time-stamping
device (Timestamper), and a hypervisor running the VMs for the
network nodes. The load generator produces the traffic for each
flow, sends it over the physical wire to the hypervisor, and injects
it into the VM at which the flow originates. This is done by using
SR-IOV and different virtual functions at the hypervisor. The traffic
traverses the virtualized network using a physical loop wire, again
utilizing SR-IOV and multiple virtual functions. That way, it is
ensured that the packets traverse physical networking equipment
for each hop. The time stamper is connected to the links of the load
generator using an optical splitter, allowing for precise end-to-end
latency measurements. We use the HVNet dataset for training and
evaluating our model, and we describe its properties in more detail
in Section 4.2.

2.2 Discrete Event Simulations
Another option to generate network datasets is to use simulation
tools, which is significantly cheaper than conducting measurements
on real hardware. In that regard, various strategies exist, which
mainly differ in the simulation target, such as packets, flows, or
events. The latter approach is also known as discrete event simula-
tion, with popular tools implementing it being OMNeT++ [15] and
ns-3 [12]. The OMNeT++ simulator offers a modular design and can
be used for various simulation tasks. Computer network simula-
tions can be performed using the INET framework [10], which offers
models for common protocols of the Internet stack. We use OM-
NeT++ and INET to replicate the topologies in the HVNet dataset
and obtain simulated latency values that we use as additional input
to our GNN model.

2.3 Graph Neural Networks
GNNs are a geometric machine learning approach working directly
on graphs as inputs. They are permutation-invariant with respect
to the input graphs, that is, isomorphic graphs are treated equally
independent of the encoding. The input to a GNN is a graph con-
sisting of nodes and edges 𝐺 = (𝑉 , 𝐸) with attached node and
edge features. The graph is encoded as an adjacency matrix and
a node feature matrix. During training and inference, the states
of the nodes are updated based on the states of their neighboring
nodes. GNNs can be roughly divided into three partially overlap-
ping categories: convolutional, attention, and message-passing [2].
We utilize a convolutional-like variant [6]. At an abstracted level,
updating node states in the convolutional variant works as shown
in Equation (1) [2], where

⊕
is a permutation-invariant operation,

for example, sum or mean.

ℎ𝑢 = 𝜙
©«𝑥𝑢 ,

⊕
𝑣∈𝑁𝑢

𝑐𝑢𝑣𝜓 (𝑥𝑣)ª®¬ (1)

The function 𝜙 updates the node state ℎ𝑢 using the current state
of the node and a combination of node states of the nodes 𝑣 in the
neighborhood 𝑁𝑢 . The function𝜓 is an optional transformation on
the node state 𝑥𝑣 . Finally, 𝑐𝑢𝑣 is a weight factor. [2]

3 Related Work
Rusek et al. [13] presented a GNN architecture for modeling com-
puter networks. Their model predicts the per-packet delay distri-
bution, however, they just employ simulated data for this task and
merely use a total of 4 distinct topologies.

Ferriol-Galmés et al. [4] proposed a Digital Twin model based
on GNNs that they used for predicting per-path delays. They used
samples from only two topologies during training and could accu-
rately predict samples for 106 unseen topologies from the Internet
Topology Zoo [8]. For this part, the authors still just used data from
a simulator, but they also evaluated their model in a further step
by utilizing data from a hardware testbed. The prediction target of
their model focuses on the mean latency, not taking into account
the distribution of the values.

Wang et al. [16] used a more granular prediction target that
focuses on the mean values at every time step instead of just the
overall mean. They achieve this by employing a factorization-based



Sim2HW: Modeling Latency Offset Between Network Simulations and Hardware Measurements GNNet ’24, December 9–12, 2024, Los Angeles, CA, USA.

Work Ref. Year Data Source Train Topologies Unseen Test Topologies Max. Network Size Prediction Target

Rusek et al. [13] 2020 Sim 3 1 50 Normal, (gamma) distribution
Ferriol-Galmés et al. [4] 2022 Sim, HW 2 (Sim) 106 (Sim) 95 (Sim) / 8 (HW ) Mean
Wang et al. [16] 2022 Sim 2 1 24 Mean per time step
Yang et al. [19] 2022 Sim 9 0? >128 Distribution (mean, 𝑝99 reported)
Güemes-Palau et al. [5] 2023 HW ≤11 <11 8 Mean
Helm and Carle [7] 2023 HW 87* 10* 15 Mean + Percentiles

This Work — 2024 Sim, HW 71 (Sim + HW ) 18 (Sim + HW ) 15 (Sim + HW ) Percentiles

Table 1: An overview of related work in network performance prediction using GNNs. Sim refers to data obtained via simulation,
HW to data gained by measurements on hardware testbeds.

temporal methodology. Yang et al. [19] adapted the target by pre-
dicting a latency distribution, and they report the mean and 99𝑡ℎ
percentile. Both approaches, however, only utilize data from a simu-
lator and investigate a relatively small number of distinct topologies.

Güemes-Palau et al. [5] presented a solution to the GNN Chal-
lenge 2023 [14]. The challenge’s goal was to build a neural network
architecture that accurately predicts the mean per-flow latency
with data from hardware measurements. For that, a dataset with
traffic from a hardware testbed was provided, consisting of data
from 11 unique topologies of up to 8 nodes. The proposed solution
focuses on optimizing the RouteNet-Fermi GNN architecture intro-
duced by Ferriol-Galmés et al. [3] and achieves a Mean Absolute
Percentage Error (MAPE) of 27.8 % with their test dataset.

Helm and Carle [7] suggested an approach for predicting latency
percentiles in the dataset by Wiedner et al. [18]. They included
bounds derived from the Network Calculus (NC) framework to cor-
rect prediction errors, which they showed to be especially helpful
with regard to higher percentiles. Note that they used the same
Hardware Dataset as we, however, they shuffled the topologies used
for training and evaluation multiple times to cross-validate their
results.

Table 1 gives an overview of related work.
Our approach differs from the work proposed by others in mul-

tiple aspects. First, we use data from close-to-hardware measure-
ments and evaluate a relatively large number of unique topologies
during training and testing. Moreover, our model includes data
gathered by replicating the input network in a discrete event simu-
lator to improve prediction accuracy. Further, our prediction target
comprises multiple percentiles of the latency distribution instead of
just the mean. Finally, we do not optimize the GNN model besides
Hyper-Parameter Optimization (HPO).

4 Methodology
This section describes the methodology divided into architecture,
datasets, and training process.

4.1 Architecture
An overview of our approach is depicted in Figure 2. As a basis,
we use the 100 topology and flow definitions from the HVNet
dataset [18]. Wiedner et al. used the HVNet framework [17] to cre-
ate close-to-hardware measurements for those definitions, which
we utilize as our Hardware Dataset. We generate the Simulation
Dataset by converting the same definitions to OMNeT++ configura-
tion files and collecting the result data of the simulation. We thus
end up with two datasets with latency data for the same topologies

Topology and
Flow Config

Network
Simulation
(OMNeT++)

Simulation
Dataset

Hardware
Measurements
(HVNet) [17]

Hardware
Dataset [18] GNN

train

Figure 2: Overview of our approach. We utilize OMNeT++ to
simulate the networks in the HVNet dataset [18] and train
a GNN to predict the data measured from hardware using
simulated data as an input.

LL

ReLU
+

Dropout
SAGE LL

ReLU
+

Dropout
LL

Figure 3: Overview of our GNN architecture, consisting of
multiple Linear Layers (LLs), Rectified Linear Units (ReLUs),
Dropout Layers (Dropouts), and a Sample and Aggregate
(SAGE) [6] operator.

and flows, one generated by measurements and one by simulations.
Both datasets’ network and flow properties are described in more
detail in Section 4.2.

For a more accurate simulation, we model the sending behavior
of the flows in theHardware Dataset by fitting a gamma distribution
over their inter-send times, and we configure OMNeT++ to simulate
sending following the same distribution. This is required, as the
original distribution that was used to generate theHardware Dataset
is not available. We model sending per distinct flow rate, that is,
flows of the same rate follow the same gamma distribution.

We characterize the distribution of flow latency values by dif-
ferent percentiles, starting from the minimum (that is, 𝑝0) up to
𝑝99.999. We do not include the maximum, as the distribution up to
𝑝99.999 should be accurate enough to model the latency behavior of
flows.

Then, we convert the network topology, flow properties, and
latency percentiles from both the Hardware and Simulation Dataset
to a graph representation that we use as input for the GNN. Nu-
merical values, such as the latency values, are normalized using the
logarithmic function 𝑙𝑜𝑔(𝑥 + 1), categorical values are encoded as
one-hot.

As our main focus lies on the effect of simulation data on predic-
tion accuracy of our model, we do not want the GNN architecture
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Metric Min. Max.

Network size 8 15
Number of flows 19 59
Flow length 2 9
Flow rate 1Mbit/s 831Mbit/s
Max. link util. per flow 0.11 % 87%

Table 2: Metrics of the datasets.

min p90 p99 p99.9 p99.99 p99.999

Percentiles
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[
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Figure 4: High Dynamic Range (HDR) plot of end-to-end flow
latency values observed for an exemplary topology in both
the Hardware and Simulation Dataset.

to have a big influence. Thus, we use a simple default architecture,
which is depicted in Figure 3. The input data first traverses a LL, a
ReLU, and a Dropout, before being passed to a SAGE [6] operator.
Afterwards, it is forwarded through a LL, a ReLU, a Dropout, as
well as another LL. We design the GNN to predict the latency per-
centiles of the Hardware Dataset per flow. Thus, we use the latency
distribution obtained via simulation as an input to predict the la-
tency distribution that would have been measured in a hardware
setup.

4.2 Hardware and Simulation Datasets
TheHardware Dataset [18] that we use as a basis comprises 89 unique
topologies2 and a total of 3191 flow definitions. In this context, a
flow refers to a sequence of UDP packets traversing a fixed network
path. Table 2 lists some metrics of the dataset. These properties also
apply to the Simulation Dataset, as we use the same topology and
flow configurations for the simulations.

When comparing the latency distribution of an exemplary topol-
ogy in both the Hardware and Simulation Dataset (see Figure 4), we
observe that the latency values measured by HVNet are approxi-
mately one order of magnitude larger than the ones simulated by
OMNeT++. Further, the simulated data has visible plateaus, that
is, groups of samples that share the same latency values, which
we do not see in the measured data. Another clear difference is
the behavior for small percentiles, where the values measured by
HVNet follow a much steeper curve than the ones simulated by
OMNeT++. Apart from that, the latency percentiles show a similar
trend across both datasets. The main goal of our model is to learn
the offset between simulation and measurement data.

2 Originally, 100 topologies were defined by Wiedner et al., however, not all measure-
ments were successful, resulting in the reduced number of 89 topologies.

min p25 p50 p75 p95 p99 p99.9 p99.99 p99.999

Percentiles
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Figure 5: Pearson correlation coefficient between the dif-
ferent topologies in the HVNet and OMNeT++ datasets, re-
garding different statistic measures. The boxes of the plot
show the interquartile range (IQR) between 𝑄1 and 𝑄3, the
whiskers denote the furthest data point lying within the 1.5-
fold IQR.

To quantify the relationship between the two datasets, we cal-
culate the Pearson correlation coefficient between the latency per-
centiles taken from both the Hardware and Simulation Dataset for
each topology. The results are denoted in Figure 5. We note a clear
relationship between those values, which gives a good indication
that a GNN might be able to learn this correlation and thus mo-
tivates our approach to include the simulation data in the model.
Especially for lower percentiles (from the minimum up to 𝑝75),
the Pearson coefficient is high, degrading significantly for higher
percentiles. Thus, we assume that a major challenge are latency
outliers that exist in the Hardware Dataset but are not modeled by
the simulation.

4.3 Training and Hyper-Parameter
Optimization

A primary challenge during the training process is the relatively
small dataset, since we only have a total of 3191 flow definitions.
We randomly split the 89 distinct topologies into a training set
of 71 topologies (2506 flows) and an evaluation set of 18 topolo-
gies (685 flows), roughly following an 80:20 split. The topologies
in both sets are comparable with respect to the metrics described
in Table 2. Due to the limited size of the dataset and the low cor-
relation between the simulated and measured latency values for
high percentiles (see Section 4.2), we do not expect our model to
achieve prediction errors that are comparable to related work that
is predicting simulated latency values.

For tuning the hyper-parameters, we use the Neural Network
Intelligence (NNI) tool [11]. Its HPO feature offers a convenient
way to programmatically explore a given search space for multiple
parameters and find an optimal combination. The result parameters
discovered during this process, which we use for our model, are
denoted in Appendix A.

As a loss function, we selected the Mean Squared Error Loss
(MSELoss).

5 Evaluation
In this section, we present and discuss our results. Note that we
base all evaluations on the model from training epoch 90, which
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Figure 6: CDF plot showing the distribution of the relative
errors for different prediction targets.
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Figure 7: Relative error of predictions for different per-
centiles as they relate to the rate of the flows.

was performing best concerning the MAPE. Further, note that if
not specified differently, the boxes of all box plots show the IQR
between𝑄1 and𝑄3, and the whiskers denote the furthest data point
that lies within the 1.5-fold IQR. Moreover, if not stated differently,
we utilize theMAPE and the relative error asmetrics for ourmodel’s
performance. We define the latter as | 𝑦

′

𝑦 −1|, with𝑦 being the actual
value and 𝑦′ being the prediction.

5.1 Prediction Accuracy
When testing our model with data from the 18 topologies in the
evaluation dataset (see Section 4.3), we achieve a MAPE of 27.2 %
and an Median Absolute Percentage Error (MdAPE) of 19.8 % over
all prediction targets. To better understand our model’s accuracy,
we first look at the results for the prediction targets individually.
Figure 6 shows the distribution of the relative error for all 685 flows
regarding various percentiles as CDF. As the correlation coefficients
in Figure 5 already indicated, the minimum prediction is the most
accurate one, with a median relative error of 10.1 %. For higher
percentiles, this value increases up to a median of 25.0 % for 𝑝99.999.
Furthermore, there exists a flat area that separates samples that we
can predict well (relative error <40 %) and samples that our model
fails to predict accurately (relative error >80 %). We investigate
those outliers in more detail in Section 5.4.

5.2 Impact of Network Properties
To gain a better understanding of the effect of network characteris-
tics on prediction accuracy, we investigate the error with respect to
different properties of the data samples. Figure 7 shows the impact

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Max. Link Utilization

0.0

0.2

0.4

0.6

R
el

at
iv

e 
E

rr
or

min
p50

p99.999

Figure 8: Relative error of predictions for different per-
centiles as they relate to the maximum link utilization on
the flow paths.
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Figure 9: Importance of different input features of the GNN.
A higher value means that the feature is more important.

of the flow rate on the relative error for different latency percentiles.
Further, Figure 8 depicts the effect of the maximum link utilization
that a flow is experiencing along its path. For better visualization,
we aggregate multiple flow rates and maximum link utilization
values into only a few data points. This is done by splitting all data
points into equally sized bins and calculating the mean of the values
in each bin.

As shown above in Figure 6, the prediction of the minimum is
the most accurate one. Additionally, the accuracy is decreasing for
higher percentiles. We observe an increased error for very low flow
rates, however, besides that, we see no significant impact of the
flow rate on prediction accuracy. The dataset includes many small
flows and only a few high-rate ones, which can be deduced from
the high frequency of data points for lower rates. Therefore, we do
not have enough data about high-rate flows to make meaningful
statements on how accurate our model can predict those.

For increasing values of maximum link utilization, we can ob-
serve a decreased prediction accuracy across all considered target
percentiles. Especially for 𝑝99.999, the relative error significantly
increases from 19.0 % (max. util. ∼3 %) to 38.6 % (max. util. ∼69 %).

We conclude that the latency of flows traversing highly utilized
links is harder to predict with our approach.

5.3 Feature Importance
In a further step, we aim to quantify the impact of different input
features on prediction accuracy. For that, we randomly permute all
values of the respective feature in the test dataset, let the model
predict, and compare the effect on the MAPE to the baseline with
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(a) Topology with a high prediction accuracy (13.6 % MAPE).
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(b) Topology with a low prediction accuracy (47.9 % MAPE).

Figure 10: Measured and predicted latency percentiles for two topologies from the test dataset, one achieving high accuracy, the
other one suffering from flows with very high latency values that our model cannot predict accurately. The regression line
shows the optimal position of the data points, where the predictions exactly match the measured latency percentiles.

non-permuted values. We aggregate the percentiles of the simulated
latency values to a single feature here, as we are mostly interested
in the importance of adding simulation data and not in the effect
of the individual percentiles. Figure 9 shows the results of this
process for different input features. We can clearly see that the
simulated latency percentiles have the biggest positive influence on
the predictions. This shows that including simulation data into our
model improves prediction accuracy. Regarding the flow properties,
the sending behavior has almost no influence, while the flow rate
is more important. The node type also has a visible effect on the
predictions, as it plays an important role in assigning meaning to
the structural elements of the graphs.

5.4 Hardware Dataset Mispredictions
Asmentioned in Section 5.1, theHardware Dataset contains samples
that our model is not able to predict accurately. We compare the
predictions for two topologies to further evaluate the reason for
this. Regarding their network and flow properties, no significant
difference can be noted. However, for the first one (Figure 10a), our
model achieves an accuracy of 13.6 % MAPE, while for the second
one (Figure 10b), the MAPE is as high as 47.9 %. The reason for this
low accuracy are a few “outlier flows” with latency values more
than ten times larger than most of the other flows, which can be
seen in the three clusters on the right side of the regression line in
Figure 10b. As this behavior can neither be inferred from the input
features, nor is it covered by the simulator, our GNN cannot learn
the offset between simulation and measurements in these cases.
Those outlier flows also explain the flat area between 40 % and 80 %
MAPE in Figure 6.

On the other hand, Figure 10a shows that without these effects,
our approach can accurately predict hardware-measured latency
values.

5.5 Negative Results
Using different normalization functions such as min-max or z-
score normalization did not result in a higher prediction accuracy.
Furthermore, we weighted the loss individually for the distinct
prediction targets (that is, the latency percentiles). However, this
approach did also not prove helpful. In addition, we tried a Graph

Attention Network v2 (GATv2) [1] and Gated Graph Sequence Neu-
ral Network (GGNN) [9] instead of the SAGE [6] layer in our GNN
architecture (see Figure 3), but this also resulted in less accurate
predictions.

6 Conclusions and Future Work
In this paper, we presented a GNN-based approach that uses data
obtained via simulation to predict end-to-end flow latency values
measured on a hardware testbed. We applied our model to an ex-
isting dataset obtained from testbed measurements and showed
that it can generalize over different topologies, achieving a MAPE
of 27.2 % and an MdAPE of 19.8 % over all prediction targets. We
also demonstrated that with our approach, the minimum and lower
percentiles are easier to predict than percentiles close to the max-
imum. Furthermore, a few outlier flows with unexpectedly high
latency values exist in some topologies of the Hardware Dataset,
which cannot be learned by the GNN due to the absence of those
effects in both the simulation data and the input features. Further,
the small size of the dataset limits our model and prevents it from
making more accurate predictions.

Future work should address this problem and also utilize a more
diverse Hardware Dataset that is not limited to a stateless protocol
(UDP). In this regard, other aspects like flow dynamics and routing
policies could also be taken into account to validate the approach
with more realistic data.

We provide access to our dataset, the GNN model, and other
artifacts.3
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A Appendix

Parameter Value

Batch size 2
Dropout Linear* 0.000173
Dropout GRU* 0.228
Hidden size* 32
Learning rate* 0.00541
Loss function MSELoss
LR scheduler ReduceLROnPlateau
LR scheduler factor* 0.7
Number of loop unrolling for SAGE* 4
Train-test split 0.85

Table 3: Hyper-parameters used for training the model. Pa-
rameters marked with an asterisk (*) were determined using
NNI’s HPO.
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