
If you cite this paper, please use the IFIP Networking reference: E. Hauser, S. Gallenmüller, G. Carle. 2024. RO-Crate for Testbeds: Automated Packaging
of Experimental Results. In Proc. of IFIP Networking Conference (IFIP Networking) - SLICES Workshop. IFIP.

RO-Crate for Testbeds:
Automated Packaging of Experimental Results

Eric Hauser
Technical University of Munich

Garching near Munich, Germany
hauser@net.in.tum.de

Sebastian Gallenmüller
Technical University of Munich

Garching near Munich, Germany
gallenmu@net.in.tum.de

Georg Carle
Technical University of Munich

Garching near Munich, Germany
carle@net.in.tum.de

Abstract—Result reproducibility, a cornerstone of open science,
not only enhances transparency and trustworthiness in research
findings but facilitates collaboration and accelerates scientific
progress by enabling other researchers to validate and build
upon existing results. In computer science, testbeds are widely
used research infrastructures to create scientific results. Scientists
create experiments in these testbeds typically as one-off setups
to answer specific questions. The outcomes of this process are
individualized experiments with a wide variety of approaches,
structures, formats, or documentation. These properties hamper
effective experiment validation or reuse.

This paper proposes a concept to structure and document
the outcome of testbed-hosted experiments. We describe our
implementation that packages the results of a specific testbed
framework, called plain orchestrating service (pos), in the stan-
dardized RO-Crate format and annotates metadata to the result
files. The metadata includes information such as authorship,
affiliations, software setup, hardware setup, energy consumption,
and network topology. Furthermore, we demonstrate our imple-
mentation with an example measurement and publish the pack-
aged RO-Crate to the open repository Zenodo. Our approach
enables researchers to effectively organize, share, and reproduce
experimental data, promoting transparency and collaboration.

Index Terms—Testbed, Network Experiments, Reproducibility,
Result Data Management, RO-Crate

I. INTRODUCTION

The successful validation of research results undoubtedly
strengthens the trust in scientific findings. Therefore, re-
searchers need to prioritize the reproducibility of experiments
and the availability of results just as much as the results
themselves. However, creating reproducible experiments is
often seen as complex and time-consuming. In addition, the
computer science community prefers novel over reproduced
results for publication.

Fortunately, new concepts and methods have been proposed
in recent years to improve the situation in the research commu-
nity. The Association of Computing Machinery (ACM) came
up with different badges [1] to honor the extra commitment
of authors, ranging from providing experiment artifacts to ex-
planations on how to reproduce them. Another concept in this
area are the FAIR principles proposed in 2016 by Wilkinson et
al. [2]. These four principles build the theoretical foundation
for organizing and making data accessible to the community:
Findability: Results should be assigned to a globally unique

identifier and available to searchable resources.
Accessibility: Information should be retrievable using an open
and free standard communications protocol. If the data be-
comes unavailable, its metadata should remain accessible.
Interoperability: Results should be presented in a formal,
accessible, and widely recognized language for representation.
Additionally, the data should reference other datasets.
Reusability: A dataset should contain accurate and pertinent
attributes, possess a license, and adhere to relevant community
standards within its domain.
The principles also consider continuously growing data sets
humans cannot analyze without machine help. Therefore, any
implementation should provide a machine-readable interface.

Since the FAIR principles are high-level guidelines, they
need to be converted into practical, domain-specific guide-
lines to become applicable within a community. This paper
considers two domains: the testbed community and the data
management community.

In the testbed community, the resources to run experiments,
such as hardware, software stacks, or the availability of
free frequency space, are essential. Specific resources enable
the execution of experiments and significantly impact mea-
surement results. Naturally, the testbed community created
software frameworks to manage these resources. Testbeds,
therefore, offer tooling to make resources findable and acces-
sible [3]. There have also been efforts to make experiments
interoperable between different testbeds [4] and reusable [5].
The experimental results, data formats, or structure are typi-
cally not considered by testbed frameworks.

The data management community focuses on aspects con-
cerning the data and metadata. In testbed-driven research,
we consider experimental results or derivatives thereof as
data. Metadata includes additional information about the re-
searchers and their affiliation, funding, publication, related
work, etc. This data management community was one of the
main contributors to creating the FAIR principles, which were
implemented in different initiatives and projects in this field.
A notable, recent initiative is RO-Crate [6], an approach to
package research (meta-)data.

Currently, there is a gap between testbeds and data man-
agement. Researchers must convert and add metadata informa-
tion manually after the execution of experiments. This paper
presents an approach to connect a reproducible testbed infras-ISBN 978-3-903176-63-8© 2024 IFIP

tructure with the aspects of data management. We demonstrate
how RO-Crate is used to automatically package experiment
results and include relevant metadata. The metadata includes
detailed information about the used resources, e.g., hardware
and network topology. Additionally, we automatically record
the system configuration, including the used software, and
provide optional energy consumption reports. We publish an
example data set, describing the output of a testbed experiment
as RO-Crate. During the process, we pay close attention to
conforming and fulfilling the FAIR principles.

The paper is structured as follows: Section II elaborates
more on FAIR, existing testbed infrastructures, and related
initiatives. Thereafter, we explain our implementation in Sec-
tion III and demonstrate the functionality of it in Section IV.
Section V concludes the paper and mentions future ideas.

II. BACKGROUND

In this section, we introduce current efforts to implement
the FAIR concept with a particular focus on testbeds.

a) FAIR: The proposed FAIR principles do not suggest
a specific implementation; they instead form guidelines. Ja-
cobsen et al. [7] discuss how concrete implementations could
look like. Furthermore, they discuss chances and risks, one of
them ending up with multiple incompatible implementations.
Lamprecht et al. [8] discuss implementing the FAIR principles
in research software. The authors note that FAIR, for example,
does not cover software quality. One of the main drivers of
FAIR on a European level is the European Open Science
Cloud [9] (EOSC). EOSC aims to integrate existing research
infrastructures and services across Europe into a federated
cloud environment, enabling researchers to seamlessly access
and utilize a wide range of resources and tools. In general, the
Horizon 2020 programme funded various projects fostering the
FAIR principles in European research. Consequently, EOSC
complies with the FAIR principles. Furthermore, the CERN-
hosted Zenodo [10] platform allows researchers to upload
and archive scientific data. Compared to EOSC, Zenodo is
a specific repository for research data and publications. All
uploads on the Zenodo platform are uniquely identifiable by
a Digital Object Identifier (DOI). Zenodo also allows linking
GitHub repositories. This feature is particularly valuable in
the field of computer science, as Git is the de facto tool for
version control. The EOSC initiative and the Zenodo platform
primarily cover the findability and accessibility principles.
Beyond that, researchers must pack and add metadata to their
data sets before publishing results.

b) FAIRness of testbeds: There are various testbed sys-
tems available to researchers for conducting experiments,
such as Cloudlab [11], Chameleon [12], or Grid’5000 [13].
These testbeds are publicly available to, typically academic,
users. If used correctly, these testbeds can be used to create
reproducible experiments, according to Nussbaum [14]. Com-
pared to other testbed systems, the pos methodology, proposed
by Gallenmüller et al. [15], ensures the reproducibility of
experiments. Experiment nodes that are part of a pos-operated
testbed boot only live images, ensuring a consistent initial

state for experiments after a reboot. The everything-must-
be-scripted paradigm requires users to automate the entire
experiment workflow, including system configuration, exper-
iment execution, and evaluation. Stubbe et al. [4] build a
bridge between pos and the testbed infrastructures Cloudlab
and Chameleon. Their implementation allows pos-orchestrated
experiments in these testbeds. As a result, Stubbe et al. enable
the interoperability of the pos controller with other testbeds
and demonstrate the general compatibility and flexibility of
the pos methodology. This work also strengthens pos’ position
as a universal testbed methodology and contributes to the
interoperability demanded by FAIR. We see reproducibility as
a necessary precondition to realize reusability, i.e., without
data being reproducible, reuse is highly limited. The pos
methodology provides a superior foundation to other testbeds
for achieving the FAIR data principles.

c) SLICES: Moreover, pos is part of the Scientific
LargeScale Infrastructure for Computing/Communication Ex-
perimental Studies (SLICES) project. The main goal of
SLICES is to create a European testbed infrastructure for
digital experiments. Demchenko et al. [16] explain the pos
integration process. Hence, the authors list key aspects of how
experiments should be designed to improve reproducibility.
The paper walks through the complete process, from testbed
infrastructures to experiment execution and results publishing.
Moreover, they discuss how different technologies can be
adopted in the SLICES infrastructure.

d) RO-Crate and related approaches: Dublin Core [17]
provides a set of metadata schemes to describe digital re-
sources in a standardized and machine-readable way. Another
metadata initiative is Schema.org [18], founded by Bing,
Google, and Yahoo to make resources better indexable and
thus easier to find. An important aspect of metadata is the
cross-linking of information. One standard is JSON Linked
Data [19] (JSON-LD), standardized by the World Wide Web
Consortium (W3C). The involvement of the W3C highlights
the importance of making data discoverable and accessible for
the future of the Internet. In this context, RO-Crate [6] applies
the concept of structured data to the scientific field. RO-
Crate enables researchers to bundle research data alongside
its metadata. This concept primarily covers the interoperability
and reusability principles of FAIR. RO-Crate uses JSON-LD
to describe scientific data sets. General descriptions, author
information, and additional attributes can be specified per
file or directory. Additionally, general parameters like related
publications, funding, etc. can be put on record. Many libraries
and tools for different programming languages are available.

e) FAIR experiment results: The Zenodo platform helps
ensure the findability and accessibility of research data. The
pos methodology provides the preconditions to support inter-
operability and reusability. RO-Crate can act as the missing
link to create pos as a platform that provides FAIR experi-
mental results. Currently, the pos result files and the executed
scripts and their output, are collected in a result folder on the
management host. This folder does not follow a well-known
defined structure in the current implementation. Furthermore,

additional metadata like the researcher’s information, affilia-
tion, etc. are not automatically included in the folder.

III. IMPLEMENTATION

As described in Section II, we propose using RO-Crate to
automatically organize experiment results. The pos controller
already collects numerous metadata before, during, and after
an experiment. However, the management of these experiment
results does not follow any defined structure. Our prototype
implementation uses the Python library ro-crate-py [20].

A. Experiment (Meta)-Data

The following subsections explain which and how we col-
lect metadata for our implementation.

1) Author and Affiliation: Every testbed user requires an
account to use the testbed. Currently, we authenticate users
through an OpenID provider. This interface can retrieve addi-
tional information like full name, mail address, etc. Addition-
ally, a configuration file, stored in the user’s home directory,
enables users to specify additional parameters such as their
Open Researcher and Contributor ID (ORCID) [21]. Moreover,
users can store their affiliation in the configuration file. As sug-
gested by the RO-Crate specifications, we recommend users
to directly cite their affiliation from the Research Organization
Registry (ROR) [22]. The ROR makes research institutes
unambiguously identifiable. If users have not specified their
affiliation, we default to the location of the testbed.

2) Software Setup: By default, pos logs different infor-
mation about the software setup of experiments. First, the
pos controller saves all executed scripts during an experiment
in the result folder. Concurrently, pos logs the stdout and
stderr output and whether a script terminated successfully
or not. In addition to the experiment scripts, pos supports
variables (cf. [15]) to parameterize experiments. The pos
controller records the configured variables. Moreover, since
pos uses live images on the testbed nodes, the names of the
booted live images are logged to the results. These images are
built reproducibly in a pos experiment [15].

3) Hardware Setup: We use the pos methodology espe-
cially for network experiments. In this domain, the network
topology that interconnects different nodes and the used
network interface cards (NICs) are of particular interest.
Therefore, we maintain a tool, named jeppesen, to detect
the testbed nodes’ hardware and the measurement network
topology. We execute jeppesen as soon as the testbed topology
or hardware has changed to keep this information up to date.
Every jeppesen execution scans the entire testbed with all
nodes and links. Finally, the scan results are stored in the
testbed’s internal database.

At the moment, these scans are used to simplify the planning
of experiments based on the requirements of researchers. Users
have three possibilities to access the hardware and topology
information: Users can (1) directly query data from the testbed
database; (2) use a CLI to print the hardware information;
(3) access an interactive table on the testbed website to
filter the experiment nodes by different hardware components

and show a topology graph per node. Moreover, as part of
our proposed implementation, we include the topology and
hardware information as metadata for all experiments.

a) Hardware Information: Collecting hardware informa-
tion is done individually per node. We use common tools
to detect parameters like motherboard, CPU, GPU, RAM,
mass storage, and NICs. The initial detection relies on the
tool lshw [23] and includes ethtool, lsblk, and dmidecode
for more detailed information. Due to our focus on network
experiments, we provide extensive details on the built-in
NICs, including the inserted transceiver modules. Finally, the
detected hardware is stored in a JSON file.

b) Network Topology: We are particularly interested in
the local network topology of our testbed infrastructure. For
this purpose, the Link Layer Discovery Protocol (LLDP)
standardized in IEEE 802.1AB [24] enables topology detection
in the local network. However, LLDP operates solely within
a broadcast domain, which limits its applicability in wide
area networks (WANs), as routers segment these broadcast
domains. We use the software daemon lldpd [25]. Thereby,
lldpd periodically sends LLDP packets locally forwarded to
adjacent neighbors. Concurrently, lldpd collects the incoming
LLDP packets from neighboring nodes and stores the received
information in a local database. We execute lldpd for ap-
proximately 5min to ensure that all nodes have announced
their presence. After that, we collect and analyze the neighbor
information from all nodes and parse it into a JSON file
containing the complete testbed topology. In this step, we can
distinguish different link types and special topology structures.
Based on our requirements as a network experiment testbed,
we distinguish between unidirectional and bidirectional as well
as switched and split links. First of all, lldpd treats every
network interface separately. Therefore, if we observe more
than one neighboring device on an interface, we assume a
switched link. Beyond that, if there is a bidirectional link
(LLDP packets are exchanged in both directions) to a neigh-
boring device plus a unidirectional link to a third device, we
assume a splitter setup. The term splitter setup refers to an
optical tap that distributes the received optical signal between
multiple hosts. In our domain of computer networks research,
optical taps are useful, for example, to neutrally timestamp
the traffic between two nodes on a third node that does not
influence the actual measurement. Figure 1 depicts how the
differentiation of bidirectional, switched, and split links works.
Finally, the detected and analyzed measurement topology is
stored in a JSON file.
As an additional feature, to increase convenience for the
testbed users, we create topology graphs from the JSON
file for every node. To reduce complexity, we draw one
individual graph per node showing its connected neighbors.
As an example, Figure 2 illustrates the topology graph of
a node named nodeA. Thereby, nodeA has two bidirectional
direct connections with nodeB using a 2.5Gbit/s twisted
pair coppper cable. Additionally, nodeC is connected via a
100Gbit/s direct attached copper (DAC) cable. Furthermore,
we observe a unidirectional optical splitter setup on the

Sent
LLDP
packets:

eno1

eno2

eno3

eno4

e
n
s

eno6

eno7

e
n
s

Derived
Network
Topology:

nodeA

nodeB

nodeC

nodeD

nodeE

nodeF

nodeG

nodeH

splitter

bidirectional switched split

nodeA

nodeB

nodeC

nodeD

nodeE

nodeF

nodeG

nodeH

Fig. 1. Detection of bidirectional, switched, and split links

eno1 eno2

eno4

eno5

enp131s0f0

enp101s0f0

eno8

eno5 nodeB

eno8

nodeD

eno4

optical splitter

nodeE eno1

nodeF eno1

nodeG eno2

nodeH eno5
switch

Created: 03 Apr 2024, 15:54:43

2p5GigT - 2.5GBASE-T Four twisted-pair copper cable
10GigBaseLR - R fiber over 1310 nm optics
100GbaseCR4 - 100GBASE-R Shielded copper cable

nodeA

nodeB

nodeC

Fig. 2. Topology graph of a testbed node including an optical splitter and a
switched network

10Gbit/s bidirectional fiber link between nodeA and nodeB.
In this setup, nodeD unidirectionally sniffs the traffic in the
direction from nodeA to nodeB. Lastly, we have a switched
network between nodeA, nodeE, nodeF, nodeG, and nodeH.

4) Energy: The pos controller supports switching power
outlets that include a power meter. If a testbed node is con-
nected through such a metered power outlet, we can measure
the voltage in V, current in mA, power in W, and energy
in Wh once per second. During experiments, the energy
measurement can be started and stopped individually per node.

When enabled, the pos controller stores these values together
with a timestamp in a CSV-formatted file. In our testbed, we
use the Expert Power Control 8226-1 [26] metered power
outlet from GUDE.

B. Structure of the Result Folder
As part of this work, we propose a new structure for the

result folder. The directory tree in Figure 3 lists the new
structure. According to the RO-Crate documentation, the root
folder’s name is not defined. By default, pos uses the date and
the exact time plus the microseconds of the allocation. Within
the root folder, we store the ro-crate-metadata.json
file. This file is mandatory according to the RO-Crate spec-
ification and specifies the folder’s content. Furthermore, it
contains meta information like author, affiliation, etc. In our
proposed structure, the root folder contains four folders:
scripts, files, energy (optional), and config.

a) scripts: This folder contains the scripts executed on
the allocated testbed nodes. We create a subfolder for every
testbed node used in the experiment. The example structure
in Figure 3 lists a script setup executed on nodeA saved as
setup.file. The stdout and stderr outputs are stored in the
setup.stdout and setup.stderr files, respectively. Fi-
nally, pos includes a setup.status file indicating whether
the script terminated successfully or failed.

b) files: Files uploaded from a testbed node to the
testbed management host are stored here. These files refer
to measurement and evaluation results generated during the
experiment. Again, we have subfolders for every testbed node.

c) energy (optional): If used during an experiment, this
folder contains the energy consumption reports. For every
testbed node that has available energy measurement results,
we create a subfolder. Every individual energy measurement
that is started and afterwards stopped, generates a separate
CSV report.

d) config: This folder contains additional metadata about
the experiment setup. As described in Section III-A3, we
provide hardware and network topology information about se-
tups. Again, we have subfolders for every node. The hardware
configuration of a node is stored in this folder. Alongside
the hardware configuration, the network topology is also
accessible in this folder as a machine-readable JSON and a
human-readable PDF.

IV. DEMONSTRATION

To demonstrate our implementation, we create a simple
measurement. For this publication, we focus on the manage-
ment of result files rather than the results themselves. There-
fore, we reproduced an experiment of the original pos publica-
tion [15]. This experiment measures the forwarding throughput
of the Linux router. In multiple individual measurement runs,
we investigate two different packet sizes and increasing packet
rates. In every measurement, we generate text-based through-
put files. In the evaluation phase, we combine these throughput
files in one final plot as PDF. Finally, all results files (text
and PDF) are packaged by our implementation described in
Section III and uploaded to Zenodo.

2024-01-01_12-30-00_123456/
ro-crate-metadata.json....................RO-Crate Metadata File
scripts/.......................... scripts executed on experiment nodes

nodeA/
setup.file...script file
setup.status............... states if script exited successfully
setup.stdout.................................stdout of script
setup.stderr.................................stderr of script

.../
files/.........................result files uploaded by experiment nodes

nodeA/
throughput.txt................result file uploaded by nodeA
throughput.pdf................result file uploaded by nodeA

.../
energy/.................consumed energy of experiment nodes (optional)

nodeA/
energy.csv......consumed energy of nodeA as CSV (optional)

.../
config/............software, hardware, and topology of experiment nodes

allocation.json..general configuration like variables, images, etc.
nodeA/

hardware.json....................hardware of nodeA as PDF
topology.pdf..................... topology of nodeA as PDF
topology.json...................topology of nodeA as JSON

.../

Fig. 3. Proposed structure of the result folder

LoadGen DuT
▶

◀

▶

◀

Fig. 4. Measurement setup

A. Measurement Setup

For the measurement setup, we use two off-the-shelf servers
equipped with a Supermicro X10SDV-TP8F motherboard, Intel
Xeon D-1518 CPU (4 cores, 2.2GHz), 32GB RAM, and a
dual-port Intel X552 NIC (10Gbit/s per port). The servers
run Debian Buster (Linux kernel v4.19). Both servers are
directly connected over two 10Gbit/s fiber links. One server
acts as Load Generator (LoadGen) and the other as Device
under Test (DuT). Figure 4 shows the measurement setup. The
complete experiment is orchestrated by pos [15]. As described
in Section II, pos enforces reproducibility by fully scripted
experiments.

B. Measurement Execution

We use MoonGen [27] as a packet generator and throughput
measurement tool. The LoadGen sends packets to the DuT
while the DuT forwards the packets back to the LoadGen.
On the DuT, we configured the Linux router to forward
incoming packets from the LoadGen on the first link back
to the LoadGen on the second link. We use two different
packet sizes, minimum-sized 64B packets and 1500B-sized
packets. As the second parameter, we increase the packet rate
from 0.1Mpps to 2Mpps in 0.1Mpps steps. Considering all
permutations of packet sizes and packet rates, this experiment
consists of 40 individual measurement runs. A single measure-
ment run requires approximately 45 s. After a measurement
run, MoonGen logs the measured throughput as a text file.
Subsequently, the throughput files are uploaded to the testbed
management host.

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

Configured Packet Rate [Mpps]

A
vg

.P
ac

ke
t

R
at

e
[M

p
p
s] LoadGen 64B DuT 64B

LoadGen 1500B DuT 1500B

Fig. 5. Throughput of the Linux router

C. Measurement Evaluation

We run the evaluation directly after the measurement phase.
The evaluation script combines all throughput files and creates
a final line plot. This plot is displayed in Figure 5 and
depicts the throughput of the Linux router for different packet
sizes and packet rates, respectively. The x-axis depicts the
configured packet rate, while the y-axis shows the achieved
average packet rate. As this paper focuses on the demon-
stration of result data management, we describe measurement
results only briefly. The two LoadGen lines state how many
packets were sent to the DuT. The 1500B line has a cut-off
at approximately 0.82Mpps because we reach the line rate of
the 10Gbit/s link. In comparison, the 64B line continuously
grows because a higher packet rate is required to saturate the
link. The DuT lines show the performance of the Linux router.
For both packet sizes, we observe a cut-off at approximately
0.29Mpps. Even for 1500B packets with 0.29Mpps resulting
in 3560Mbit/s, the throughput is significantly below line rate
and demonstrates the limits of the Linux router.

D. Publication of results

As described in Section III, our implementation generates
a result folder compliant with the RO-Crate specification.
To show the usability of our implementation, we upload
this result folder to an open repository. We have decided
to use the Zenodo [10] platform. One of the key benefits
of Zenodo is the ability to generate unique Digital Object
Identifiers (DOIs). Additionally, Zenodo supports versioning
and generates separate DOIs for different versions, which
is particularly useful when combined with the platform’s
feature of linking GitHub repositories. The results of this
demonstration measurement are available under the following
DOI https://doi.org/10.5281/zenodo.10966199.

V. CONCLUSION

The abstract FAIR principles must be transferred to spe-
cific measures to become applicable to scientific research.
The particular requirements between different research fields
necessitate the adoption of FAIR in a domain-specific form.
In this paper, we developed an approach to apply the FAIR
principles to testbed-driven experiments for the domain of
computer science.

https://doi.org/10.5281/zenodo.10966199

Testbed-driven experiments in computer science are defined
by the hardware and software environment in which they
were executed. Our paper demonstrates tools and approaches
to ensure the conservation of the experimental environments,
such as the pos framework to create and execute reproducible
experiments, and additional tools to collect the hardware
specifications and network topology of the experiment. We
further demonstrate how experimental results can be pack-
aged and shared in a structured way using the RO-Crate
specification. In detail, we have restructured the result folder
of experiments and added new metadata, such as informa-
tion about the authors and their affiliations. After that, we
showed our implementation’s functionality in a demonstrative
experiment. The demonstration substantiates the satisfaction of
the FAIR principles. First, the publication on Zenodo ensures
the findability and the accessibility of results. Second, the
used toolchain and the packaged results themselves fulfill the
interoperability, and reusability principles.

The presented approach is an initial step towards FAIRness
and we plan to extend our approach in future work. Therefore,
we aim to add additional metadata, such as funding or general
information about the related research project. Moreover, we
plan to link single datasets from different experiments together
to further increase the interoperability. As the LLDP-based
approach works well for our application scenario, wireless
nodes, especially mobile ones, require a more sophisticated
way for topology detection. Finally, we note that the SLICES
project is still in its early stages and will continue developing
schemas to describe their experiments [28]. With pos, as a part
of SLICES, we plan to accompany this process and adapt and
integrate these schemas to reflect the needs of SLICES’ users.

ACKNOWLEDGMENT

This work is partially funded by the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-
ment no. SLICES-PP 101079774, SLICES-SC 101008468,
and GreenDIGIT 101131207). The German Federal Min-
istry of Education and Research (BMBF) supported our
work under the projects 6G-life (16KISK002) and 6G-ANNA
(16KISK107) as well as the German Research Foundation
(DFG) as part of the HyperNIC (CA595/13-1) project. Ad-
ditional funding was received by the Bavarian Ministry of
Economic Affairs, Regional Development and Energy within
the project 6G Future Lab Bavaria.

REFERENCES

[1] ACM. (2020) Artifact Review and Badging Version 1.1. Accessed: 2024-
03-24. [Online]. Available: https://www.acm.org/publications/policies/
artifact-review-and-badging-current

[2] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Ax-
ton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E.
Bourne et al., “The fair guiding principles for scientific data management
and stewardship,” Scientific data, vol. 3, no. 1, 2016.

[3] geni-lib, “Welcome to geni-lib’s documentation!” [Online]. Available:
https://geni-lib.readthedocs.io/en/latest/

[4] H. Stubbe, S. Gallenmüller, and G. Carle, “The pos experiment
controller: Reproducible & portable network experiments,” in 19th
Wireless On-Demand Network Systems and Services Conference, WONS
2024, Chamonix, France, January 29-31, 2024. IEEE, 2024. [Online].
Available: https://doi.org/10.23919/WONS60642.2024.10449532

[5] Chameleon Cloud Developers, “Trovi.” [Online]. Available: https:
//chameleoncloud.org/experiment/share/

[6] S. Soiland-Reyes, P. Sefton, M. Crosas et al., “Packaging research
artefacts with ro-crate,” Data Sci., vol. 5, no. 2, 2022. [Online].
Available: https://doi.org/10.3233/ds-210053

[7] A. Jacobsen, R. de Miranda Azevedo, N. S. Juty et al., “FAIR principles:
Interpretations and implementation considerations,” Data Intell., vol. 2,
no. 1-2, 2020. [Online]. Available: https://doi.org/10.1162/dint r 00024

[8] A. Lamprecht, L. J. Garcı́a, M. Kuzak et al., “Towards FAIR principles
for research software,” Data Sci., vol. 3, no. 1, 2020. [Online].
Available: https://doi.org/10.3233/ds-190026

[9] The European Open Science Cloud. https://eosc.eu/. Accessed: 2024-
04-06.

[10] European Organization For Nuclear Research and OpenAIRE, “Zenodo,”
2013. [Online]. Available: https://www.zenodo.org/

[11] D. Duplyakin, R. Ricci, A. Maricq et al., “The design and operation of
cloudlab,” in 2019 USENIX Annual Technical Conference, USENIX ATC
2019, Renton, WA, USA, July 10-12, 2019, 2019. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/duplyakin

[12] K. Keahey, J. Anderson, Z. Zhen et al., “Lessons learned from the
chameleon testbed,” in 2020 USENIX Annual Technical Conference,
USENIX ATC 2020, July 15-17, 2020. USENIX Association,
2020. [Online]. Available: https://www.usenix.org/conference/atc20/
presentation/keahey

[13] D. Balouek, A. Carpen-Amarie, G. Charrier et al., “Adding
virtualization capabilities to the grid’5000 testbed,” in Cloud Computing
and Services Science - Second International Conference, CLOSER
2012, Porto, Portugal, April 18-21, 2012. Revised Selected Papers,
ser. Communications in Computer and Information Science, vol.
367. Springer, 2012. [Online]. Available: https://doi.org/10.1007/
978-3-319-04519-1 1

[14] L. Nussbaum, “Testbeds Support for Reproducible Research,” in Pro-
ceedings of the Reproducibility Workshop, 2017.

[15] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The pos
Framework: A Methodology and Toolchain for Reproducible Network
Experiments,” in CoNEXT ’21: The 17th International Conference on
emerging Networking EXperiments and Technologies, Virtual Event,
Munich, Germany, December 7 - 10, 2021. ACM, 2021. [Online].
Available: https://doi.org/10.1145/3485983.3494841

[16] Y. Demchenko, S. Gallenmüller, S. Fdida, P. Andreou, C. Crettaz, and
M. Kirkeng, “Experimental research reproducibility and experiment
workflow management,” in 15th International Conference on
COMmunication Systems & NETworkS, COMSNETS 2023, Bangalore,
India, January 3-8, 2023. IEEE, 2023. [Online]. Available:
https://doi.org/10.1109/COMSNETS56262.2023.10041378

[17] Dublin Core. https://www.dublincore.org/. Accessed: 2024-04-07.
[18] Schema.org. https://schema.org/. Accessed: 2024-04-07.
[19] JSON-LD 1.1: A json-based serialization for linked data. https://www.

w3.org/TR/json-ld/. Accessed: 2024-03-25.
[20] P. De Geest, B. Droesbeke, I. Eguinoa et al., “Researchobject/ro-

crate-py: ro-crate-py 0.9.0,” Oct. 2023. [Online]. Available: https:
//doi.org/10.5281/zenodo.10017862

[21] ORCID: Open Researcher and Contributor ID. https://orcid.org/. Ac-
cessed: 2024-03-07.

[22] ROR: Research Organization Registry. https://ror.org/. Accessed: 2024-
03-07.

[23] L. Vincent, “lshw: HardWare LiSter for Linux,” https://github.com/
lyonel/lshw, 2024.

[24] “IEEE Standard for Local and metropolitan area networks - Station and
Media Access Control Connectivity Discovery,” IEEE Std 802.1AB-2016
(Revision of IEEE Std 802.1AB-2009), 2016.

[25] V. Bernat, “lldpd: Implementation of IEEE 802.1ab (LLDP),” https://
github.com/lldpd/lldpd, 2024.

[26] GUDE: Expert Power Control 8226-1. https://web.archive.
org/web/20230928065702/https://gude-systems.com/en/products/
expert-power-control-8226/. Accessed: 2024-04-09.

[27] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proceedings
of the 2015 ACM Internet Measurement Conference, IMC 2015,
Tokyo, Japan, October 28-30, 2015. ACM, 2015. [Online]. Available:
https://doi.org/10.1145/2815675.2815692

[28] P. Andreou. (2022) D4.1: Data Management Plan. Accessed: 2024-04-
10. [Online]. Available: https://doi.org/10.5281/zenodo.5869390

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://geni-lib.readthedocs.io/en/latest/
https://doi.org/10.23919/WONS60642.2024.10449532
https://chameleoncloud.org/experiment/share/
https://chameleoncloud.org/experiment/share/
https://doi.org/10.3233/ds-210053
https://doi.org/10.1162/dint_r_00024
https://doi.org/10.3233/ds-190026
https://eosc.eu/
https://www.zenodo.org/
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://www.usenix.org/conference/atc20/presentation/keahey
https://www.usenix.org/conference/atc20/presentation/keahey
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1109/COMSNETS56262.2023.10041378
https://www.dublincore.org/
https://schema.org/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld/
https://doi.org/10.5281/zenodo.10017862
https://doi.org/10.5281/zenodo.10017862
https://orcid.org/
https://ror.org/
https://github.com/lyonel/lshw
https://github.com/lyonel/lshw
https://github.com/lldpd/lldpd
https://github.com/lldpd/lldpd
https://web.archive.org/web/20230928065702/https://gude-systems.com/en/products/expert-power-control-8226/
https://web.archive.org/web/20230928065702/https://gude-systems.com/en/products/expert-power-control-8226/
https://web.archive.org/web/20230928065702/https://gude-systems.com/en/products/expert-power-control-8226/
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.5281/zenodo.5869390

	Introduction
	Background
	Implementation
	Experiment (Meta)-Data
	Author and Affiliation
	Software Setup
	Hardware Setup
	Energy

	Structure of the Result Folder

	Demonstration
	Measurement Setup
	Measurement Execution
	Measurement Evaluation
	Publication of results

	Conclusion
	References

