
Dynamic Data Plane Updates
using Lua and libmoon

Manuel Simon, Sebastian Gallenmüller, and Georg Carle
Chair of Network Architectures and Services, Technical University of Munich, Germany

{simonm|gallenmu|carle}@net.in.tum.de

Abstract—Upcoming communication networks, such as 6G,
require both high performance and reliability, while service up-
dates typically introduce service downtimes. This study explores
dynamic network function updates using libmoon, a DPDK-based
high-performance packet processing framework. The approach
enables seamless, on-the-fly updates of network functions. By
leveraging LuaJIT, we profit from just-in-time (JIT) compilation,
allowing for efficient per-flow function updates. Our evaluation
demonstrates the feasibility of runtime re-programmability in
network data planes. We show the induced latencies of runtime
changes and examine cross-flow and cross-core influences. More-
over, we investigate the effects of JIT compilation and show the
significance of JIT compilation for long-term performance.

Index Terms—Dynamic Network Function, Data Plane Updates

I. INTRODUCTION

Modern communication networks have to offer a reliable
but high-performant connection. So-called network functions
are software components that fulfill specific tasks in a network.
Updates for maintaining or improving these network functions
usually cause downtimes. We investigate software-based dy-
namic network functions to mitigate this problem. Dynamic
updates allow for the continuation of the service without ser-
vice degradation. Furthermore, it allows the service migration
to other nodes by sharing and dynamically installing (parts) of
the service. Going one step further, network operators can offer
programmable data paths, allowing for customer-defined, per-
flow packet processing. Dynamic programs can, e.g., be used
for customized in-network computation or recovery failovers.

LuaJIT is a just-in-time (JIT) compiler for Lua programs.
JIT compilation seems to be a promising candidate to real-
ize such dynamic function updates, as the potentially costly
optimizations can be performed on-the-fly. This paper de-
scribes and analyzes a prototype implementation of dynamic
network functions in libmoon, a Lua-based DPDK wrapper.
The implementation allows for the dynamic addition of new
functionality defined by its source code piggybacked by a
packet. The function is installed, i.e., changing the source code
of the running network function, and JIT compiled. We show
the influence of JIT compilation on the applicability of the
approach in the short and long term and the impact on other
flows and CPU cores.

II. RELATED WORK

In previous work [1], we integrated dynamic eBPF proces-
sors into the P4 pipeline, following similar goals. eBPF can be

pre-compiled using platform-independent byte code, allowing
fast, dynamic updates. While it was not possible to exchange
such programs using source code, it is possible for Lua. This
study focuses on implementing dynamic network functions
with Lua instead of eBPF. Furthermore, we look deeper into
the cross-flow and cross-core dependencies of such updates
and build a suitable testbed and experiment workflow.

Runtime reprogrammability has been investigated as
capsule-based active networking [2]. Recently, there was work
on dynamic updates in (P4) programmable switches. Das et
al. [3] implemented an instruction set in P4 to modify packet
processing during runtime. Xing et al. [4] built FlexCore,
which enables a partial reconfiguration of data planes during
runtime. Feng et al. [5] extended P4 for in-situ reprogramma-
bility. Outside the P4 domain, Jeykumar et al. introduced “tiny
packet programs (TTPs)” [6] that are specified by active pack-
ets and can execute a very restricted amount of instructions.

Using libmoon, we use a framework that is not restricted in
its functionality and scales using multiple CPU cores.

III. BACKGROUND & IMPLEMENTATION

This section describes our prototype implementation of
dynamic network functions in libmoon and introduces the
features used in Lua and LuaJIT.

A. Lua, LuaJIT, & libmoon

libmoon [7] is a Lua library that combines the advantages
of DPDK and LuaJIT [8], providing high-performance packet
processing and easy programmability. The libmoon project is a
generalization of the MoonGen packet generator [9] and is also
based on DPDK and LuaJIT. LuaJIT provides a JIT compiler
for Lua, a scripting language, e.g., used for games. DPDK is
a framework for high-performance user space software packet
processing, bypassing the Linux kernel network stack and
using poll mode drivers. libmoon uses JIT compilation to pro-
vide a high-level DPDK API, combining the high-performance
with high-level language features, such as automatic memory
management. Using Receive Side Scaling (RSS) libmoon can
statically distribute different flows to different CPU cores, for
parallel processing.

B. Prototype Implementation

Our implementation allows a dynamically defined function
per flow, here defined by the source IP address. The address
is used to look up the associated function in a hashtable. The

DuT LoadGen◀
▶

◀
▶

Timestamper

◀ ◀

Figure 1: Measurement setup.

approach can easily be extended to other flow definitions, such
as the 5-tuple. If no dynamic function has been set, a default
function will be used, e.g., simply forwarding the packets.

New functionality can be installed by sending an update
packet containing its Lua source code to the data plane
adressing a pre-defined port. The source code is extracted
from the update packet and converted to a callable Lua func-
tion using loadstring() and stored in the flow-function
hashtable. This Lua built-in function allows the definition of
new functions from source code returning a function pointer,
similar to Python’s eval() method. Before passing the
source code, we extend it to correctly pass the arguments,
i.e., the packet buffer and possible annotations for the JIT
optimizations. The LuaJIT compiler will compile the function
transparently, and the following packets of the same flow will
automatically call the installed function. The function hash
table is unsynchronized between multiple processing threads
and CPU cores. However, the function is defined per flow, and
RSS maps all packets of the same flow to the same CPU core.

IV. SETUP

This section describes our experiment setup.

A. Topology

We use a three-host setup for evaluation (cf. Figure 1),
that hardware timestamps all packets with a resolution of
12.5 ns [10]. All three hosts use an Intel Xeon D-1518 CPU
@ 4×2.2 GHz, 32 GB of RAM and an Intel X552 NIC.

The load generator (LoadGen) utilizes MoonGen [9] to
generate CBR traffic of two different flows, i.e., different
source IP addresses, with a total rate of 200 Mbit/s and a
packet size of 200 B. The Device-under-Test (DuT) runs the
prototype implementation written for libmoon. The packets
are processed individually without batching to determine per-
packet costs. The DuT applies or changes the function and
returns all packets to the LoadGen. Using passive optical
splitters, all traffic is duplicated and mirrored to a third host,
the Timestamper. The Timestamper timestamps and records all
incoming packets. The recordings are used later to match and
analyze the traffic and calculate the associated latencies.

B. Methodology

The LoadGen sends two types of packets: packets where the
network function is applied (referred to as INC) and update
packets that specify a new function that is installed (referred to
as DYN). First, 50 k INC packets are sent from two different
flows, where the default function is applied. Then, one DYN
packet is sent, containing the source code of the dynamic
function. Therefore, only one flow is affected by the dynamic

1,635 1,636 1,637 1,638
0
25
50
75
100
125
150
175
200

Experiment Time [ms]

La
te

nc
y

[µ
s]

before
after
before (other)
after (other)
change

Figure 2: Dynamic program change (one task) (zoomed).

1,632 1,633 1,634 1,635
0
20
40
60
80
100
120
140
160

Experiment Time [ms]

La
te

nc
y

[µ
s]

before
after
before (other)
after (other)
change

Figure 3: Dynamic program change (two tasks) (zoomed).

function change. Afterward, another 200 k INC packets are
sent from both flows in total, where the new, dynamic function
is applied for the affected flow. The other, unaffected flow
stays with the default forwarding function.

The experiments can potentially differ in the first-installed
default function, the dynamic function sent and installed by the
DYN packet, the number of tasks/threads, which handle the
packets at the DuT, and the JIT parameters. Here, we analyze
the basic overhead of changing functionality; therefore, we
change the default function setting one constant in a packet
towards a dynamic function setting another constant value. We
perform this using one or two cores/threads while enabling
or disabling the JIT compilation of Lua using the highest
optimization level (cf. [8], similar to the -O3 option of gcc).

V. EVALUATION

This section describes the experiments that were performed
and analyzes their results.

First, we investigate how changing the network function
impacts the latency of the DYN packet and subsequent INC
packets. Figures 2 and 3 show the latencies for 20 packets
before and 200 packets after the change for the affected and
the other, unaffected flow. When the packet processing is
performed on a single core (cf. Figure 2), the change of the
functionality affects all flows. In case the flows are split among
several cores (cf. Figure 3), the other cores and the associated
flows are unaffected. The median latency of the involved flow
(also cf. Figure 6 in blue) increases slightly from 3.550 µs
to 3.737 µs, while the other flow remains unchanged. The
change itself introduces a latency of 50 150 µs, an overhead of
46 600 µs. However, no packet loss occurs in both experiments.

1,625 1,650 1,675 1,700 1,725 1,750 1,775 1,800
0

20

40

60

80

100

120

Experiment Time [ms]

La
te

nc
y

[µ
s]

before
after
before (other)
after (other)
change

Figure 4: Dynamic program change (two tasks) (no JIT).

1,625 1,650 1,675 1,700 1,725 1,750 1,775 1,800
0
20
40
60
80
100
120
140
160

Experiment Time [ms]

La
te

nc
y

[µ
s]

before
after
before (other)
after (other)
change

Figure 5: Dynamic program change (two tasks).

We further investigate the influence of the JIT compila-
tion on the optimized performance of the changed, dynamic
function and the impact on the change itself. Figures 4 and
5 depict 1 k INC packets before and 10 k packets after the
change for two flows, respectively. The JIT compilation for the
newly installed dynamic function is turned off in Figure 4 and
activated in Figure 5. The variety and performance without
JIT are, as expected, worse in the long term. In this case,
Lua interprets the source code instead of using the JIT-
compiled binary code. While the median latency before the
change is 3.550 µs, it increases to 6.387 µs afterward. The
other flow on the other core remains unchanged. Figure 6
additionally depicts the median latency of the first 5 k packets
after the change. Enabling JIT compilation not only shows
better performance in the long term but also in the short
term. Nevertheless, the DYN packet latency itself is lower
for the non-JIT than the JIT version (42 737 µs vs. 50 150 µs),

before before
(other)

change change
(other)

after after
(other)

0

2,000

4,000

6,000

8,000

La
te

nc
y

[n
s]

JIT off
JIT on

Figure 6: Latencies before, 5000 packets after the change, and
thereafter).

probably due to the overhead of the JIT compilation itself.
However, in both cases, there are latency spikes after the
change, and the latency and its variance are increased. More
experiments have to be conducted to get significant numbers.

VI. DISCUSSION & CONCLUSION

This work investigated a prototype implementation of dy-
namic network function changes within libmoon. The results
show that it is feasible to perform such changes, even for
uncompiled source code. JIT compilation significantly reduces
the overhead in the short and long term.

In future work, we will compare and analyze the influence of
different optimization strategies supported by the JIT compiler
in more detail. Furthermore, we will compare the technologies
to other possible implementations, based on, e.g., P4 and
eBPF [1], native eBPF/XDP implementations, or other (JIT-
compiled) languages. A special remark lays on the interplay
of the multiple CPU cores involved in the processing and the
influence of changes on them and their caches. While this work
only investigated the base overhead of changing functionality,
different types of programs (e.g., computation or memory-
heavy) may involve additional overhead. Moreover, the pos-
sibility of offloading such dynamic functions to SmartNICs,
such as the Netronome Agilio and Nvidia Bluefield, may be
investigated.

ACKNOWLEDGMENTS

This work was supported by the EU’s Horizon 2020 pro-
gramme as part of the projects SLICES-PP (10107977) and
GreenDIGIT (4101131207), by the German Federal Ministry
of Education and Research (BMBF) under the projects 6G-
life (16KISK002) and 6G-ANNA (16KISK107), and by the
German Research Foundation (HyperNIC, CA595/13-1).

REFERENCES

[1] M. Simon, H. Stubbe, S. Gallenmüller, and G. Carle, “Honey for the
Ice Bear - Dynamic eBPF in P4,” in ACM SIGCOMM 2024 Workshop
on EBPF and Kernel Extensions, 2024, p. 44–50.

[2] D. L. Tennenhouse and D. J. Wetherall, “Towards an Active Network
Architecture,” SIGCOMM Comput. Commun. Rev., vol. 26, no. 2, p.
5–17, apr 1996.

[3] R. Das and A. C. Snoeren, “Memory Management in ActiveRMT:
Towards Runtime-Programmable Switches,” in ACM SIGCOMM 2023,
p. 1043–1059.

[4] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy,
and A. Chen, “Runtime Programmable Switches,” in NSDI 2022, pp.
651–665.

[5] Y. Feng, Z. Chen, H. Song, W. Xu, J. Li, Z. Zhang, T. Yun, Y. Wan,
and B. Liu, “Enabling In-situ Programmability in Network Data Plane:
From Architecture to Language,” in NSDI 2022, pp. 635–649.

[6] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazières,
“Millions of Little Minions: Using Packets for Low Latency Network
Programming and Visibility,” in ACM SIGCOMM 2014, p. 3–14.

[7] GitHub, “libmoon/libmoon,” 2025, last accessed: 2025-02-16. [Online].
Available: https://github.com/libmoon/libmoon

[8] Mike Pall, “The LuaJIT Project,” 2023, last accessed: 2025-02-16.
[Online]. Available: http://luajit.org/

[9] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A Scriptable High-Speed Packet Generator,” in IMC 2015.

[10] Intel, “Intel Ethernet Controller X550 Datasheet rev
2.6,” 2021, Last accessed: 2024-09-13. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/content-details/333369/
intel-ethernet-controller-x550-datasheet.html

