
Honey for the Ice Bear – Dynamic eBPF in P4
Manuel Simon, Henning Stubbe, Sebastian Gallenmüller, Georg Carle

Chair of Network Architectures and Services, Technical University of Munich
Garching near Munich, Germany

{simonm|stubbe|gallenmu|carle}@net.in.tum.de

Abstract
Software updates typically require system reboots, leading to ser-
vice downtimes. We aim to solve this problem for network com-
ponents allowing updates while avoiding service degradation. In
this paper, we explore the integration of eBPF into the P4 pipeline
for efficient packet processing. This way, we combine the flexi-
bility and dynamic adaptability of eBPF with the efficiency of P4.
The integration enhances the power of applications and enables
the network operator to provide customizable data paths as a ser-
vice. Our solution allows updating the data path at runtime and
without downtime. We implement the approach for the P4 target
T4P4S, discuss different performance models, and share implemen-
tation insights. The evaluation focuses on the overhead in terms of
throughput and the costs of code updates expressed in the latency
of the related packets. We show that eBPF execution is possible with
reasonable costs, promising dynamic network functions within P4.

CCS Concepts
•Networks→Network performance analysis; Programmable
networks; Middle boxes / network appliances.

Keywords
P4, eBPF, SDN, Dynamic Network Function

ACM Reference Format:
Manuel Simon, Henning Stubbe, Sebastian Gallenmüller, Georg Carle. 2024.
Honey for the Ice Bear – Dynamic eBPF in P4. In Workshop on eBPF and
Kernel Extensions (eBPF ’24), August 4–8, 2024, Sydney, NSW, Australia. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3672197.3673436

1 Introduction
The ever-increasing amount of data traversing the Internet or ap-
plication demand for low latency, shape the design of packet pro-
cessing devices. Updates of components impact the latency and re-
liability of networks. In an ideal world, updates could be performed
without impacting the service quality of the network. Software-
defined network components equip us with the required tools to
implement such seamless updates. In recent years, two powerful
technologies for flexible packet processing emerged: P4 and eBPF .

P4 [7] allows programming high-performance packet process-
ing in hardware or software, both in middleboxes and (with the
upcoming PNA [8]) at end hosts. Network operators can tailor the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0712-4/24/08.
https://doi.org/10.1145/3672197.3673436

packet processing to their needs. Though powerful, P4 functional-
ity is limited. For example, P4 supports addition, subtraction, and
multiplication only in powers of two and often relies on external
functionality provided by the specific target but not directly sup-
ported by the P4 language. Without standardization, the APIs and
the implementation of these externs vary between targets, severely
limiting the portability of P4 code using externs.

eBPF (extended Berkeley Packet Filters) [13] is a growing and
powerful language with fewer constraints than P4, especially for cal-
culations. Its target-independent byte code runs on a VM allowing
the extension of network stacks with user-defined functionality.

The P4 language is kept intentionally simple to allow fast packet
processing. On the other hand, eBPF offers a higher degree of flex-
ibility with specific restrictions to ensure execution times, e.g.,
bounded loops. Tackling problems from different angles, eBPF and
P4 offer similar function at different costs. What stands out particu-
larly is the flexibility of eBPF and the performance achievable with
P4. Thus, integrating eBPF into the P4 pipeline may unleash a more
powerful and flexible way to program packet processing devices.
More powerful processing: P4 allows only basic arithmetical opera-
tions, minimizing complexity and maximizing performance. eBPF
allows expressing advanced functionality without vendor-specific
extensions, increasing its portability. Programs run on different
targets implementing the eBPF runtime environment. Complex
applications are realized using eBPF, such as DDoS mitigation [4],
IDS/firewalls [5, 37], monitoring [2], or evenmore complex network
functions [27], like a 5G Mobile Gateway [34].
Dynamic reprogramming: eBPF is designed to be just-in-time com-
piled, enabling switching of its functionality without stopping the
execution, in contrast to P4. Integration into the P4 pipeline intro-
duces eBPF’s dynamic and adaptive changes to high-performance
P4 data plane processing. This integration goes beyond plain mi-
gration of network functions to other devices in case of failures.
For example, network operators can offer a programmable data
path as a service to their customers. Customer-defined function-
ality is applied to their flows. Utilizing eBPF, these customized
network functions allow more complex processing beyond simple
rule or table updates in P4. For instance, customized flow monitor-
ing can be installed, adapted, or removed at runtime. Furthermore,
tenants may use network resources for customized in-network
computation. An advantageous property of eBPF is its portabil-
ity utilizing platform-indepedent byte code that is translated to
high-performance machine code on the target platform.

The promising advantages are worth investigating dynamic net-
work functions leveraged by eBPF in the P4 pipeline: This paper (1)
discusses approaches integrating eBPF into the P4 pipeline, (2) pro-
vides insights into implementation considerations, and (3) presents

https://doi.org/10.1145/3672197.3673436
https://doi.org/10.1145/3672197.3673436

eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia Simon et al.

an overview of performance implications. Our implementation ex-
tends T4P4S [41]. We demonstrate eBPF execution and its dynamic
re-programmability at reasonable costs and throughput rates.

2 Background & Related Work
P4: P4 [7] uses a pipeline to process packets, cf. Figure 1 (in blue),
starting with a parser. Afterward, packets traverse match-action
pipelines. There, match-action tables, the heart of P4, determine
the control flow of the packets. Header fields are matched against
table entries, specifying actions to be executed and its parameters.
In the end, packets are deparsed. P4 offers full programmability of
all stages, non-P4 functionality can be used as externs.

Different targets for P4 exist: Hardware targets provide the high-
est performance in terms of throughput and latency. The targets
range from ASICs, such as the Intel Tofino [23], over SmartNICs,
e.g., Agilio Netronome [3], to FPGAs, i.e., the P4→NetFPGA work-
flow [20] or the Intel P4 Suite for FPGA [22]. Hardware targets usu-
ally follow a pipelined approach, processing several packets at differ-
ent stages at the same time. Thus, synchronization between several
stages is more complex. Software targets, on the other side, provide
the highest degree of flexibility. With lower performance, software
targets run on commodity hardware and allow the easy integration
of new functionality. bmv2 [33] is the P4 reference implementation
for developing, but offers limited performance. T4P4S [41] and P4-
DPDK [30] rely on the Data Plane Development Kit (DPDK) [35], a
userspace framework for high-performance packet processing, pro-
viding better performance. P4TC [17] is an implenentation in the
Linux Kernel using Traffic Control (tc). Software targets may either
follow a pipelined, or, for a better performance, a run-to-completion
model, processing packets iteratively [10].
eBPF Data Planes: The concept of programming the data plane
with eBPF has been discussed previously. Jouet et al. [24] built
BPFabric, a programmable software switch integrating eBPF. They
demonstrated BPFabric’s capability for complex packet processing.
The uBPF project [1] ported the in-kernel eBPF VM to userspace.
eBPF expressiveness is demonstrated in the P4 to eBPF/ uBPF/ XDP
compiler back-ends [31, 32, 39], generating eBPF code out of P4.
A concept that was further extended by Osiński et al. [28]. Apart
from P4 targets, eBPF was also ported to other network devices.
For example, Tu et al. [40] integrated eBPF into Open vSwitch with
OVS-eBPF and -AFXDP.
Hardware Offloading: NIC offloading is an active field of research.
XDP (eXpress Data Path) [19] is a high-performance data path
offering a low-level interface for eBPF. The concept is similar to
our approach, offloading specific functionality from the usual P4
processing. There exist specialized processors for both languages,
especially in SmartNICs [3]. Kicinski et al. [25] showed a method to
offload eBPF/XDP execution to SmartNICs, allowing an accelerated
execution on Netronome NFP-based NICs. Salva-Garcia et al. [36]
built a framework that allows offloading network functions using
eBPF and XDP. They realized their implementation on Netronome
SmartNICs.
Runtime Programmability: Changing functionality on data planes
during runtime has been investigated as part of (capsule-based)
active networking [38]. Das et al. [9] implemented an instruction set
in P4 to express packet processing tasks that can be changed during

runtime. Xing et al. [42] developed FlexCore enabling a partial
reconfiguration of data planes at runtime. Feng et al. [15] extended
P4 to enable in-situ programmability. Our approach also allows
runtime updates but relies on the well-defined eBPF language.

All related works investigate a single language or technology to
solve a problem. We take a different perspective by combining two
technologies, P4 and eBPF, keeping their specific advantages. This
way, packet processing tasks can be expressed in P4 and partially
extended where eBPF is more appropriate to use or dynamical
reprogrammability is required.

3 Approach
In this section, we describe fundamental approaches for eBPF execu-
tion environments in P4 and discuss advantages and disadvantages
of possible use cases and their implementation. We distinguish be-
tween a fixed and a flexible placement of eBPF programs in the P4
pipeline. Both approaches can be combined with different modes
regarding the dynamicity of the eBPF program: static, pre-defined,
or extensible. Extensibility requires security mechanisms to prevent
unauthorized eBPF program replacement. Approaches, modes, and
their security implications will be discussed subsequently.

3.1 Placement in the P4 Pipeline
First, the question arises where in the P4 pipeline the eBPF func-
tionality may be called. This question influences the capability of
such a hybrid data plane and its requirements. The first approach
(fixed), extends the P4 v1model to allow pre- and post-processing
packets in eBPF, before, after, or in between the P4 pipeline. The
second, dubbed flexible, allows the functionality to be called within
the P4 pipeline and follows the usual extern approach of P4.

Fixed Components: The fixed approach extends P4’s well-estab-
lished v1model, depicted in Figure 1. The eBPF processor(s) can be
placed at three different locations:

(1) eBPF as a pre-processor :That way, the pre-processor pre-filters
the packets before they arrive at the P4 pipeline. The return value
of the executed eBPF program determines if packets are dropped or
forwarded to the P4 pipeline. This pre-processing helps relieve the
P4 pipeline, potentially decreasing the number of packets traversing
the pipeline. Such relief is of particular interest if: a) the execution
of the P4 pipeline is expensive, i.e., the P4 program is complex,
or b) the incoming traffic contains a considerable percentage of
packets to be dropped anyway. Apart from dropping, arbitrary pre-
processing of packets is possible; therefore, e.g., the use cases from
Section 1 apply.

(2) eBPF as a mid-processor : Located between ingress and egress
pipeline, e.g., in the traffic manager. There, calculations on header
fields may be performed, which cannot be expressed in plain P4.

(3) eBPF as a post-processor : The post-processor can either per-
form final actions, such as calculations, cryptography/hashing, or
decide to drop or forward a packet.

All options have in common that an enabled processor will be
executed for every packet. Processing a subset of packets is only
possible if the P4 pipeline itself drops them. Moreover, the process-
ing is performed on the whole packet. Therefore, the eBPF program
can access and modify the entire packet. In case the program was
delivered by a third party, this access can be considered harmful

Honey for the Ice Bear – Dynamic eBPF in P4 eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia

Packet

eBPF
Pre-

processor

Parser

Match-Action
Ingress

eBPF
Mid-

processor

Traffic
Manager

Match-Action
Egress

Deparser

eBPF
Post-

processor

Packet

P4 Pipeline

Data Plane

set_program()

1

Figure 1: Fixed eBPF components

for security reasons. Conversely, a fixed place of the eBPF function-
ality in the processing path eases the implementation, especially
in hardware targets. For software targets, the processing can be
done in batches; for hardware targets, especially SmartNICs, fixed
eBPF/XDP processors already exist, e.g., in the Netronome Agilio
CX [3].

Flexible Externs: The flexible approach is based on P4 externs
shown in Figure 2. Externs can be used to add new non-P4 function-
ality to supported targets. This approach defines a new eBPF extern,
which can be used several times and anywhere in the P4 program.
Thus, different functionalities can be placed in the eBPF externs.
There are two possible options: Depending on the API call, the
extern may access and modify either the whole packet or read only
specified header fields. Accessing entire packets offers the highest
flexibility and, e.g., allows to compute hashes on the whole packet.
With read-only access to specific header fields, no header field mod-
ification is possible; only the return value is accessible from the P4
pipeline. However, it decreases the amount of data leaked to the
eBPF extern. In both cases, eBPF extern execution can be limited
to a subset of the processed packets, e.g., by putting the call in an
if-statement. Such conditional calls decrease the overhead of the
eBPF execution for undesired packets significantly increasing flexi-
bility. However, conditional execution may reduce the performance
of software targets due to branch and cache misses. Plus, it may
be harder to implement on hardware targets due to the pipelined
approach. Furthermore, the eBPF processors on a hardware target
may be limited in their amount of available resources.

3.2 eBPF Functionality
Both fixed and flexible approaches support three modes of eBPF
functionality: static, pre-defined, and extensible.

Static: In static mode, fixed, non-changeable functionality is
bound to the components during initialization, extending the P4
pipeline.

Pre-defined: In the pre-defined mode, a pre-implemented and
fixed set of functionality is given during initialization, which can
be activated and bound to the eBPF modules on demand during
runtime. The functionality can be specified, e.g., by the path of the
program. The network operator may provide different functionali-
ties already implemented in eBPF, which the tenant can activate.

eBPF
externeBPF

extern

Packet

Parser

Match-Action
Ingress

Traffic
Manager

Match-Action
Egress

Deparser

eBPF
extern

Packet

P4 Pipeline

Data Plane

set_program()

execute_packet()

execute()

1

Figure 2: Flexible eBPF externs

Then, the tenant can pick functions out of the provided templates
and start the execution for the upcoming packet from the flow be-
longing to them. As a result, the network operator can ensure that
the programs meet given requirements, such as runtime boundaries
or security.

Extensible:The extensible mode goes one step further.There, new
programs can be sent to the P4 target’s data plane. eBPF programs
may be specified using C code or eBPF binaries. The inputs are
processed on the P4 target and bound to the given eBPF module, as
before. eBPF binary deployment offers benefits: Avoiding compila-
tion from source to byte code reduces overhead and utilizes eBPF’s
platform independence; the same byte code binary can be used on
any target supporting eBPF and is JIT compiled to machine code
at runtime. Using the extensible way, updates of the data plane
functionality is possible without interruption. Tenants have almost
complete freedom to decide on the packet processing of their flows;
a flow or stream could define itself, how it should be treated. More-
over, functionality can be moved from one device to another for
redundancy or failure recovery.

3.3 Security
The possibility to remotely change code requires appropriate secu-
rity mechanisms. We identified two main concerns: the authenticity
and trustworthiness of code updates. For both, we suggest measures
to secure dynamic functions:

Authenticity: Code updates must only be triggered by selected,
authenticated, and authorized tenants. Otherwise, an adversary
may compromise packet processing tasks. Authenticity is ensured
by adequate cryptographic procedures. Additionally, tenants should
only be allowed to change the processing of their own flows. In P4,
this can be handled using appropriate tables and table entries.

Trustworthiness: Remotely installing new code is potentially dan-
gerous. Therefore, the execution of the eBPF code must be strictly
limited to the tenant’s own packets, not impacting the processing
of any other flow. Further, harm to the data plane processing itself
must be prevented. Unrestricted code execution requires a high
level of trust between network operators and tenants. Otherwise,
the executed programs must be isolated or restricted in their power.
Fittingly, isolation of eBPF is one of its design goals since it runs

eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia Simon et al.

on a virtual machine. Originally, the Linux kernel has enforced the
isolation running it in the kernel space. This is different when eBPF
runs in user space or on the data plane. On the other side, the eBPF
program then has fewer rights given by the operating system and
it is still isolated from other processes. Another possible approach
is to restrict the allowed instructions only allowing instructions
that will not harm the system, such as arithmetical, logical, or con-
ditional operations. For that, the source code or the compiled eBPF
binary can be checked using static analysis.

4 Implementation
Following the introduction of possible approaches, this section
discusses the implementation thereof. We implement all the ap-
proaches for eBPF in the P4 software target T4P4S. As an open-
source software target, T4P4S is extensible. T4P4S transpiles P4 code
into C code linked to the state-of-the-art packet processing frame-
work DPDK, allowing high performance. Therefore, T4P4S is an
excellent choice for the creation of prototypes. Our implementation
is based on commit 2308915 [29]. T4P4S uses the batch-processing
of DPDK and follows the run-to-completion model to maximize
performance [10]. A batch of packets is received from the NIC at
once. Then, each packet traverses the generated P4 pipeline itera-
tively. Afterward, the whole batch is sent out. This model minimizes
expensive memory accesses and optimizes throughput.

For the execution of the eBPF code, we rely on the built-in eBPF
support of DPDK (which is also the foundation of T4P4S) using the
rte_bpf library [11]. It allows JIT compilation for x86_64 architec-
tures and offers tx/rx-device callbacks to the DPDK program [12],
which our implementation uses for the pre- and post-processor.
Hence, every packet received or sent is put into the eBPF execution
callback in a batched way. Conveniently, DPDK [12] supports drop-
ping packets if the return value of the eBPF program is zero. For the
mid-processor, we use a non-batched eBPF call, which is executed
on each packet between the generated code for ingress and egress
processing. The limitation of this implementation is that packet
modification only works if the valid headers remain unchanged.
This limitation is caused by T4P4S which reorders packet headers
at the end of the P4 pipeline, at the deparser. Up to this point, the
headers may be located at other than the expected offsets.

Implementing the eBPF externs works similarly to the mid-pro-
cessor relying on the DPDK eBPF execution environment. If the
read-only call is performed, the specified header fields are copied
into one continuous memory area, which is handed over to the eBPF
program as a pointer. In case the eBPF processing is performed on
the whole packet, the same requirements for header reordering
stand.

As mentioned, both approaches work in different modes. In the
static mode, the specified program, i.e., the path to its compiled ver-
sion, is bound to the component during the initialization of T4P4S;
in pre-defined the program can be bound and changed during run-
time specifying a new, but pre-defined path in the P4 program. In
the extensible mode, new programs can be added and executed dur-
ing runtime either by source C-files or by compiled eBPF binaries.
These binaries are written to a temporary file, which is bound to the
component on the fly. However, in case of the callback-driven fixed
components, the change will only take effect starting with the next

batch of packets. Source files must be compiled before binding. The
compilation uses clang: clang -O3 -target bpf -c dummy.c

Before installation, we check the authenticity of code updates
using BLAKE3 [6]-based message authentication codes (MAC) with
a 256-bit pre-shared symmetric key. The validation is not part of
the P4 pipeline but occurs directly inside the eBPF modules. If the
authenticity cannot be validated, the update is rejected.

Our source code and example programs are publicly available at
GitHub [26]. Despite minor fixes, it introduces a latency-optimized
version used for our evaluation and the support of the presented
eBPF components.

5 Evaluation
In this section, we describe the setup and methodology of our
experiments. Furthermore, we show and discuss their results. First,
the influence of eBPF processing on the forwarding performance
is investigated. Second, the occurring latencies around dynamic
function changes are analyzed in detail.

5.1 Setup
Our evaluation uses a three-host setup. All three nodes are equipped
with an Intel Xeon CPUD-1518 (4× 2.2 GHz), 32GB RAM, and dual-
port Intel X552 NICs (2× 10Gbit/s). The Device under Test (DuT)
runs on Debian Bullseye (kernel 5.10), executing the eBPF-capable
version of T4P4S on a single isolated CPU core. Each received
packet is processed by the DuT and forwarded back to the load
generator (LoadGen). On the LoadGen, we use MoonGen [14] to
create traffic for the DuT. The traffic consists of 84 B sized packets
(88 B with CRC), each featuring a unique identifier. Both links are
monitored via passive optical splitters on the timestamper host. The
timestamper timestamps each incoming packet with a precision
of 12.5 ns [21]. Out of the timestamped data, the latency can be
calculated by matching unique identifiers. Our experiments are
orchestrated using pos [16] to ensure reproducibility.

5.2 Overhead of eBPF components
At first, we measure the induced overhead of the eBPF programs,
i.e., the static mode. For reference, we use a baseline P4 program,
forwarding all packets without any eBPF execution enabled. We
compare the baseline with the execution of eBPF programs at the
different possible fixed locations before (pre) or after (post) the
pipeline, or at the traffic manager (mid) with the execution as extern.
The latter is done for both, the whole packet or only two 32-bit wide
fields. To highlight the impact of different functionality, we use
three different programs: (1) dummy program just returning a non-
zero value to quantify the overhead of the eBPF execution itself,
(2) filter program emulating a pre-filtering of incoming packets
checking for one blocked source IPv4 address and one blocked UDP
port. Note that real filtering can only be done in the pre or post
position; and (3) a change program, which changes the source IPv4
address emulating a write access to the packet. Note that packet
modification is not possible in the normal extern.

The maximum throughputs are depicted in Figure 3. First, we
compare the maximum throughputs for the dummy programs. The
fixed components perform better than the externs. The pre- and
post-processing decreases the throughput by ≈ 6.8 % and 6.0 %,

Honey for the Ice Bear – Dynamic eBPF in P4 eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia

baseline pre mid post extern extern_pkt
0

1

2

3

4

5 4.46
4.16 4.12

3.87 3.96

3.55
3.89

4.19 4.16 4.19

3.34
3.03

3.53
3.20

3.47

Th
ro
ug

hp
ut

[M
pp

s]

baseline pre mid post extern extern_pkt
0

50

100

150

200

250

36 41

75
62

127

72

32 35 32

165

233

130

195

142

Δ
CP

U
cy
cl
es

dummy
filter
change

1

Figure 3: Overhead of eBPF functionality

respectively. Both processors are topped by the mid-processor’s
decrease of ≈ 11.23 %. The batched DPDK callback implementation
increases processing efficiency compared to the non-batched one
in the middle. Executing eBPF as externs decreases the forwarding
performance by ≈ 25.1 % if only some header fields are used and
by ≈ 20.9 % if the whole packet is passed to the eBPF function. The
first case is more expensive as the two header fields must be copied
first. In the second case, the packet is handed over by reference,
which comes with the limitations mentioned in Section 4.

We can determine the average of used CPU cycles (�) per packet
using CPU frequency (52?D) and packet rates (A). Results obtained
with this model are depicted in Figure 3:

� = (52?D/AC4BC20B4) − (52?D/A10B4;8=4)
We observe a similar performance behavior for the other programs.
The overhead is smaller for the fixed positions than for the flexible
externs.Themore complex logic for the filter program also increases
the modeled CPU cycles for the pre position. Packet modification
is even more expensive. This changes for the mid and post position.
There, filtering seems to be more costly. We assume caching effects
to be the root cause. Before the P4 pipeline, the packets and their
contents had not been touched. Then the usual rules are valid, that
modifications are more expensive than lookups, even if the logic
is simpler. After traversing (parts of) the P4 pipeline in T4P4S, the
packet data has been fetched to the cache. As a result, the modifica-
tion of already cached data becomes less expensive. Additionally,
the more complex logic for filtering (two conditional checks instead
of one straightforward modification) becomes more expensive in
terms of CPU cycles.

5.3 Dynamic Program Loading
Dynamic changes of the loaded program introduce additional costs.
To investigate these costs, we use a latency-optimized version of
T4P4S with a batch size of one. This enables us to see the impact
of loading a new program directly in the measured latency. To
investigate a non-overloaded system, we use a moderate packet rate

of 116 kpps (100Mbit/s). First, the dummy program is loaded and
applied to the first 106 packets. After that, the next packet contains
the new program to be installed (change packet). In our case, we
install another dummy program to only measure the influence of
the change. Afterward, another 4 · 106 packets traverse the data
plane with the new program. We investigate the impact of the three
possible types of updates: loading a new program frommemory (i.e.,
pre-defined), from the source code, or the binary given in the change
packet (i.e., both extensible). For the two extensible approaches, we
also measure the authentication overhead. Further, we investigate
the impact for the extern and the pre-processor since mid- and post-
processor work similarly.

Figure 4 depicts the latencies for the packets before, during, and
after the changes for the pre-processor and the extern positions
for one test run. Figure 5 shows the latencies of only the packet
changing the program for ten test runs.

Memory: Update per memory means that the incoming change
packet specifies an ID that is mapped to a program that should be
loaded. The change has, as expected, a significantly higher latency
(median: 168 µs) since there the new program is applied. A few
following packets are also affected. The reason for the increased
latency may be either the filled buffer, or the worse branch predic-
tion/cache optimization directly after the new program is executed
the first times. Afterward, the latency is the same as before since
the semantics of the new program are the same. A similar picture
is drawn for the extern with the difference that the latency of the
change packet is smaller (median: 109 µs). In the extern, the new
program has just to be loaded into the execution environment,
while in the pre-processor, it has additionally to be bound as the
callback for the queues.

Source: Here, the change packets contain the source code, which
is compiled and bound to the execution environments.The latencies
are depicted for the pre-processor and the extern in Figures 4-1b)
and 2b). We used the -O0 compiler flag to reduce the compilation
time and its contribution towards latency. However, even then, the
approach is subjected to high latency (44ms, 36ms), resulting in
filled buffers and subsequent packet loss. Choosing a better but
more complex optimization strategy (e.g., -O3) would lead to worse
behavior at the moment of the program change.

Binary: To avoid the compilation delay to byte code, we investi-
gate the dynamic integration of eBPF binaries. Figures 4-1c) and
2c) show the latencies for the two positions. In both, the latency
of the change packet is increased but regresses swiftly. Again, the
change introduces less latency to the extern (median: 127 µs) than
to the pre-processor (median: 174 µs).

Authenticated updates: As discussed, dynamic code changes have
to be secured. Authentication introduces a median latency of 180 µs
(+6 µs) for the pre-processor and 130 µs (+3 µs) for the extern. Given
the limited impact of authentication on latency, authenticated dy-
namic updates are feasible.

6 Discussion
We implemented and investigated the integration of eBPF into
the software target T4P4S. When implementing it into hardware
targets, different requirements arise. Fixed position components
may be easier to integrate than flexible externs. Preprocessing in

eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia Simon et al.

0 20 40 60 80
0

100

200

La
te
nc
y
[µ
s]

a) memory

0 20 40 60 80
0

2

4

·104
b) source

before
after
dropped
change

0 20 40 60 80
0

100

200

c) prog

0 20 40 60 80
0

100

200

Experiment Time [ms]

La
te
nc
y
[µ
s]

0 20 40 60 80
0

2

4

·104

Experiment Time [ms]
0 20 40 60 80

0

100

200

Experiment Time [ms]

1)
pr

e
2)

ex
te
rn

1

Figure 4: Latencies before, during, and after change packet

memory prog auth
0
25
50
75
100
125
150
175
200

168

109

174

127

180

130

La
te
nc
y
[µ
s]

pre all extern

1

Figure 5: Latency of change packet (median as number)

eBPF is already performed on SmartNICs [3]. Implementing externs
inside the P4 pipeline becomes more challenging due to the fixed
clock rates between the pipeline stages. Conditional eBPF execution
would likely not result in a performance gain for the packets that
do not use the extern. Instead, the latencies are likely to be constant,
independent of the executed control flow of each packet [18]. An-
other difficulty is to synchronize the execution times required for
each stage. For that, the existing validators for eBPF guaranteeing
maximum cycle counts can help. The same requirements hold for
extensible updates, and maximum cycles have to be defined. Again,
validators can help calculate maximum cycles. This requirement is
more relaxed in software targets, i.e., run-to-completion targets.

eBPF helps ease runtime adaptability for hardware and software
targets. P4 is a domain-specific language designed for packet pro-
cessing exclusively; therefore, its execution can be optimized in
hardware targets. The results show that providing new function-
ality by distributing its source code is not feasible. Conversely, a
natively compiled binary can only be used on one specific platform.
As eBPF can be distributed as platform-independent byte code and,
as the results show, be installed in a timely manner, it is well-suited

to enable such mechanisms. The same binary can be used for all
targets, hardware, or software. The JIT compilation unleashes full
performance, optimizing it for the underlying machine architecture.

7 Conclusion
We discussed, implemented, and evaluated different approaches
to offload eBPF execution within P4. The overhead is smaller for
fixed-position components than for flexible externs. Fixed-position
components are likely easier to integrate into hardware targets.
However, externs are more flexible in their usage. For dynamic
changes, the fastest option is to activate pre-defined eBPF pro-
grams. However, the more powerful extensible updates, relying on
eBPF binaries, are feasible. Dynamic updates allow an interrupt
free service of the network. A dynamic network function can be
implemented and secured, leveraging authenticated updates. On
the other hand, sending dynamic updates using the source code
proved impractical due to the significant compilation overhead,
which eventually causes packet loss.

The results demonstrate that eBPF execution with dynamic and
seamless updates is possible, enabling a variety of new applications.
The source code of our implementaion is available on GitHub [26].

Acknowledgments
The authors thank Timon Tsiolis for his contributions and the
fruitful discussions, and the reviewers for their valuable feedback.
This work is partially funded by the European Union’s Horizon 2020
research and innovation programme (grant agreement no. SLICES-
PP 101079774 and GreenDIGIT 101131207). The German Federal
Ministry of Education and Research (BMBF) supported our work
under the projects 6G-life (16KISK002) and 6G-ANNA (16KISK107)
as well as the German Research Foundation (DFG) as part of the
HyperNIC (CA595/13-1) project.

Honey for the Ice Bear – Dynamic eBPF in P4 eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia

References
[1] Lane, Rich and others . 2024. GitHub uBPF - Userspace eBPF VM. https:

//github.com/iovisor/ubpf Last accessed: 2024-05-24.
[2] Marcelo Abranches, Oliver Michel, Eric Keller, and Stefan Schmid. 2021. Efficient

Network Monitoring Applications in the Kernel with eBPF and XDP. In 2021 IEEE
Conference on Network Function Virtualization and Software Defined Networks,
NFV-SDN 2021, Heraklion, Greece, November 9-11, 2021. IEEE, 28–34. https:
//doi.org/10.1109/NFV-SDN53031.2021.9665095

[3] Agilio CX SmartNICs. 2024. Netronome. https://www.netronome.com/products/
agilio-smartnics/ Last accessed: 2024-05-24.

[4] Gilberto Bertin. 2017. XDP in practice: integrating XDP into our DDoS mitigation
pipeline. In Technical Conference on Linux Networking, Netdev, Vol. 2. The NetDev
Society, 1–5.

[5] Matteo Bertrone, Sebastiano Miano, Fulvio Risso, and Massimo Tumolo. 2018.
Accelerating Linux Security with eBPF iptables. In Proceedings of the ACM
SIGCOMM 2018 Conference on Posters and Demos (Budapest, Hungary) (SIG-
COMM ’18). Association for Computing Machinery, New York, NY, USA, 108–110.
https://doi.org/10.1145/3234200.3234228

[6] BLAKE3-team. 2024. GitHub: BLAKE3-team/BLAKE3. https://github.com/
BLAKE3-team/BLAKE3/tree/master/c Last accessed: 2024-05-24.

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: programming protocol-independent packet processors.
Comput. Commun. Rev. 44, 3 (2014), 87–95. https://doi.org/10.1145/2656877.
2656890

[8] The P4 Language Consortium. 2021. P4 Portable NIC Architecture (PNA), version
0.5. https://p4.org/p4-spec/docs/PNA.html Last accessed: 2024-05-24.

[9] Rajdeep Das and Alex C Snoeren. 2023. Memory Management in ActiveRMT:
Towards Runtime-Programmable Switches. In Proceedings of the ACM SIGCOMM
2023 Conference (New York, NY, USA) (ACM SIGCOMM ’23). Association for
Computing Machinery, New York, NY, USA, 1043–1059. https://doi.org/10.1145/
3603269.3604864

[10] Mihai Dobrescu, Norbert Egi, Katerina J. Argyraki, Byung-Gon Chun, Kevin R.
Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.
2009. RouteBricks: exploiting parallelism to scale software routers. In Proceedings
of the 22nd ACM Symposium on Operating Systems Principles 2009, SOSP 2009, Big
Sky, Montana, USA, October 11-14, 2009, Jeanna Neefe Matthews and Thomas E.
Anderson (Eds.). ACM, 15–28. https://doi.org/10.1145/1629575.1629578

[11] DPDK. 2021. DPDK documentation—rte_bpf library. https://doc.dpdk.org/api-
21.08/rte__bpf_8h.html Last accessed: 2024-05-24.

[12] DPDK. 2021. DPDK documentation—rte_bpf_ethdev library. https://doc.dpdk.
org/api-21.08/rte__bpf__ethdev_8h.html Last accessed: 2024-05-24.

[13] eBPF community. 2024. eBPF - Introduction, Tutorials & Community Resources.
https://ebpf.io/ Last accessed: 2024-05-24.

[14] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. 2015. MoonGen: A Scriptable High-Speed Packet Generator. In
Proceedings of the 2015 ACM Internet Measurement Conference, IMC 2015, Tokyo,
Japan, October 28-30, 2015, Kenjiro Cho, Kensuke Fukuda, Vivek S. Pai, and Neil
Spring (Eds.). ACM, 275–287. https://doi.org/10.1145/2815675.2815692

[15] Yong Feng, Zhikang Chen, Haoyu Song, Wenquan Xu, Jiahao Li, Zijian Zhang,
Tong Yun, Ying Wan, and Bin Liu. 2022. Enabling In-situ Programmability in
Network Data Plane: From Architecture to Language. In 19th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2022, Renton, WA, USA,
April 4-6, 2022, Amar Phanishayee and Vyas Sekar (Eds.). USENIX Association,
635–649. https://www.usenix.org/conference/nsdi22/presentation/feng

[16] Sebastian Gallenmüller, Dominik Scholz, Henning Stubbe, and Georg Carle.
2021. The pos framework: a methodology and toolchain for reproducible
network experiments. In CoNEXT ’21: The 17th International Conference on
emerging Networking EXperiments and Technologies, Virtual Event, Munich, Ger-
many, December 7 - 10, 2021, Georg Carle and Jörg Ott (Eds.). ACM, 259–266.
https://doi.org/10.1145/3485983.3494841

[17] Jamal Hadi Salim, Deb Chatterjee, Victor Nogueira, Pedro Tammela, Tomasz Os-
inski, Evangelos Haleplidis, Balachandher Sambasivam, Usha Gupta, Komal Jain,
and Sosutha Sethuramapandian. 2023. Introducing P4TC - A P4 implementation
on Linux Kernel using Traffic Control. In Proceedings of the 6th on European P4
Workshop (EuroP4 ’23). Association for Computing Machinery, New York, NY,
USA, 25–32. https://doi.org/10.1145/3630047.3630193

[18] Eric Hauser, Manuel Simon, Henning Stubbe, Sebastian Gallenmüller, and Georg
Carle. 2022. Slicing Networks with P4 Hardware and Software Targets. In 5G-
MeMU ’22: Proceedings of the ACM SIGCOMMWorkshop on 5G and Beyond Network
Measurements, Modeling, and Use Cases, Amsterdam, The Netherlands, August 22,
2022, Özgü Alay and Ying Wang (Eds.). ACM, 36–42. https://doi.org/10.1145/
3538394.3546043

[19] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The eXpress
Data Path: Fast Programmable Packet Processing in the Operating System Kernel.
In Proceedings of the 14th International Conference on emerging Networking EX-
periments and Technologies (CoNEXT ’18). Association for Computing Machinery,

New York, NY, USA, 54–66. https://doi.org/10.1145/3281411.3281443
[20] Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman. 2019. The

P4->NetFPGA Workflow for Line-Rate Packet Processing. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA ’19). Association for Computing Machinery, New York, NY, USA, 1–9.
https://doi.org/10.1145/3289602.3293924

[21] Intel. 2023. Intel Ethernet Controller X550 Datasheet rev 2.7.
https://www.intel.com/content/www/us/en/content-details/333369/intel-
ethernet-controller-x550-datasheet.html Last accessed: 2024-05-24.

[22] Intel. 2024. Intel P4 Suite for FPGAs. https://www.intel.com/content/www/us/en/
software/programmable/p4-suite-fpga/overview.html Last accessed: 2024-05-24.

[23] Intel. 2024. Intel® Tofino™ Series Programmable Ethernet Switch
ASIC. https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series.html Last accessed: 2024-05-24.

[24] Simon Jouet and Dimitrios P. Pezaros. 2017. BPFabric: Data Plane Programma-
bility for Software Defined Networks. In 2017 ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems (ANCS). 38–48. https:
//doi.org/10.1109/ANCS.2017.14

[25] Jakub Kicinski and Nicolaas Viljoen. 2016. eBPF Hardware Offload to SmartNICs:
cls bpf and XDP. Proceedings of netdev 1 (2016).

[26] manuel simon. 2024. GitHub manuel-simon/t4p4s - Retargetable compiler for
the P4 language (fork) - branch: ebpf. https://github.com/manuel-simon/t4p4s/
tree/ebpf Last accessed: 2024-06-18.

[27] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Massimo Tumolo, and Mauri-
cio Vásquez Bernal. 2018. Creating Complex Network Services with eBPF: Expe-
rience and Lessons Learned. In 2018 IEEE 19th International Conference on High
Performance Switching and Routing (HPSR). 1–8. https://doi.org/10.1109/HPSR.
2018.8850758

[28] Tomasz Osinski, Jan Palimaka, Mateusz Kossakowski, Frédéric Dang Tran, El-
Fadel Bonfoh, and Halina Tarasiuk. 2022. A novel programmable software data-
path for Software-Defined Networking. In Proceedings of the 18th International
Conference on emerging Networking EXperiments and Technologies, CoNEXT 2022,
Roma, Italy, December 6-9, 2022, Giuseppe Bianchi and Alessandro Mei (Eds.).
ACM, 245–260. https://doi.org/10.1145/3555050.3569117

[29] P4ELTE. 2024. GitHub P4ELTE/t4p4s - Retargetable compiler for the P4
language - commit: a3a54e3. https://github.com/P4ELTE/t4p4s/commit/
a3a54e37521dcc61365d09dd705c3709a533e07a Last accessed: 2024-06-18.

[30] p4lang. 2024. GitHub p4c/backends/dpdk - DPDK backend. https://github.com/
p4lang/p4c/blob/main/backends/dpdk/README.md Last accessed: 2024-05-24.

[31] p4lang. 2024. GitHub p4c/backends/ebpf - eBPF Backend. https://github.com/
p4lang/p4c/blob/main/backends/ebpf/README.md Last accessed: 2024-05-24.

[32] p4lang. 2024. GitHub p4c/backends/ubpf - uBPF Backend. https://github.com/
p4lang/p4c/blob/main/backends/ubpf/README.md Last accessed: 2024-05-24.

[33] p4lang. 2024. GitHub p4lang/behavioral-model - BEHAVORIAL MODEL (bmv2).
https://github.com/p4lang/behavioral-model/blob/main/README.md Last ac-
cessed: 2024-05-24.

[34] Federico Parola, SebastianoMiano, and Fulvio Risso. 2021. A Proof-of-Concept 5G
Mobile Gateway with eBPF. In Proceedings of the SIGCOMM ’20 Poster and Demo
Sessions (Virtual event) (SIGCOMM ’20). Association for Computing Machinery,
New York, NY, USA, 68–69. https://doi.org/10.1145/3405837.3411395

[35] DPDK Project. 2024. DPDK. https://www.dpdk.org/ Last accessed: 2024-05-24.
[36] Pablo Salva-Garcia, Ruben Ricart-Sanchez, Enrique Chirivella-Perez, Qi Wang,

and Jose M. Alcaraz-Calero. 2022. XDP-Based SmartNIC Hardware Performance
Acceleration for Next-Generation Networks. J. Netw. Syst. Manag. 30, 4 (2022),
75. https://doi.org/10.1007/s10922-022-09687-z

[37] Dominik Scholz, Daniel Raumer, Paul Emmerich, Alexander Kurtz, Krzysztof
Lesiak, and Georg Carle. 2018. Performance Implications of Packet Filtering with
Linux eBPF. In 30th International Teletraffic Congress, ITC 2018, Vienna, Austria,
September 3-7, 2018 - Volume 1. IEEE, 209–217. https://doi.org/10.1109/ITC30.
2018.00039

[38] David L. Tennenhouse and David J. Wetherall. 1996. Towards an Active Network
Architecture. SIGCOMM Comput. Commun. Rev. 26, 2 (apr 1996), 5–17. https:
//doi.org/10.1145/231699.231701

[39] William Tu, Fabian Ruffy, and Mihai Budiu. 2018. P4C-XDP: Programming the
Linux Kernel Forwarding Plane using P4. In Linux Plumbers Conference.

[40] William Tu, Joe Stringer, Yifeng Sun, and Yi-Hung Wei. 2018. Bringing the Power
of eBPF to Open vSwitch. In Linux Plumbers Conference. 11.

[41] Péter Vörös, Dániel Horpácsi, Róbert Kitlei, Dániel Leskó, Máté Tejfel, and Sándor
Laki. 2018. T4P4S: A Target-independent Compiler for Protocol-independent
Packet Processors. In IEEE 19th International Conference on High Performance
Switching and Routing, HPSR 2018, Bucharest, Romania, June 18-20, 2018. IEEE,
1–8.

[42] Jiarong Xing, Kuo-Feng Hsu, Matty Kadosh, Alan Lo, Yonatan Piasetzky, Arvind
Krishnamurthy, and Ang Chen. 2022. Runtime Programmable Switches. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 22).
USENIX Association, Renton,WA, 651–665. https://www.usenix.org/conference/
nsdi22/presentation/xing

https://github.com/iovisor/ubpf
https://github.com/iovisor/ubpf
https://doi.org/10.1109/NFV-SDN53031.2021.9665095
https://doi.org/10.1109/NFV-SDN53031.2021.9665095
https://www.netronome.com/products/agilio-smartnics/
https://www.netronome.com/products/agilio-smartnics/
https://doi.org/10.1145/3234200.3234228
https://github.com/BLAKE3-team/BLAKE3/tree/master/c
https://github.com/BLAKE3-team/BLAKE3/tree/master/c
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://p4.org/p4-spec/docs/PNA.html
https://doi.org/10.1145/3603269.3604864
https://doi.org/10.1145/3603269.3604864
https://doi.org/10.1145/1629575.1629578
https://doc.dpdk.org/api-21.08/rte__bpf_8h.html
https://doc.dpdk.org/api-21.08/rte__bpf_8h.html
https://doc.dpdk.org/api-21.08/rte__bpf__ethdev_8h.html
https://doc.dpdk.org/api-21.08/rte__bpf__ethdev_8h.html
https://ebpf.io/
https://doi.org/10.1145/2815675.2815692
https://www.usenix.org/conference/nsdi22/presentation/feng
https://doi.org/10.1145/3485983.3494841
https://doi.org/10.1145/3630047.3630193
https://doi.org/10.1145/3538394.3546043
https://doi.org/10.1145/3538394.3546043
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3289602.3293924
https://www.intel.com/content/www/us/en/content-details/333369/intel-ethernet-controller-x550-datasheet.html
https://www.intel.com/content/www/us/en/content-details/333369/intel-ethernet-controller-x550-datasheet.html
https://www.intel.com/content/www/us/en/software/programmable/p4-suite-fpga/overview.html
https://www.intel.com/content/www/us/en/software/programmable/p4-suite-fpga/overview.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://doi.org/10.1109/ANCS.2017.14
https://doi.org/10.1109/ANCS.2017.14
https://github.com/manuel-simon/t4p4s/tree/ebpf
https://github.com/manuel-simon/t4p4s/tree/ebpf
https://doi.org/10.1109/HPSR.2018.8850758
https://doi.org/10.1109/HPSR.2018.8850758
https://doi.org/10.1145/3555050.3569117
https://github.com/P4ELTE/t4p4s/commit/a3a54e37521dcc61365d09dd705c3709a533e07a
https://github.com/P4ELTE/t4p4s/commit/a3a54e37521dcc61365d09dd705c3709a533e07a
https://github.com/p4lang/p4c/blob/main/backends/dpdk/README.md
https://github.com/p4lang/p4c/blob/main/backends/dpdk/README.md
https://github.com/p4lang/p4c/blob/main/backends/ebpf/README.md
https://github.com/p4lang/p4c/blob/main/backends/ebpf/README.md
https://github.com/p4lang/p4c/blob/main/backends/ubpf/README.md
https://github.com/p4lang/p4c/blob/main/backends/ubpf/README.md
https://github.com/p4lang/behavioral-model/blob/main/README.md
https://doi.org/10.1145/3405837.3411395
https://www.dpdk.org/
https://doi.org/10.1007/s10922-022-09687-z
https://doi.org/10.1109/ITC30.2018.00039
https://doi.org/10.1109/ITC30.2018.00039
https://doi.org/10.1145/231699.231701
https://doi.org/10.1145/231699.231701
https://www.usenix.org/conference/nsdi22/presentation/xing
https://www.usenix.org/conference/nsdi22/presentation/xing

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Approach
	3.1 Placement in the P4 Pipeline
	3.2 eBPF Functionality
	3.3 Security

	4 Implementation
	5 Evaluation
	5.1 Setup
	5.2 Overhead of eBPF components
	5.3 Dynamic Program Loading

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

