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Abstract—Novel applications require a robust and reliable
connection to provide the services for next-generation networks.
The complex nature of these algorithms needs fast and ef-
ficient stateful processing. Using Software-defined Networking
(SDN), new algorithms can be implemented into the network
in a platform-independent way. The upcoming Portable NIC
Architecture (PNA) for P4, a language to program data planes
in SDN, allows inserting new table entries without controller
interaction. Thus, it unleashes more performant and stateful
applications without the overhead of the controller. We implement
and evaluate these so-called ‘add-on-miss’ insertions introduced
by the PNA for a P4 software target. In addition, we discuss the
influence of latency and throughput optimizations on software
packet processing systems. We determine the impact of these
optimization strategies and which performance properties and
costs can be measured with each. In our analysis, we model the
costs of insertions based on an extensive baseline and compare
them to table entry lookups and updates. We analyze the influence
of the frequency of insertions and multi-core scenarios. Finally,
we demonstrate that the approach scales for realistic scenarios.

Index Terms—SDN, State Management, P4, Add-on-Miss

I. INTRODUCTION

The upcoming 6G standard for communication networks
will enable novel and complex applications, ensuring an ultra-
low end-to-end latency as well as an ultra-low packet loss rate.
Connections with these properties are essential for critical ap-
plications in domains such as transport, industry, and medicine.
Optimized reliability methods are necessary to achieve these
goals. An example of such an approach is hybrid automatic
repeat request (HARQ). This algorithm increases the reliability
of connections using forward error correction and repetition of
non-acknowledged packets. Such complex algorithms must be
distributed across different components in a network, either to
the network interface card (NIC) or entirely to middleboxes
to deal with demanding network applications.

P4 [1] is a platform-independent language to describe the
data plane targeting high-performance, vendor-independent
packet processing. With the upcoming Portable NIC Archi-
tecture (PNA) [2], P4 becomes a language to program both
in-network switches and end-host applications. The latter is
gaining attention due to efforts to bring P4 into the Linux
Kernel [3]. Moreover, Intel announced that the SmartNIC
E2000 will support the P4 language [4]. The capability of
efficient state management becomes especially important when
P4 programs are executed on the end of the communication
path. Typical stateful scenarios include TCP flow tracking and
the monitoring of connections.

The PNA enables stateful packet processing directly on the
data plane. This new feature can speed up existing stateful
P4 applications, such as IDS (e.g., P4ID [5]), stateful fire-
walls (e.g., P4SF [6]), or flow monitoring (e.g., NetSeer [7]).
However, the statefulness of the P4 processing pipeline may
introduce effects that are absent from the current generation
of P4 devices, such as the impact on latency or jitter caused
by state updates. The fundamental change in PNA requires a
fundamental change to the measurement methodology used to
investigate device behavior. Therefore, we establish a novel
measurement methodology and apply it to a modified version
of the P4 software target T4P4S [8]. This modified version
supports add-on-miss insertions introduced by the PNA.

Our contributions can be summarized as follows: the defi-
nition of a measurement methodology focusing on the effects
of stateful packet processing; the implementation of insertions
in a software P4 target; the analysis of relevant performance
indicators for PNA state updates; and the measurement and
analysis for a comparison of costs for table entry lookups,
updates, and insertions in a software P4 pipeline.

II. BACKGROUND & IMPLEMENTATION

a) P4: P4 [1] provides a target-independent way of pro-
gramming network forwarding devices, relying on compilers
for different targets. This concept allows vendor-independent
mechanisms and gives sovereignty to the network operator.
So-called externs can utilize non P4-based extensions.

Several P4 targets exist, which can be classified as hardware
and software targets. Hardware targets provide the highest
performance in terms of throughput and latency. They usually
follow a pipeline model with multiple stages executing specific
subtasks of the program. Several packets are processed simul-
taneously but at different stages in the pipeline. This process-
ing approach becomes important considering the consistency
of state updates. Software targets, on the other side, provide
the highest degree of flexibility. While their performance is
lower, software targets run on commodity hardware and allow
the easy integration of new functionality. Software targets
typically follow the run-to-completion approach for packet
processing. In this approach, different subtasks are handled by
the same CPU core to avoid costly transfers of packets between
different cores [9]. For our evaluation, we use T4P4S [8],
which translates the P4 program to C code linked with
DPDK [10], a userspace library for high-performance packet
processing.



b) State Updates in P4: Data plane state in P4 is
traditionally handled by registers. These externs provide index-
based read and write access. However, they lack matching
support to search for and select specific entries. The size
and number of registers are limited, restricting the amount
of maintainable state. Moreover, state may be fragmented in
memory, negatively impacting performance.

In addition, tables can be used to maintain state. A table
entry consists of the key(s) to be matched, associated with an
action and the parameters to call the action. However, using
traditional P4, table entries could only be modified by the
control plane, including additional round trips. Table updates
can be distinguished into two operations: new state can be
inserted, meaning a new table entry with its keys, action, and
associated parameters is created and inserted into the table.
Additionally, existing table entries, i.e., the action parameters,
can be modified after the lookup. The underlying table data
structure has to provide consistency for both types: inserts and
updates. For inserts, the modification of the data structure itself
has to be synchronized to allow insertions of possibly multiple
producers. For updates, the modification of each individual
entry has to be synchronized to avoid race conditions and stale
data shared by multiple consumers.

The data plane can request an update or insertion of an
entry by sending a digest to the controller. The controller
afterward decides to allow or deny the request and sends a
notification to the data plane to trigger the update or insertion.
This digest-based approach causes at least one RTT overhead
(in T4P4S: hardcoded one-second-sleep). Allowing the data
plane to change the table entries helps increase performance
by avoiding the detour over the controller. This immediate
reaction to table modifications facilitates the use of P4 in
latency-critical applications.

c) Portable NIC Architecture: Different P4 models or
architectures specify the capabilities of the used target. While
the prominent P4 architectures (v1model and Portable Switch
Architecture (PSA) are designed for in-network switches, the
PNA standard focuses on bringing P4 to end devices, such as
NICs. The PNA aims to offload specific tasks to the NIC to
speed up functionality and to address requirements for state-
keeping. For instance, packet processing tasks in end hosts,
such as handling protocols like TCP or QUIC, tend to be more
complex and require frequent state modifications.

The PNA targets may support table changes: insertions
and updates. While insertions create a new table entry for a
non-existing key, an update changes an existing entry. PNA
allows add-on-miss insertions, which are performed on
lookup misses and can be activated for given tables. These
insertions are triggered with the same key, that caused the
table lookup miss. Inside the default action code, a new extern
add_entry<T>() allows adding a new entry to the table
with a specified associated action.

Updates allow the action code to use the parameters on
the left-hand side of an assignment. Changes to the write-
back parameters are synchronized to the underlying table.
Furthermore, PNA allows the specification of an expiry timer,

after which the control plane may delete an unused entry.
This can be useful if, e.g., protocol session state is no longer
required, e.g., after a TCP session timeout.

d) Implementation: We use the modifications for updat-
able table entries implemented in previous work [11] as the ba-
sis of our implementation, which is available on GitHub [12].
It uses a lock-free hash table provided by DPDK, which
is compatible with table updates. The lock-free mechanism
applies an optimistic approach, checking at the end of the
transaction whether there were concurrent changes and repeat-
ing the process if required. The consistency towards multiple
insertions is ensured. However, the optimistic approach may be
unsuited for heavy insertion scenarios with multiple threads.
In that case, the transactions have to be restarted, potentially
multiple times, to eventually reach a consistent state.

For the P4 code translation, two adaptions had to be made:
The functionality of the new extern method add_entry has
to be generated for add-on-miss enabled tables. The method
requires the table name and the keys to be added, which are
only implicitly given in the P4 source code. Therefore, we pass
the table name to the action and recalculate the key inside the
add_entry function. To minimize the overhead, the table
name is passed only to default actions of add-on-miss tables.

e) Performance Indicators: The two main features of
the PNA are the add-on-miss insertions of table entries and
the possibility to update existing ones. Both interweave with
each other to provide efficient state management. Therefore,
an evaluation has to answer the following questions: 1) What
is the cost of an insertion? How does it compare to the cost of
lookups? 2) What is the maximum throughput when adding
new entries? How does the insertion rate influence it? 3) How
do the cost of insertions differ from the cost of updates?

Question 1 infers a worst-case analysis that only consists
of insertions. The comparison to the cost of lookups gives the
relative overhead for a target whose maximum performance
can be different. We will use the cost model presented in
Section IV to answer it. We investigate a more realistic use
case in Question 2, where only a subset of packets causes state
insertions. For instance, TCP connection tracking requires an
insertion for a new flow, but most traffic will update already-
known flows. Therefore, it is important to investigate state
insertions at different rates to see their impact on the maximum
throughput. This way, the programmer or network operator is
able to infer requirements for a given use case. Question 3
helps to weigh the costs and effects of creating a new state or
changing an existing one. I.e., it answers whether the usage
of placeholder entries might help improve performance.

III. RELATED WORK

a) Stateful packet processing architectures: Verdu et
al. [13] propose a multi-layered architecture named MLP
for packet processing that exploits parallelism as much as
possible. Their results demonstrate that the well-established
paradigms run-to-completion and software pipelining both
come with drawbacks for stateful processing. Bianchi et
al. [14] discussed OpenState as a way to maintain state



inside OpenFlow applications. For that, an extended Finite
State Machine XFSM is implemented in the data plane,
avoiding controller interaction and splitting the tables into
flow-tables and an XFSM table. With Open Packet Proces-
sor [15], they generalize the XFSM-based approach to run
it on hardware. It still has similar concepts as OpenFlow
and relies on a flow context table giving access to flow-
related state. It allows more sophisticated stateful tasks than
the basic OpenFlow match/action model. The approach is
further extended into FlowBlaze [16], designed by Pontarelli
et al., who implemented it for the NetFPGA platform. Sun
et al. [17] follow a similar approach called SDPA, proposing
a stateful “match-state-action” paradigm for Software-defined
Networking (SDN). In contrast to Bianchi et al., they also
claim to support indefinite state machines.

b) State Updates in P4: State update considerations
using the P4 language also exist. Caiazzi et al. [18] present
Switcharoo, implementing a key-value data structure into the
ASIC-based P4 hardware target Intel Tofino. Their imple-
mentation runs entirely in the data plane, thus avoiding any
overhead from the controller, enabling high performance for
stateful applications. In previous work [11], we implement a
way to update existing table entries in a P4 software target in
the data plane. We also discuss, which consistencies must be
maintained in state updates and how flow-related state differs
from global state. FlowBlaze was implemented in P4 [19] and
provides updatable state in registers that are mapped through
a flow context table. It thereby introduces some indirection.
The software target P4-DPDK [20] supports the PNA and its
table state modifications.

c) Distributed Data Plane State: Data plane state may
require network-wide synchronization. Luo et al. [21] imple-
mented a framework named Swing State for state management
and consistent state migration to other nodes. They implement
a P4 prototype of the framework that piggybacks the state
on live traffic and automatically identifies state to migrate
with static analysis of the P4 program. SwiSh [22] is a
state management layer for P4 programs. There, Zeno et al.
implement different consistency protocols to distribute state
and evaluate it using an Intel Tofino ASIC. Zhou et al.
present P4Update [23], implementing distributed consistent
network updates using P4. Consistency is ensured using local
verification of the update messages, relieving the control plane.

While there is significant interest in (P4-based) stateful
packet processing and its evaluation, there is also a lack of a
concise measurement methodology for that. In this paper, we
aim to provide such a measurement methodology and apply
this to our implementation of a PNA software target.

IV. METHODOLOGY

Our performance evaluation aims to calculate the oper-
ations’ costs, i.e., CPU cycles. Software packet-processing
systems process batches of packets to reduce the I/O overhead
from/to the NIC. The size of the batches influences the sys-
tem’s behavior, ranging from latency-optimized (l.-opt.), i.e.,
smaller batch size, e.g., one, to throughput-optimized (t.-opt.),

Table I: Variables and their units for the model

Variable Description Unit

n Batch size packets
Bn I/O cost of batch with size n CPU cycles
ci Processing cost of packet i CPU cycles
cavg Average processing cost per packet CPU cycles
fCPU CPU frequency / cycles per second CPU cycles / s
Cn Processing cost of batch with size n CPU cycles

e.g., batch size 32+. There also exist approaches to self-adjust
the batch size according to the currently processed traffic
[24]. The optimization towards one of these performance goals
influences what and how the costs of the performed operations
can be measured. In the following, we describe performance
models for both optimizations, assuming constant batch I/O
costs. Table I lists all used variables for the built models.

a) Batch Model: For the performance model, we assume
that the I/O cost Bn for a batch is constant, depending on
the size of the batch n. These costs include the transfer of
the packets from/to the NIC and all preprocessing required to
access the packets. Each packet i of a batch further requires
processing costs ci, which may be different for each packet.
The cost of the whole batch Cn can be modeled as in Eq. 1:

Cn = Bn +

n∑
i=1

ci (1)

When achieving a packet rate of r, r/n batches are processed
in the given time interval. Thus, fCPU can be set equal to the
costs per second, as in Equation 2:

fCPU = Cn · r
n
=

(
Bn +

n∑
i=1

ci

)
r

n
(2)

Increasing per-packet cost ci, therefore, raises the number
of CPU cycles spent on processing. In a run-to-completion
model, this results in both a higher latency of the whole batch
Cn and a decrease in the throughput r.

b) Throughput-optimized: A t.-opt. software packet-
processing system aims for a larger batch size Bn, as the
influence of n is minimal. A larger batch size is helpful to
amortize this (constant) overhead Bn. On the other hand, the
latency is increased since the first packet is not sent out until
the last packet of the batch has been processed. Miao et al. [24]
give additional insights into batched queueing costs.

In previous work [25], we derived the I/O overhead using
a baseline scenario. To create the baseline, we measure a
simple Layer 2 forwarder with minimal packet processing to
approximate an I/O-only scenario. Using the CPU frequency
fCPU and the packet rate of the baseline rbaseline, we calculate
the per-packet I/O overhead. The processing costs ci are 0 in
this case, inserting into Eq. 2, gives Cn = Bn = f/rbaseline.
Using this baseline, and cavg = Cn/n, Eq. 3 models the costs:

fCPU

r
=

fCPU

rbaseline
+ cavg ⇒ cavg =

fCPU

r
− fCPU

rbaseline
(3)

However, this model can only be used to calculate average
costs, which infer that the operation performed on each packet



(a) Same operation, t.-opt. system
NIC Input 1 2 3 4 5 6 7 8 NIC Output

(b) Different operations, t.-opt. system
NIC Input 1 2 3 4 5 6 7 8 NIC Output

(c) Same op., l.-opt. system
NIC Input 1 NIC Output

(d) Diff. ops., l.-opt. system
NIC Input 4 NIC Output

Figure 1: Model of average (t.-opt.) and packet (l.-opt.) costs

Table II: Testbed specifications

Measurement Intel Xeon CPU RAM Intel NIC

Throughput E5-2620 v2 @ 6×2.1 GHz 128 GB 82599WS
Latency D-1518 @ 4×2.2 GHz 32 GB X552

should be the same, as depicted in Figure 1a. If the operations
differ or the cost of the operation is not constant, as it is
depicted in Figure 1b, the individual costs cannot be measured.
In the example, we cannot calculate the different costs of the
blue and the yellow (4) packets, but only the average cost
of all measured packets. Since we are interested in comparing
different operations, i.e., lookup and insertion of state, we have
to switch to a l.-opt. version of the software target.

c) Latency-optimized: In a l.-opt. system, the batch size
is minimized to improve latency at the cost of amortizing I/O
expenses. Reducing output batch size alone might be enough
for latency improvements. This investigation only discusses a
shared batch size for input and output since the performance
models are built on differences towards baseline scenarios.
Reducing the throughput sufficiently also leads to a smaller
batch size since the queues are only partially filled then.

Figures 1c and 1d show a reduced batch size of one. If
packets cause operations with non-constant costs or different
operations, these only affect the single packet of the batch.
Therefore, a l.-opt. system is suited to measure the costs of
each packet and not only the average cost.

We previously modeled the cost per packet, measuring the
latency [26]. Again, we can compare different latencies li (in
seconds) to a baseline scenario lbaseline, i.e., a forwarder, to
calculate the cost ci of packet i:

ci = fCPU · (li − lbaseline) (4)

Using our test setup, we can determine the latency of
every processed packet. Following the performance model,
we determine individual packet costs, even if they carry out
different operations. We investigate both versions, optimized
for throughput or latency. The first evaluates the maximum per-
formance and, therefore, the practicability of the approaches.
The latter analyzes the involved costs in detail.

V. SETUP

a) Topology: For the evaluation, we use two different
setups, cf. Table II. A two-host topology is used to measure
the maximum throughput. The Device under Test (DuT) is
interconnected using a 10 Gbit/s fiber link with the load

generator (LoadGen). The LoadGen generates traffic using
MoonGen [27], which is processed and forwarded by the
DuT. For latency measurements, we use a three-host topology.
Both links are mirrored using an optical splitter towards the
Timestamper that timestamps all packets with a precision of
12.5 ns [28] for latency calculation.

b) DuT: The DuT runs T4P4S (based on DPDK 21.08)
with the modifications required for state updates and inser-
tions [12] on Debian Bullseye. It uses a P4 program that has
one table performing a table lookup on a specified key in
a packet header. Based on the existence of an entry in the
one P4 table, the looked-up value is sent back using another
header field. If there is no matching entry, an add-on-miss
insertion is triggered. Upcoming lookups of the same key will
eventually succeed afterward. Every packet is forwarded back
to the originator. The batch size in the t.-opt. measurements is
set to 32. For latency optimization, we turn off any draining
and send out processed packets without waiting for the output
batch to be filled, i.e., the effective output batch size is one.

c) Scenario: The LoadGen generates traffic in 300 flows,
alternating the source IP address with a constant bitrate (CBR).
All packets have a size of 84 B without CRC. The key k that
is used for lookup by the P4 program cycles pseudorandomly
through k ∈ [0,m] in a way that the cycle hits every element
exactly once before the cycle repeats, i.e., the period length of
the generated sequence is m. Therefore, the experiment can be
divided into two phases: 1) The first m packets will trigger an
insertion, as the key is unknown. 2) The following packets will
contain a key already in the table, so a lookup is performed. To
measure the influence of different insertion rates r, every r-th
packet contains a new key in the range [m, 2m]. That way,
the first phase covers the insertion-only traffic. The second
phase covers the usual case of rare insertions into a non-empty
table. The explained scenario is typical for a newly started
device, such as a stateful firewall. Shortly after starting, state
of tracked connections is mainly inserted, after that, during
regular operation state is mainly looked up.

For the throughput measurements, the maximum bitrate is
determined, which still achieves a packet loss of < 0.01 %.
The rate is calculated with an accuracy of < 1 Mbit/s.

For the latency measurements, we generate traffic with a
CBR of 300 Mbit/s. That way, we ensure to not overload the
device. Using low-rate CBR traffic and a minimized batch
size, we ensure measuring the cost, i.e., the latency, of each
individual packet, while mitigating the influence of batching
and queueing. The latency plots show each 997th packet to
handle the figure sizes, but every insertion during the second
phase is shown and all packets are considered for analysis.

VI. EVALUATION

We first examine the performance of a forwarder to deter-
mine the baseline. Afterward, we dive into the performance
evaluation of the insertions at different frequencies and com-
pare them to lookups and table entry changes.

a) Baseline: We use a P4 forwarder program, which only
sets the egress port, to measure the I/O overhead Bn. The
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Figure 2: Latencies of P4 forwarder

processing costs ci equal 0 in this case. We investigate both
the t.- and l.-opt. versions of T4P4S.

Figure 2a shows the occurring latencies of the batched
version. The 32 batching stages can be clearly observed.
Therefore, the latency has a high variance and a comparable
high median of ≈28.8 µs (cf. Figure 2c). The measurements
demonstrate that numerically smaller latencies occur more
frequently. With a packet rate of 300 Mbit/s, the first few
batching stages are filled more often and corresponding la-
tencies happen more often. This observation can be confirmed
when investigating higher packet rates.

The l.-opt. version, depicted in Figure 2b, has, as expected, a
lower median latency of 3.5 µs (cf. Figure 2c) and the variance
is small. However, the achievable throughput is reduced. The
l.-opt. version achieves a maximum packet rate of ≈4.36 Mpps
compared to a rate of ≈6.76 Mpps, a decrease of ≈54.9 %, in
a single-core scenario (cf. Figure 4). Looking into multi-core
scenarios, both versions scale. The median latency of the l.-
opt. versions remains approx. constant (cf. Figure 2c). The
latency of the t.-opt. version increases when using more than
one core but remains similar when using more than two cores.
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Figure 3: Comparison of base operations using one core
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Figure 4: Comparison of throughput for insertion-only (first
phase) and the optimized forwarders using up to six cores

The throughput of both versions (cf. Figure 4), however, scales
linearly until hitting the line rate.

To build our models in the following steps, our base-
line single-core performances are rbaseline=6.76 Mpps for the
throughput, and lbaseline=3500 ns for the latency measurements.

b) Insertions Only: First, we conducted the scenario ex-
plained in Section V-0c, with insertions only in the first phase,
i.e. r=0. Figure 3 shows the latency of the two phases. The
median latency of the first phase (insert) is ≈4000 ns, and the
latency of the second phase (lookup) ≈3687 ns. Additionally,
another experiment was performed, which updated the table
entries by setting their value according to the header field
of the incoming packet. Therefore, an update/change is per-
formed instead of a lookup. Its median latency is comparable
to the median of the lookup; its difference is less than two
times the timestamp resolution.

The maximum achievable packet rates for the first insertion-
only phase are depicted in Figure 4 (in orange). The packet
rate starts with ≈1.38 Mpps using a single core and increases
up to ≈2.35 Mpps using three cores. Afterward, the overhead
of the optimistic locking mechanism becomes more dominant,
and therefore, the performance decreases.

Table IIIa shows the calculated costs following the model of
Eq. 4. The costs are modeled using the median measured la-
tencies for each operation. In the model, we consider constant
I/O and processing costs. The latency, however, is affected
by additional, non-deterministic factors introducing variance
to the measurements. An insertion is approx. two times more
expensive than a lookup or insertion in a single-core scenario.
This assumption only holds for batched insertions.

c) Insertion Rates: Batched table insertions may be used
at the start-up but are unrealistic during regular operation.



Table III: Modelled Costs/CPU-Cycles

∆ l [ns] Cycles

Insertion 500 1100
Lookup 187 411
Update 163 358

Resolution 12.5 28
(a) Operations

Insertion Rate ∆ l [ns] Cycles

1 500 1100
10 587 1291

100 649 1428
1000 912 2006

10000 1337 3941
100000 2749 6048

(b) Insertions with different rates
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Figure 5: Latencies while inserting 220 new entries through
add-on-miss, followed by ≈ 4M additional packets, with an
insertion rate of 10 000 using one core

Therefore, we now investigate how performance changes when
the insertions happen at lower frequencies. For that, we include
additional insertions into the second phase of the experiment.

Figure 5 shows the measured latencies when every 10 000-th
packet triggers an additional insertion during the second phase.
Still, the latency of the insertions (orange) in the first phase is
lower than that of the lookups (blue). However, the additional
insertions in the second phase have an increased latency
compared to the lookups and the first phase’s insertions.
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Figure 6: Comparison of different insertion-rates on one core

Figure 6b shows the occurring latencies for different inser-
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Figure 7: Maximum throughputs having insertions with differ-
ent rates using up to six cores; line rate (lr) depicted in gray

tion rates. The latency of the packets triggering an insertion
increases, the less often these insertions happen. While the
median latency is about 4087 ns with an insertion rate of ten, it
rises to ≈6249 ns for a rate of 100 000, an increase of ≈52.9 %.

Table IIIb shows the modeled costs for these different rates.
The increased costs are likely due to worse cache optimization
and branch prediction. Different branches of the compiled
C program are taken when mixing different operations. This
problem mainly concerns software targets since these run on
a CPU with such optimizations. Hardware targets follow the
pipeline approach and, therefore, come with constant latency
independent of the executed branch.

On the other hand, the overall median latency for the mix
of lookups and insertions slightly decreases with a decreasing
rate as shown in Figure 6a. The insertions themselves are more
expensive, but costs are amortized due to their rare occurrence.

Figure 7 depicts the maximum achievable throughputs for
the different insertions rates. As explained, the throughput is
an indicator of the average costs. The more costly insertions
are amortized with rare insertions, and the achievable packet
rates are approx. constant, starting with an insertion rate of
102. Additionally, for these realistic scenarios, the throughput
scales linearly with the number of CPU cores used.

However, the packet rates guaranteeing a zero-packet loss
behavior are reduced for an insertion rate of 10 in multi-core
scenarios: In single-core scenarios, the throughput is increased
towards the insertion-only performance: from ≈1.38 Mpps to
≈2.41 Mpps. The picture changes for multi-core scenarios.
There, the performance drops to ≈0.42 Mpps independently of
the number of cores. In this case, the mixture of operations and
concurrent access decreases the performance of the underlying
data structure. Although lock-free, the optimistic approach of
the DPDK hashtable seems to be overloaded. The approach
checks whether the table remained unchanged during the
operations. In case it was altered in between, the operation
is executed again. Fortunately, the limitation only exists for
rather unrealistic frequencies of insertions.

VII. DISCUSSION & CONCLUSION

In this paper, we implemented and evaluated add-on-miss
insertions in a P4 software target. These on-the-fly insertions
allow new applications to run in the data plane and improve
performance by avoiding any overhead with the control plane.



The question, whether this is a step backward in SDN, may
arise. The split into a fast data plane and a more complex
control plane was made by intent. This separation leads to
clear responsibilities and better performance. State updates and
insertions in the data plane without controller interaction blur
the concept to a certain extent. However, we argue that global
and local state can work hand-in-hand. A globally maintained
and potentially synchronized state between several nodes will
still be needed. The controller is still required to ensure a
consistent global view. On the other hand, the local state helps
implement applications requiring flow and state tracking, but
the kept state is optional for the general network behavior.
Hence, it is not required that the control plane is kept informed
about the local state. Moreover, the PNA proposal with the
state updates originates from the P4 and SDN community. As
the PNA brings P4 to the end-host, statekeeping is required
anyway to offload applications to the NIC.

Our results show that the cost of insertions is approx. two
times higher than table entry lookups or updates. Due to worse
branch prediction and cache optimization, the insertion cost
depends on the insertion rate, at least on software targets.
Therefore, exceptionally high insertion rates (e.g., every 10th
packet) on different cores lower the performance. However,
these effects did not occur for the other, more realistic, rates,
we measured in our investigation. At this point, the lock-free
solution scales well in multi-core scenarios, considering the
throughput and the baseline performance of T4P4S.

Limitations on the influence of insertion rates do not apply
to hardware targets. Their pipelined architectures typically
offer constant latency. All pipeline stages are traversed in-
dependently of the taken control flow. On the other hand,
ensuring consistency becomes harder when many packets are
processed at different stages, as a packet may change the
shared state in a previous stage.
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