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Introduction

State Keeping in Data Planes

• 6G aims for low-latency but high-resilient communication
• State keeping is essential for many applications
• Registers (arrays) are unstructured memory areas accessible by indices

• may be fragmented in memory
• no matching support
• limited functionality

• In tables, structured state can be accessed by sophisticated key matching
• State is often kept by the control plane, which decreases performance for state-heavy applications
• We implemented state keeping via tables directly in the data plane
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Introduction
Background

P4

• P4 [2] is a domain-specific language for SDN data planes
• In P4, registers are changeable within the data plane, tables only by the control plane

→ Updatable table entries would increase performance
→ In previous work implemented them for the P4 software target T4P4S using an @__ref annotation [8]

→ Here, we present add-on-miss insertions to tables [7]

T4P4S

• T4P4S [9] is a hardware-independent transpiler from P4 to C code linked with DPDK developed by ELTE
• The Data Plane Development Kit (DPDK) is an open-source framework enabling fast packet processing in user space
• DPDK performs Receive Side Scaling (RSS) to split traffic among several lcores/threads
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Table Updates
Digest - Current P4 Way

Data Plane Control Plane

Match-Action

Parser

Deparser Tables

lookup

change

digest

Current State
• For changes in match-action tables, the data plane

has to send a digest to the control plane
• in T4P4S: the controller is a separate process, com-

munication via a socket (low round-trip time (RTT))

• Controller requests data plane to update the table

→ Digest-based approach introduces overhead

Approaches
• Digest: introduces a sleep of 1 second or 1 RTT

⇒ impractical for frequent updates

• Add-On-Miss: direct update in the data plane
⇒ avoids the detour over the controller
⇒ improves performance
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Related Work

• The upcoming Portable NIC Architecture (PNA) [1]
• brings P4 to the NIC/SmartNIC
• will allow adding entries on lookup misses

• FlowBlaze [6] allows state updates in programmable data planes relying on registers
• Switcharoo [3] implements a key-value store entirely in the P4 Tofino data plane

• Swing State [5] allows consistent state migration to other P4 nodes
• P4Update [11] implements districtued consistent network updates in P4
• SwiSh [10] implements a distributed state layer to programmable switches
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Add-On-Miss – Implementation

• Upcoming P4 Portable NIC Architecture (PNA) defines new table property: add_on_miss and new extern for exact
matches

table forward {
actions= {forward, add}
key = {hdr.eth.srcAddr: exact;}

add_on_miss = true;
default_action=add;

}

action forward(bit<48> dstMac) {
...

}

action add() {
bit<48> dstMac = 0xffffffffffff;

add_entry<forward_params_t>

("forward", {dstMac});

}

• For our implementation of these language features in T4P4S, we profit from the adaptions to the synchronization
mechanism of the tables done in previous work
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Evaluation
Setup

DuT LoadGen
◀
▶

◀
▶

Timestamper

◀ ◀

DuT
• Intel Xeon D-1518 2.2 GHz, 32 GB RAM
• Latency optimized T4P4S
• add_on_miss activated

LoadGen
• MoonGen [4] is used to generate traffic
• Contains key and value of new entry
• Packet size 84 B

Timestamper

• Packet streams duplicated using optical splitter
• Timestamps each packet incoming packet
• Resolution: 12.5 ns
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Evaluation

Batched processing

• NIC I/O has nearly constant overhead
• One packet is processed after another

Throughput-optimized → larger batch size

NIC Input 1 2 3 4 5 6 7 8 NIC Output

Latency-optimized → minimal batch size

NIC Input 1 NIC Output
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Evaluation

Throughput-optimized → larger batch size

NIC Input 1 2 3 4 5 6 7 8 NIC Output

→ Throughput measures average cost per packet

→ Ideal to measure the maximum performance

Latency-optimized → minimal batch size

NIC Input 1 NIC Output NIC Input 4 NIC Output

→ Latency measures single cost for each packet

→ Ideal to measure cost of different operations
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Evaluation
Approach

P4 program

• Each packet contains key and value for a new table entry
• P4 programs contain lookup to this specific table
• Forward all packets back

Two phases

• Keys cycle pseudo-randomly through [0, 220] several times
• First phase: only insertions are performed
• Second phase: mainly lookups are performed; some insertions are done with different rates
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Evaluation

• First phase: 220 packets triggering an insertion
• Second phase: ≈ 4M packets trigger lookup of previously inserted packets
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Evaluation

• First phase: 220 packets triggering an insertion
• Second phase: ≈ 4M packets trigger lookup of previously inserted packets

• But every 10 000-th packet triggers additional insertion
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Evaluation

• Different rate of insertions during second phase

⇒ Median mixed (i.e. insertions & lookups) latency decreases with increasing rate
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Evaluation

⇒ Insertion latency increases with increasing rate (up to 47 %)

⇒ Worse branch prediction
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Evaluation

• Measured in a throughput-optimized version using Intel Xeon E5-2620 v2 2.1 GHz
• For reasonable insert rates, the approach scales linearly
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Conclusion

• Adding state to the P4 data plane increases number of possible low-latency applications
• Updatable Table Entries1

• Add-On-Miss Insertions

• Add-on-Miss insertions enable cheap insertions w.r.t. latency

• Is this a step backwards in SDN ?
⇒ No, local and global state may work hand-in-hand
⇒ PNA proposal comes from the P4 community
⇒ PNA brings P4 to the NIC of the end-host where state is required anyways

1M. Simon, H. Stubbe, D. Scholz, S. Gallenmüller, and G. Carle: High-Performance Match-Action Table Updates from within Programmable
Software Data Planes, EuroP4 ’21 [8]
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Conclusion

Contributions
• We implemented Add-on-Miss insertions for T4P4S2

• We discussed different optimization strategies w.r.t. to modelling
performance

• Systematic analysis of PNA properties (i.e. updates and insertion
costs)

• CPU cycle models and costs

On-the-fly Table Insertions on Programmable
Software Data Planes

Manuel Simon, Sebastian Gallenmüller, and Georg Carle
Chair of Network Architectures and Services, Technical University of Munich, Germany

{simonm|gallenmu|carle}@net.in.tum.de

Abstract—Novel applications require a robust and reliable
connection to provide the services for next-generation networks.
The complex nature of these algorithms needs fast and ef-
ficient stateful processing. Using Software-defined Networking
(SDN), new algorithms can be implemented into the network
in a platform-independent way. The upcoming Portable NIC
Architecture (PNA) for P4, a language to program data planes
in SDN, allows inserting new table entries without controller
interaction. Thus, it unleashes more performant and stateful
applications without the overhead of the controller. We implement
and evaluate these so-called ‘add-on-miss’ insertions introduced
by the PNA for a P4 software target. In addition, we discuss the
influence of latency and throughput optimizations on software
packet processing systems. We determine the impact of these
optimization strategies and which performance properties and
costs can be measured with each. In our analysis, we model the
costs of insertions based on an extensive baseline and compare
them to table entry lookups and updates. We analyze the influence
of the frequency of insertions and multi-core scenarios. Finally,
we demonstrate that the approach scales for realistic scenarios.

Index Terms—SDN, State Management, P4, Add-on-Miss

I. INTRODUCTION

The upcoming 6G standard for communication networks
will enable novel and complex applications, ensuring an ultra-
low end-to-end latency as well as an ultra-low packet loss rate.
Connections with these properties are essential for critical ap-
plications in domains such as transport, industry, and medicine.
Optimized reliability methods are necessary to achieve these
goals. An example of such an approach is hybrid automatic
repeat request (HARQ). This algorithm increases the reliability
of connections using forward error correction and repetition of
non-acknowledged packets. Such complex algorithms must be
distributed across different components in a network, either to
the network interface card (NIC) or entirely to middleboxes
to deal with demanding network applications.

P4 [1] is a platform-independent language to describe the
data plane targeting high-performance, vendor-independent
packet processing. With the upcoming Portable NIC Archi-
tecture (PNA) [2], P4 becomes a language to program both
in-network switches and end-host applications. The latter is
gaining attention due to efforts to bring P4 into the Linux
Kernel [3]. Moreover, Intel announced that the SmartNIC
E2000 will support the P4 language [4]. The capability of
efficient state management becomes especially important when
P4 programs are executed on the end of the communication
path. Typical stateful scenarios include TCP flow tracking and
the monitoring of connections.

The PNA enables stateful packet processing directly on the
data plane. This new feature can speed up existing stateful
P4 applications, such as IDS (e.g., P4ID [5]), stateful fire-
walls (e.g., P4SF [6]), or flow monitoring (e.g., NetSeer [7]).
However, the statefulness of the P4 processing pipeline may
introduce effects that are absent from the current generation
of P4 devices, such as the impact on latency or jitter caused
by state updates. The fundamental change in PNA requires a
fundamental change to the measurement methodology used to
investigate device behavior. Therefore, we establish a novel
measurement methodology and apply it to a modified version
of the P4 software target T4P4S [8]. This modified version
supports add-on-miss insertions introduced by the PNA.

Our contributions can be summarized as follows: the defi-
nition of a measurement methodology focusing on the effects
of stateful packet processing; the implementation of insertions
in a software P4 target; the analysis of relevant performance
indicators for PNA state updates; and the measurement and
analysis for a comparison of costs for table entry lookups,
updates, and insertions in a software P4 pipeline.

II. BACKGROUND & IMPLEMENTATION

a) P4: P4 [1] provides a target-independent way of pro-
gramming network forwarding devices, relying on compilers
for different targets. This concept allows vendor-independent
mechanisms and gives sovereignty to the network operator.
So-called externs can utilize non P4-based extensions.

Several P4 targets exist, which can be classified as hardware
and software targets. Hardware targets provide the highest
performance in terms of throughput and latency. They usually
follow a pipeline model with multiple stages executing specific
subtasks of the program. Several packets are processed simul-
taneously but at different stages in the pipeline. This process-
ing approach becomes important considering the consistency
of state updates. Software targets, on the other side, provide
the highest degree of flexibility. While their performance is
lower, software targets run on commodity hardware and allow
the easy integration of new functionality. Software targets
typically follow the run-to-completion approach for packet
processing. In this approach, different subtasks are handled by
the same CPU core to avoid costly transfers of packets between
different cores [9]. For our evaluation, we use T4P4S [8],
which translates the P4 program to C code linked with
DPDK [10], a userspace library for high-performance packet
processing.

2Implementation available on GitHub https://github.com/manuel-simon/t4p4s/tree/addonmiss
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Additional slides
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Previous Work – Changeable Table Entries

• In previous work3, we implemented updatable table entries
• @__ref annotation to declare parameters as references

• Replaced table architecture for synchronization
• Analyzed different synchronization and storage designs

⇒ Table entry updates possible at line-rate
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3M. Simon, H. Stubbe, D. Scholz, S. Gallenmüller, and G. Carle: High-Performance Match-Action Table Updates from within Programmable
Software Data Planes, EuroP4 ’21 [8]
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Previous Work – Changeable Table Entries

• Lookups and updates are comparable
• Insertions cost more

insert lookup update forward
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Previous Work – Changeable Table Entries
Modelled Costs/CPU-Cycles

∆ l [ns] Cycles

Insertion 500 1100
Lookup 187 411
Update 163 358

Resolution 12.5 28

Table 1: Operations

Insertion Rate ∆ l [ns] Cycles

1 500 1100
10 587 1291

100 649 1428
1000 912 2006

10000 1337 3941
100000 2749 6048

Table 2: Insertions with different rates
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