
Network security
Modern cryptography for communications security

Benjamin Hof
hof@in.tum.de

Lehrstuhl für Netzarchitekturen und Netzdienste
Fakultät für Informatik

Technische Universität München

Cryptography part 2 – 15ws

1 / 43

Outline

Hash functions and private-key cryptography

Public-key setting

2 / 43

Outline

Hash functions and private-key cryptography

Public-key setting

3 / 43

Cryptographic hash functions

private-key
I encryption
I message

authentication codes
I hash functions

public-key
. . .

4 / 43

Hash functions

I variable length input
I fixed length output

provide:

1. pre-image resistance
given H(x) with a randomly chosen x ,
cannot find x ′ s. t. H(x ′) = H(x)
“H is one-way”

2. second pre-image resistance
given x , cannot find x ′ 6= x s. t. H(x ′) = H(x)

3. collision resistance
cannot find x 6= x ′ s. t. H(x) = H(x ′)

5 / 43

input

H(·)

output

fixed length

Birthday problem

question one
I number of people in a room required
I s. t. P[same birthday as you] ≥ 0.5:

1− (364365
n
) ≥ 0.5

≥ 253 people necessary.

question two
I number of people in a room required
I s. t. P[at least two people with same birthday] ≥ 0.5
≈ const ·

√
365 ≈ 23.

6 / 43

Birthday problem

question one
I number of people in a room required
I s. t. P[same birthday as you] ≥ 0.5:

1− (364365
n
) ≥ 0.5

≥ 253 people necessary. Second pre-image

question two
I number of people in a room required
I s. t. P[at least two people with same birthday] ≥ 0.5
≈ const ·

√
365 ≈ 23. Collision

6 / 43

Birthday problem (cont’d)

I collision resitance is the strongest property
I implies pre-image resistance and second pre-image resistance

I usually broken broken first: MD5, SHA1
I hash function with output size of 128 bit: ≤ 2128 possible

outputs
I finding collisions:

√
2128 = 264

I minimum output size: 256

7 / 43

HMAC

A popular MAC:
I opad is 0x36, ipad is 0x5C

tag := H(k ⊕ opad‖H(k ⊕ ipad‖m))
I use SHA2-512, truncate tag to 256 bits

Used with Merkle-Damgård functions, since they allow to compute
from H(k‖m) the extension H(k‖m‖tail).

8 / 43

Combining confidentiality and authentication

I encrypt-then-authenticate:
c ← Enck1(m), t ← Mack2(c)
transmit: 〈c, t〉
This is generally secure.

I authenticated encryption
Also a good choice.
e. g. offset codebook (OCB), Galois counter mode (GCM)

9 / 43

Recap: private-key cryptography

I attacker power: probabilistic polynomial time
I confidentiality defined as IND-CPA:

encryption, e. g. AES-CTR$
I message authentication defined as existentially unforgeable

under adaptive chosen-message attack:
message authentication codes, e. g. HMAC-SHA2

I authenticated encryption modes

10 / 43

Outline

Hash functions and private-key cryptography

Public-key setting

11 / 43

The idea

We no longer have one shared key, but each participant has a key
pair:

I a private key we give to nobody else
I a public key to be published, e. g. on a keyserver

12 / 43

Public-key cryptography

I based on mathematical problems believed to be hard
I proofs often only in the weaker random oracle model
I only authenticated channels needed for key exchange, not

private
I less keys required
I orders of magnitude slower

Problems believed to be hard
I RSA assumption based on integer factorization
I discrete logarithm and Diffie-Hellman assumption

I elliptic curves
I El Gamal encryption
I Digital Signature Standard/Algorithm

13 / 43

Public-key cryptography

private-key
I encryption
I message

authentication codes
I hash functions

public-key
I encryption
I signatures
I key exchange

14 / 43

Uses

I encryption
I encrypt with public key of key owner
I decrypt with private key

I signatures
I sign with private key
I verify with public key of key owner
I authentication with non-repudiation

I key exchange
I protect past sessions against key compromise

Encryption and signing have nothing to do with each other.

15 / 43

Uses

I encryption
I encrypt with public key of key owner
I decrypt with private key

I signatures
I sign with private key
I verify with public key of key owner
I authentication with non-repudiation

I key exchange
I protect past sessions against key compromise

Encryption and signing have nothing to do with each other.

15 / 43

Public-key encryption scheme

1. (pk, sk)← Gen(1n), security parameter 1n

2. c ← Encpk(m)
3. m := Decsk(c)

We may need to map the plaintext onto the message space.

16 / 43

RSA primitive
Textbook RSA
0.0 (N, p, q)← GenModulus(1n)
0.1 φ(N) := (p − 1)(q − 1)
0.2 find e: gcd(e, φ(N)) = 1
0.3 d := [e−1 mod φ(N)]
1. public key pk = 〈N, e〉
2. private key sk = 〈N, d〉

operations:

1. public key operation on a value y ∈ Z∗N
z := [y e mod N]
we denote z := RSApk(y)

2. private key operation on a value z ∈ Z∗N
y := [zd mod N]
we denote y := RSAsk(z) 17 / 43

RSA assumption

steps

1. choose uniform x ∈ Z∗N
2. A is given N, e, and [x e mod N]

assumption
Infeasable to recover x .

18 / 43

Chosen-plaintext attack

A

(pk, sk)← Gen(1n)

c ← Encpk(m)

...
...

b ← {0, 1}

pk

m

c

m0,m1

Encpk (mb)

A

c ← Encpk(m)

...
...

m

c

output bit b′

19 / 43

Security of RSA
I textbook RSA is deterministic → must be insecure against CPA
⇒ textbook RSA is not secure
I can be used to build secure encryption functions with

appropriate encoding scheme

We want a construction with proof:
I use the RSA function
I breaking the construction implies ability to factor large

numbers
I “breaks RSA assumption”
I factoring belived to be difficult (assumption!)

I secure at least against CPA

armoring (“padding”) schemes needed

I attacks exist, but used often: PKCS #1 v1.5
I better security: PKCS #1 v2.1/v2.2 (OAEP)

20 / 43

Chosen-ciphertext attack
A

(pk, sk)← Gen(1n)

m := Decsk(c)

...
...

b ← {0, 1}

pk

c

m

m0,m1

Encpk (mb)

A

m := Decsk(c)

...
...

c

m

output bit b′

Adversary may not request decryption of Encpk(mb) itself.

21 / 43

Chosen-ciphertext attack
A

(pk, sk)← Gen(1n)

m := Decsk(c)

...
...

b ← {0, 1}

pk

c

m

m0,m1

Encpk (mb)

A

m := Decsk(c)

...
...

c

m

output bit b′

Adversary may not request decryption of Encpk(mb) itself.

21 / 43

Chosen-ciphertext attack
A

(pk, sk)← Gen(1n)

m := Decsk(c)

...
...

b ← {0, 1}

pk

c

m

m0,m1

Encpk (mb)

A

m := Decsk(c)

...
...

c

m

output bit b′

Adversary may not request decryption of Encpk(mb) itself.
21 / 43

Chosen-ciphertext attack
A

(pk, sk)← Gen(1n)

m := Decsk(c)

...
...

b ← {0, 1}

pk

c

m

m0,m1

Encpk (mb)

A

m := Decsk(c)

...
...

c

m

output bit b′

Adversary may not request decryption of Encpk(mb) itself.
21 / 43

Chosen-ciphertext attack
A

(pk, sk)← Gen(1n)

m := Decsk(c)

...
...

b ← {0, 1}

pk

c

m

m0,m1

Encpk (mb)

A

m := Decsk(c)

...
...

c

m

output bit b′

Adversary may not request decryption of Encpk(mb) itself.
21 / 43

Optimal asymmetric encryption padding

m̂0
m̂1

m||0k1 r ← {0, 1}k0

G

⊕

H

⊕

m̂ := m̂0||m̂1
c := RSApk(m̂)

recall: c := [m̂e mod N]
22 / 43

Discussion

A proof exists with

assumptions:
I G , H hash functions with random oracle property
I RSA assumption: RSA is one-way

result:
⇒ RSA-OAEP secure against CCA
I negligible probability

23 / 43

Signature scheme

1. (pk, sk)← Gen(1n)
2. σ ← Signsk(m)
3. b := Vrfypk(m, σ)

b = 1 means valid, b = 0 invalid

24 / 43

Signatures

I (often) slower than MACs
I non-repudiation
I verify OS packages

RSA signatures
I RSA not a secure signature function
I PKCS #1 v1.5
I use RSASSA-PSS

25 / 43

Adaptive chosen-message attack

A

(pk, sk)← Gen(1n)

σ ← Signsk(m)

...
...

output (m′, σ′)

pk

m

(m, σ)

I let Q be the set of all queries m
I A succeeds, iff Vrfypk(m′, σ′) = 1 and m′ /∈ Q

26 / 43

Goal

I signature function using RSA
I breaking signature function implies breaking the RSA

assumption
I proof

27 / 43

RSASSA-PSS m

SHA2

hash

salt SHA2

⊕ MGF

masked data block hash

RSAsk(·)

pad1 salt

pad2

0xBC

28 / 43

Overview: signatures using RSA

sign

sk m

σ

verify

pk
m′

σ̂

valid/invalid

m, σ m′, σ̂

Signsk(m) :

em ← PSS(m) // encoding
σ := RSAsk(em)

Vrfypk(m′, σ̂) :

êm := RSApk(σ̂)
ŝalt := recover -PSS-salt(êm)
em′ := PSS(m′, ŝalt)
em′ ?= êm

29 / 43

Discussion

A proof exists with

assumptions:
I random oracle model
I RSA assumption: RSA is one-way

result:
⇒ RSA-PSS existentially unforgeable under adaptive

chosen-message attack
I negligible probability

30 / 43

Combining signatures and encryption

Goal: S sends message m to R , assuring:
I secrecy
I message came from S

encrypt-then-authenticate
I 〈S, c,SignskS (c)〉
I attacker A executes CCA: 〈A, c, SignskA(c)〉

successful attack

31 / 43

Combining signatures and encryption

Goal: S sends message m to R , assuring:
I secrecy
I message came from S

encrypt-then-authenticate
I 〈S, c,SignskS (c)〉
I attacker A executes CCA: 〈A, c, SignskA(c)〉 successful attack

31 / 43

Signcryption cont’d

authenticate-then-encrypt
I σ ← SignskS (m)
I 〈S,EncekR (m||σ)〉
I Malicious R to R’: 〈S,EncekR′ (m||σ)〉

successful attack

solution for AtE
I compute σ ← SignskS (m||R)

32 / 43

Signcryption cont’d

authenticate-then-encrypt
I σ ← SignskS (m)
I 〈S,EncekR (m||σ)〉
I Malicious R to R’: 〈S,EncekR′ (m||σ)〉 successful attack

solution for AtE
I compute σ ← SignskS (m||R)

32 / 43

Perfect forward security
Assume

I long-term (identity) keys
I session keys (for protecting one connection)

Idea
I attacker captures private-key encrypted traffic
I later: an endpoint is compromised → keys are compromised

We want: security of past connections should not be broken.

Perfect forward security
protection of past sessions against:

I compromise of session key
I compromise of long-term key

33 / 43

Decisional Diffie-Hellman assumption
Alice Bob

compute s compute s

DHa

DHb

[store transcript]

C A

b ← {0, 1}
if b = 0 : ŝ := s,
else: ŝ random←−−−−

output b′

ŝ, transcript

34 / 43

Textbook Diffie-Hellman key exchange
I p prime
I generator g (primitive root for cyclic group of Zp):
{g0, g1, g2, . . . } = {1, 2, . . . , p − 1}

a← Zp b ← Zp

X := ga mod p

s := Y a mod p
k := KDF (s)

Y := gb mod p

s := Xb mod p
k := KDF (s)

(p, g , X)

Y

I Y a = gba = gab = Xb mod p
I insecure for certain weak values

35 / 43

Elliptic curve Diffie-Hellman key exchange: X25519

I p = 2255 − 19
I E (Fp × Fp)
I E : y2 = x3 + 486662x2 + x

a← {0, 1}255 b ← {0, 1}255

A := aG

B := bG

s := aB
k := KDF (sx)

s := bA
k := KDF (sx)

A

B

(Other ECDH cryptosystems will need additional verification steps.)

36 / 43

Perfect forward security

I generate new DH key for each connection
I wipe old shared keys

Compromise of long term keys in combination with eavesdropping
does not break security of past connections anymore!

37 / 43

Hybrid approach
Public-key cryptography

I valuable properties
I slow

Hybrid encryption
I protect shared key with public-key cryptography
I protect bulk traffic with private-key cryptography

Example

k ← {0, 1}n

w ← Êncpk(k)
c0 ← Enck(msg0)
c1 ← Enck(msg1) transmit: 〈w , c0, c1〉 38 / 43

Combining private-key and public-key methods in protocols

e. g.:

handshake
I Diffie-Hellman key exchange
I signatures for entity authentication
I key derivation
I . . .

transport
I private-key authenticated encryption
I replay protection

39 / 43

Key size equivalents

private-key hash output RSA DLOG EC

128 256 3072 3072 256 near term
256 512 15360 15360 512 long term

ENISA report, Nov. 2014

openssl on my E5-1630, ops/s (very unscientific):
I 175 sig RSA4096
I 1773 sig RSA2048
I 10990 vrfy ECDSAp256

40 / 43

Considerations

I different keys for different purposes
I algorithms from competitions: eSTREAM, PHC, AES, SHA,

CAESAR
I e. g. Salsa20, AES

I keysizes: ENISA, ECRYPT2, Suite B, keylength.com
I e. g. ECRYPT2: RSA keys ≥ 3248 bit

I keys based on passwords: Argon2, scrypt, bcrypt, PBKDF2

In networking, timing is not “just a side channel”. Demand
constant-time implementations.

41 / 43

What has to go right

algorithms

protocol design

implementation

library API design

deployment & correct usage

cryptographic security

software security, side channel

insipired by Matthew D. Green, Pascal Junod

42 / 43

Words of caution
limits

I crypto will not solve your problem
I only a small part of a secure system
I don’t implement yourself

difficult to solve problems
I trust / key distribution

I revocation
I ease of use

many requirements remaining
I replay
I timing attack
I endpoint security

43 / 43

	Hash functions and private-key cryptography
	Public-key setting

