Department for Computer Science
TU Munchen

Z&(Chair for Network Architectures and Services — Prof. Carle

Master Course
Computer Networks
IN2097

Prof. Dr.-Ing. Georg Carle
Christian Grothoff, Ph.D.

Dr. Nils Kammenhuber

Chair for Network Architectures and Services

Institut fur Informatik
Technische Universitat Munchen
http://www.net.in.tum.de

Department for Computer Science
TU Munchen

Z&(Chair for Network Architectures and Services — Prof. Carle

Transport Layer

iﬁ".‘ Chapter: Transport Layer

Qur goals:
0 Understand principles behind transport layer services:
= multiplexing/demultiplexing
= reliable data transfer
= flow control
= congestion control
0 Learn about transport layer protocols in the Internet:
= UDP: connectionless transport

» TCP: connection-oriented transport
« TCP congestion control

» (Maybe: SCTP, if time permits)

IN2097 - Master Course Computer Networks, WS 2011/2012

'lv'. Chapter 3 outline

0 Transport-layer services
a Multiplexing and demultiplexing
0 Connectionless transport: UDP
0 Connection-oriented transport: TCP
= segment structure
= reliable data transfer
= flow control
= connection management
a TCP congestion control

IN2097 - Master Course Computer Networks, WS 2011/2012

'4'. Transport services and protocols

a Provide logical communication
between application processes
running on different hosts

transhort

netwol e

| physiciN

a Transport protocols run in end
systems

= Sender side: breaks app
messages into segments,
passes to network layer

= Rcver side: reassembles
segments into messages,
passes to app layer

a More than one transport protocol 3
available to apps

* |nternet: mainly TCP, UDP

IN2097 - Master Course Computer Networks, WS 2011/2012

'Ov'. Internet transport-layer protocols

0 Reliable, in-order delivery

(TCP) T

= congestion control deIk

= flow control physical 2

= connection setup i 3 dhiﬁ‘:k
a Unreliable, unordered :

delivery: UDP —2

= no-frills extension of prysical g

“best-effort” IP [

a Services not available: f;h*:',k' ——— [carir

= delay guarantees 2 [yl ‘.ih:yvsv"f <

= bandwidth guarantees

IN2097 - Master Course Computer Networks, WS 2011/2012

'Ov. Multiplexing/demultiplexing

Socket: File handle that allows to send/receive network traffic

— Demultiplexing at rcv host: ——

to correct socket

Delivering received segments

[] =socket O = process

___ Multiplexing at send host: __

Gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

application application application
L | |
transport '%msvpﬁv transport
network network network
link link link
physical physicat physical
host 1 host 2 host 3

IN2097 - Master Course Computer Networks, WS 2011/2012

'Jv'. How demultiplexing works

0 Host receives |IP datagrams

» Each datagram has source IP
address, destination IP
address

= Each datagram carries 1
transport-layer segment

= Each segment has source,
destination port number

0 Host uses IP addresses and
port numbers to direct segment to

appropriate socket

IN2097 - Master Course Computer Networks, WS 2011/2012

32 bits >

source port # dest port #

other header fields

application
data
(message)

TCP/UDP segment format

'lv'. Connectionless demultiplexing (UDP)

0 Create sockets with port numbers (in Java):
DatagramSocket mySocketl = new DatagramSocket (12534);
DatagramSocket mySocket?2 = new DatagramSocket (12535);

0 UDP socket identified by two-tuple:
(dest IP address, dest port number)
a When host receives UDP segment:
= checks destination port number in segment
= directs UDP segment to socket with that port number

0 IP datagrams with different source IP addresses and/or source
port numbers: directed to same socket

= Receiving process cannot easily distinguish differing
communication partners on same socket

IN2097 - Master Course Computer Networks, WS 2011/2012

'4'. Connectionless demux (cont)

DatagramSocket serverSocket

= new DatagramSocket (6428) ;

SP: 6428

DP: 9157

SP: 6428

DP: 5775

SP: 9157

A

C|ient DP: 6428

IP: A

server
IP: C

Source Port (SP) provides “return address”

IN2097 - Master Course Computer Networks, WS 2011/2012

SP: 5775

DP: 6428

Client
IP: B

'lv'. Connection-oriented demux (TCP)

a TCP socket identified by 4-tuple:
= Source IP address
= Source port number
= Destination IP address
= Destination port number

0 Receiving host uses all four values to direct segment to
appropriate socket

a Server host may support many simultaneous TCP sockets:
= Each socket identified by its own 4-tuple

a0 Example:
Web servers have different sockets for each connecting client

= Non-persistent HTTP will even have different socket for each
request

IN2097 - Master Course Computer Networks, WS 2011/2012

11

X

-

Connection-oriented demux (cont)

Two proccesses
on same host
= different sockets

client
IP: A

SP: 9157

DP: 80

S-IP: A

D-IP:C

server
IP: C

IN2097 - Master Course Computer Networks, WS 2011/2012

SP: 5775
DP: 80
S-IP: B
D-IP:C
N
SP: 9157
DP: 80
S-IP: B
D-IP:C

Client
IP:B

AT

One socket per
communication partner

P4

Connection-oriented demux: Threaded Web Server

client
IP: A

SP: 9157

DP: 80

S-IP: A

D-IP:C

server
IP: C

IN2097 - Master Course Computer Networks, WS 2011/2012

SP: 5775
DP: 80
S-IP: B
D-IP:C
N
SP: 9157
DP: 80
S-IP: B
D-IP:C

Client
IP:B

Y@ Connection-oriented demux: Fast client

/\

Can even have multiple
sockets between same
process pair

P4

SP: 9157
client DP: 80
IP: A S-IP: A
D-IP:C

server
IP: C

IN2097 - Master Course Computer Networks, WS 2011/2012

P2 D
I_
SP: 5775
DP: 80
S-IP: B
D-IP:C
i
SP: 9157
DP: 80 Client
S-IP: B IP:B
D-IP:C

X
24 UDP: User Datagram Protocol [rrc 768]

a “No frills,” “bare bones”
Internet transport protocol

0 “Best effort” service; UDP
segments may be:

= |ost

= delivered out of order to

app
a Connectionless:

= No handshaking between
UDP sender, receiver

= Each UDP segment
handled independently of

Why is there a UDP?

0 No connection

establishment (which can
add delay)

Q Simple: no connection
state at sender, at receiver

o Small segment header

a No congestion control:
UDP can blast away as fast
as desired

others

IN2097 - Master Course Computer Networks, WS 2011/2012

'4'. UDP: more

o Often used for streaming multimedia
apps
= |Loss tolerant

32 bits ae
" Rate sensitive Length, in | Source port# | dest port #
a0 Other UDP uses bytes of UDP [~ |ength checksum
= DNS segment,
including
= SNMP header
= SIP
0 Reliable transfer over UDP: Ap%ication
L C ata
Add reliability at application layer (message)

— application-specific error
recovery!

UDP segment format

IN2097 - Master Course Computer Networks, WS 2011/2012

iﬁ".‘ UDP checksum

Goal: Detect TX errors (e.g., flipped bits) in transmitted segment

Sender:

a Treat segment contents as sequence of 16-bit integers

a Checksum: addition (1's complement sum) of segment contents
0 Sender puts checksum value into UDP checksum field

Receiver:

a Compute checksum of received segment

a Check if computed checksum equals checksum field value:
* NO — error detected. Drop segment.

* YES — no error detected. But maybe errors nonetheless?
More later

IN2097 - Master Course Computer Networks, WS 2011/2012

17

ey
;ﬁ‘ Internet Checksum Example

o Note

» When adding numbers, a carryout from the most
significant bit needs to be added to the result

0 Example: add two 16-bit integers

1110011001 10011
11 0101010101010

Wraparound@IOI110111011101

sum 1
checksum 0
(=inverse)

IN2097 - Master Course Computer Networks, WS 2011/2012

1110111011110
1 00010001 00O0O01

18

Av. Pipelined protocols

Pipelining: Sender allows multiple, “in-flight”, yet-to-be-
acknowledged packets

» Range of sequence numbers must be large enough
= Buffering at sender and/or receiver

data pqckef—»

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

aTwo generic forms of pipelined protocols:
»(Go-Back-N
»Selective repeat
IN2097 - Master Course Computer Networks, WS 2011/2012

19

o . e
w4 Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —fse----------=ccocoooeo
last bit transmitted, t =L/ Rz

RTT

ACK arrives, send next]
packet, t = RTT +L /R[S > 7777~

<
<

y __3*L/R _ 0%

sender RTT+L/R ~30.008

first packet bit arrives
last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
last bit of 3" packet arrives, send ACK

Increase utilization
/ by a factor of 3!

= 0.0008

iﬁ".‘ Go-Back-N

Sender:
0 k-bit sequence number in packet header
o “window” of up to N, consecutive unack’ed packets allowed

send_ base nexfseqnum dlready Usable. hof
ack’ed yet sent
T

y S wmdow size —4

a ACK(n): acknowledges all packets up to and including packet
seg# n — “cumulative ACK”

= May receive duplicate ACKs (see receiver)
a Timer for each in-flight packet
a Timeout(n): retransmit pkt n and all higher seq # pkts in window

IN2097 - Master Course Computer Networks, WS 2011/2012 21

X .
;ir. TCP: Overview recs: 793, 1122, 1323, 2018, 2581

a Point-to-point: 0 Full duplex data:
" one Sender, one receiver = Bi-directional data flow in
. . _ same connection
0 Reliable, in-order byte steam. _
. o, * MSS: maximum segment
" no “message boundaries size
A Pipelined: a Connection-oriented:
= TCP congestion and flow » Handshaking (exchange of
control set window size control msgs) initialises

sender & receiver state
before data exchange

o Flow controlled:
= Sender will not overwhelm

a Send & receive buffers

receiver
s - o Congestion controlled:
writes data reads data :
oor ~ s | ~em Sender will not overwhelm
senE%foer recei-{/glzuﬁer n etWO I’k
L5 [Seqment] —» O—*

IN2097 - Master Course Computer Networks, WS 2011/2012

22

'Ov'. TCP segment structure

32 bits >

A

URG: urgent data
(generally not used)\ source port # | dest port #

sequence number

counting

by bytes

of data

(not segments!)

ACK: ACK # ~

valid

—acknowledgement number
PSH: push data now hlesand nS(;td /II—DJBS F| Receive window

(used, but—|
generally ignored)

RST, SYN, F|N:/ Op)@/ variable Iength)

connection estab
(setup, teardown
commands) application

Internet / data
checksum (variable length)

(as in UDP)

bytes
rcvr is willing
to accept

Urg data pointer

IN2097 - Master Course Computer Networks, WS 2011/2012

;ﬁ".‘ TCP sequence numbers and ACKs

Sequence numbers:

0 Byte stream “number”
of first byte in
segment’s data

o Start value not 0, but
chosen arbitrarily

ACKs:

O Seq # of next byte
expected from other
side

o Cumulative ACK

Q: How should receiver
handle out-of-order
segments?

0o TCP spec doesn'’t say
— up to implementor

receipt of
‘C’, echoes
back ‘C’

host ACKs
receipt

Seq=
of echoed °q=43, ACK=g)
GC’ \

simple telnet scenario

time

IN2097 - Master Course Computer Networks, WS 2011/2012

24

;g'.‘ TCP Round Trip Time (RTT) and Timeout

Q: How to set TCP timeout Q: How to estimate RTT?
valuke Iofr)detectmg lost 0 SampleRTT: measured time
packets: from segment transmission

a Obviously: Longer than RTT until ACK receipt

= but RTT varies = Ignore retransmissions
a Too short: (why?)
= premature timeout 0 Sar_npleRTT will vary, want
« unnecessary estimated RTT “smoother
retransmissions = Average several rec_ent
Too | _ measurements, not just
Q100 long. current SampleRTT
= slow reaction to segment » Exponential moving average
loss (EMA)

IN2097 - Master Course Computer Networks, WS 2011/2012 25

iﬁ".‘ TCP Round Trip Time and Timeout

EstimatedRTT = (1 - a)*EstimatedRTT + oa*SampleRTT

0 Exponential weighted moving average (EMA)
0 Influence of past sample decreases exponentially fast
a Typical value: oo =0.125

IN2097 - Master Course Computer Networks, WS 2011/2012

26

Y . .
W4 Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 -

300

1 T I 1

RTT (milliseconds)

200

150

100 T T T T T T T T T T T T T
1 8 15 22 29 36 43 50 57 64 71 78 85 92

time (seconnds)

| ——SampleRTT —#— Estimated RTT

IN2097 - Master Course Computer Networks, WS 2011/2012

99

106

27

;g'.‘ TCP Round Trip Time and Timeout

Setting the timeout

0 EstimtedRTT plus “safety margin”
» Small variation in EstimatedRTT - smaller safety margin
» Large variation in EstimatedRTT - larger safety margin

o First estimate of how much SampleRTT deviates from EstimatedRTT:

B * |SampleRTT-EstimatedRTT |

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval EstimatedRTT + 4*DevRTT

IN2097 - Master Course Computer Networks, WS 2011/2012

28

'lv'. TCP reliable data transfer

a TCP creates reliable data a Retransmissions are triggered
transfer service on top of IP’s by:
unreliable service = Timeout events

a0 Pipelined segments = Duplicate acks

a Cumulative acks a Initially, let's consider

o TCP uses single simplified TCP sender:
retransmission timer = [gnore duplicate acks

* |gnore flow control,
congestion control

IN2097 - Master Course Computer Networks, WS 2011/2012 29

'lv'. TCP sender events:

Data received from application:
0 Create segment with seq #

QO Seq # is byte-stream number
of first data byte in segment

o Start timer if not already
running (think of timer as for
oldest unacked segment)

a Expiration interval:
TimeOutInterval

IN2097 - Master Course Computer Networks, WS 2011/2012

When timeout occurs:

0 Retransmit segment that
caused timeout

O Restart timer
When ack received:

a /fit acknowledges previously
un-acked segments

= Update what is known to
be acked

= Stop timer for this data

» (Re)start timer if there are
other outstanding
segments

30

'l'. TCP sender (simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSegNum
loop (forever) {

switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer }
} /" end of loop forever */

Comment:

» SendBase-1: last
cumulatively
ack’ed byte
Example:

IN2097 - Master Course Computer Networks, WS 2011/2012

 SendBase-1 =71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

31

—A L .. i
¥sg TCP: Retransmission scenarios
N

Seg=g

2, 8 bytes datg _ST_

:

3 -A00 l =

£ X: i

l loss n
Seg= %_
e | TR

- -

SendBase 3

=120 £

G\(s’\oo ?N?

O

(D)

SendBase n
=100 SendBase I

v v =120 v premature timeout

lost ACK scenario
IN2097 - Master Course Computer Networks, WS 2011/2012

XA . :
;l{.‘ TCP retransmission scenarios (more)
/

I
o

23
>
I
o

23
vy

L

timeout —
%)
D
Q
1

loss
SendBase P\c\&"\zo

=120

time
Cumulative ACK scenario

v

IN2097 - Master Course Computer Networks, WS 2011/2012

Retransmit of Seg# 927
Or no retransmit?

No retransmit: We have
cumulative ACKs!

X

K TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

IN2097 - Master Course Computer Networks, WS 2011/2012

'4'. A small TCP optimisation: Fast Retransmit

a Time-out period often
relatively long:

* Long delay before
resending lost packet

0 Can detect lost segments via
duplicate ACKs

= Sender often sends many
segments back-to-back

» |f segment is lost, there
will likely be many
duplicate ACKs.

IN2097 - Master Course Computer Networks, WS 2011/2012

o |If sender receives 3 ACKs for

the same data, it supposes
that segment after ACKed

data was lost:
= Fast retransmit:

» Resend segment
before timer expires

= Assume that only one
segment was lost

35

'l" Resending a segment after triple duplicate ACK

Host A Host B

L B

timeout
>
(73]
D
S
Q.
N
3
&
Q
/
D
=]

'Ov'. Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence numbery

}

/ \
already ACKed segment

IN2097 - Master Course Computer Networks, WS 2011/2012

%@ TCP Flow Control

0 Receive side of TCP connection
has a receive buffer:

data from
IP

#— RevWindow —f

Sparc¢ room

Jp— RevBuffer —I}

application
process

0 Application process may be slow at
reading from buffer (e.g., mobile
phone)

a Speed-matching service: matching

the send rate to the receiving

application’s drain rate

- flow control
sender won'’t overflow
receiver’s buffer by
transmitting too much,

too fast

IN2097 - Master Course Computer Networks, WS 2011/2012

38

iﬁ".‘ TCP Flow control: How it works

{1— RevWindow —al-

data from

b——— RevBuffer ————#

(Suppose TCP receiver discards 0
out-of-order segments)

Q Spare room in buffer

= RcvWindow a

= RcvBuffer-[LastByteRcvd
- LastByteRead]

spare room application
o ¢ ¥ process

Receiver advertises spare room
by including value of ReviWwindow

In segments

Sender limits unACKed data to
RcvWindow

» guarantees receive buffer
doesn’t overflow

IN2097 - Master Course Computer Networks, WS 2011/2012

39

X .
;i{. TCP Connection Management

Recall: TCP sender, receiver Three way handshake:
establish “connection” before
exchanging data segments

Q Initialize TCP variables:
= Sequence numbers

= Buffers, flow control info (e.g.
RcvWindow)

a Client: connection initiator

Socket clientSocket = new

Step 1: client host sends TCP SYN
segment to server

= j.e., SYN bit is set
= Specifies initial seq #
= No data

Step 2: server host receives SYN,
replies with SYNACK segment

a Server: contacted by client = Server allocates buffers
Socket connectionSocket = = Specifies server initial seq.#

welcomeSocket.accept() ;

Step 3: client receives SYNACK,

Note: Cannot distinguish client and server replie§ with ACK segment, which may
after connection establishment contain data

IN2097 - Master Course Computer Networks, WS 2011/2012 40

&V'.‘ TCP Connection Management (cont.)

Closing a connection:

“Client” closes socket:

clientSocket.close(); @ client

Step 1: Client end system sends TCP close

FIN control segment to server

a Promise: “| won’t transmit any
further data to you™:
Half-closed connection

Step 2: Server receives FIN, replies

FIN

/
/
m

with ACK. Informs application. =
Application closes connection, TCP C;U
sends FIN. 3
Note: Server can continue sending data g
between step 1 and Step 2! closed ~

IN2097 - Master Course Computer Networks, WS 2011/2012

SGNGF@

close

41

&V'.‘ TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

= Enters “timed wait” — wil 18 ciient

respond with ACK to
received FINs

Step 4: server, receives ACK.
Connection closed.

closing

FIN

/
/
N‘

Notes:
a With small modification, can =
handle simultaneous FINs 2
o
a Any partner in connection £
can send the first FIN closed —

IN2097 - Master Course Computer Networks, WS 2011/2012

SGNGF@

closing

closed

42

i{.‘ TCP Connection Management (cont)

wait 30 seconds

CLOSED

TIME_WAIT

receive FIN
send ACK

b

FIN_WAIT_2

receive ACK

client application
initiates a TCP connection

send SYN

SYN_SENT

receive SYN & ACK
send ACK

r

ESTABLISHED

send naothing

FIN_WAIT_1

TCP client
lifecycle

send FIN

client application
initiates close connection

receive ACK
send nothing

CLOSED

TCP server
lifecycle

server application
creates a listen socket

LAST_ACK
A

send FIN

CLOSE_WAIT

LISTEN

A 4

SYN_RCVD

receive FIN
send ACK

ESTABLISHED

receive ACK
send nothing

receive SYN
send SYN & ACK

;g'.‘ Principles of Congestion Control

Congestion:

a Informally: “Too many sources sending too much data too fast
for the network to handle”

o What's the difference to flow control?

* Flow control: “One source sending too much data too fast
for the other application to handle”

0 Manifestations:
» | ost packets (buffer overflow at routers)

» Long delays (queueing in router buffers)
a A top-10 problem!

IN2097 - Master Course Computer Networks, WS 2011/2012

44

'4" Causes/costs of congestion: scenario 1

o Two senders, two receivers
a One router, infinite buffers Bt - original data Mou
a No retransmission

unlimited shared
output link buffers

C/24 : Q Large delays
- when congested
< a Maximum
achievable
H
o throughput

7\'in C}Q }Lin

IN2097 - Master Course Computer Networks, WS 2011/2012

'l" Causes/costs of congestion: scenario 2

o One router, finite buffers
0 Sender retransmission of lost packet

Host A

A, : original application-layer data

A, : original data, plus
retransmitted data

finite shared output link
buffers

'l'. Causes/costs of congestion: scenario 2

a Always: 7¥ 7\'out for application-layer data (called “goodput”)

o “Perfect” retransm|SS|on only when loss: 7¥m> }\'out

o Retransmission of delayed (not lost) packet makes 7\~ i larger
(than perfect case) for sﬁvb%t

R/2 j---=---=--m . R/2 {------===-==---m - : R/2
R/3 [-==mmmmmmm i
(<8 (<8 (<8 R4~ ===""=""" >
, R/2 , R/2 , R/2
}\'in)\in }\'in
a. b. C.

“Costs” of congestion:
0 More work (retransmissions) for given “goodput”
0 Unnecessary retransmissions: Link carries multiple copies of same packet

IN2097 - Master Course Computer Networks, WS 2011/2012

-' n u
;‘«"‘ Causes/costs of congestion: scenario 3
N

o Four senders

0 Multihop paths Q: What happens asA. and
a Timeout/retransmit 3/ increase ? n
in
HOStA A - Original data Fou

'@ < Min: original data, plus
B retransmitted data
i
_

finite shared output

/Z
A 4

a

R —
ANAN

-' n u
;A" Causes/costs of congestion: scenario 3

C/2 i

5
O
<

Air

Another “cost” of congestion:

aWhen packet is dropped, any upstream transmission capacity
used for that packet was wasted

X .
24 Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion control: Network-assisted congestion
a No explicit feedback from control:

network 0 Routers provide feedback to
a Congestion inferred from end systems

end-system observed » Single bit indicating

loss, delay congestion (SNA, DEChit,
a Approach taken by TCP TCP/IP ECN bit, ICMP

source quench ATM)

= Explicit rate sender should

send at

= TCP/IP has support for ECN,
but almost never used

= |CMP source quench: dito

IN2097 - Master Course Computer Networks, WS 2011/2012

50

;g'.‘ Case study: ATM ABR congestion control

ABR: available bit rate:
0 “elastic service”
0 if sender’s path “underloaded”

= sender should use available
bandwidth

0 if sender’s path congested:

= sender throttled to minimum
guaranteed rate

IN2097 - Master Course Computer Networks, WS 2011/2012

RM (resource management)
cells:

0 sent by sender, interspersed
with data cells

a bits in RM cell set by
switches (“network-
assisted”)

= NI bit: no increase in rate
(mild congestion)

= Cl bit: congestion
indication
o RM cells returned to sender
by receiver, with bits intact

51

;‘Yg TCP congestion control: Additive increase,
5| Multiplicative decrease (AIMD)

a Approach: Increase transmission rate (window size), probing
for usable bandwidth, until loss occurs

= Additive increase: increase CongWin by 1 MSS every
RTT until loss detected

= Multiplicative decrease: cut CongWin in half after loss

cnnnag tinn

8 Kbytes —

GNJ 4 Kbytes —
@
=

Saw tooth B s oytes |

)] c ytes

behavior: probing S
for bandwidth IS
2
(@)
c
@)
(&)

» time

IN2097 - Master Course Computer Networks, WS 2011/2012 52

'Ov'. TCP Congestion Control: details

a Sender limits transmission: How does sender perceive
LastByteSent — LastByteAcked congestion?
< CongWin 0 Loss event = timeout or 3
a Roughly, duplicate acks
_ CongWin o TCP sender reduces rate
rate = RTT bvles/sec (CongWin) after loss
event

a CongWin is dynamic: Function of

perceived network congestion Three mechanisms:

= AIMD
= Slow start

= conservative after
timeout events

IN2097 - Master Course Computer Networks, WS 2011/2012 53

iﬁ".‘ TCP Slow Start

a When connection begins, CongWin = 1 MSS
= Example: MSS = 500 bytes; RTT = 200 msec
= |nitial rate = 20 kbps
o But: Available bandwidth may be >> MSS/RTT
= Desirable to quickly ramp up to respectable rate

a When connection begins, increase rate exponentially fast until
first loss event

IN2097 - Master Course Computer Networks, WS 2011/2012

54

;ﬁ"“ TCP Slow Start (more)

a When connection begins,
Increase rate exponentially
until first loss event:

» Double CongWin every
RTT

= Done by incrementing
CongWin for every ACK
received

= N.B.: Exponential growth
caused by additions, not
multiplications or
exponentiations!

0 Summary: Initial rate is slow
but ramps up exponentially
fast

@ Host A

«—RTT—

QUr segments

Host B@
W

%

time

IN2097 - Master Course Computer Networks, WS 2011/2012

55

'4'. Refinement: Inferring loss

0 After 3 duplicate ACKs:
* CongWin is cut in half

= Window then grows
linearly
0 But: after timeout event:

" CongWin instead set to
1 MSS;

= Window then grows
exponentially

= {0 a threshold, then
grows linearly

IN2097 - Master Course Computer Networks, WS 2011/2012

Philosophy:

Why this distincion?

d 3 duplicate ACKs
iIndicates: Network still
capable of delivering some
(actually, most) segments
a Timeout indicates a more
alarming congestion
scenario: (Almost) no
segments got through!

'lv'. Refinement

o Q: When should the
exponential increase
switch to linear?

a A: When CongWin
gets to 1/2 of its
value before tlmeout

Implementation:
a Variable Threshold

0 Atloss event,
Threshold is set to
1/2 of CongWin just
before loss event

Transmissnon round

14—
TCP Series 2 Reno

12
10—
g_|Threshold
6 Threshold
4—
, TCP Series 1 Tahoe
OIIIIIIIIIIIIIII

01 2 3 4 5 6 7 8 9 10111213 14 15

Transrrission round

IN2097 - Master Course Computer Networks, WS 2011/2012

57

;g'.‘ Summary: TCP Congestion Control

0 When CongWin is below Threshold, sender in slow-start phase,
window grows exponentially.

0 When CongWin is above Threshold, sender is in congestion-
avoidance phase, window grows linearly.

a0 When a triple duplicate ACK occurs, Threshold set to CongWin/2
and CongWin set to Threshold.

a0 When timeout occurs, Threshold set to CongWin/2 and CongWin is
set to 1 MSS.

IN2097 - Master Course Computer Networks, WS 2011/2012 58

'l'. TCP sender congestion control

State Event TCP Sender Action Commentary
Slow Start (SS) | ACK receipt for | CongWin = CongWin + MSS, Resulting in a doubling of
previously If (CongWin > Threshold) CongWin every RTT
unacked data set state to “Congestion
Avoidance”
Congestion ACK receipt for | CongWin = CongWin+MSS * (MSS/ Additive increase, resulting in

Avoidance (CA)

previously
unacked data

CongWin)

increase of CongWin by 1 MSS
every RTT

SS or CA Loss event Threshold = CongWin/2, Fast recovery, implementing
detected by CongWin = Threshold, multiplicative decrease.
triple duplicate | Set state to “Congestion Avoidance” CongWin will not drop below 1
ACK MSS.
SS or CA Timeout Threshold = CongWin/2, Enter slow start
CongWin =1 MSS,
Set state to “Slow Start”
SS or CA Duplicate ACK | Increment duplicate ACK count for CongWin and Threshold not

segment being acked

changed

IN2097 - Master Course Computer Networks, WS 2011/2012

59

'lv'. TCP summary

a0 Connection-oriented: SYN, SYNACK: FIN

0 Retransmit lost packets; in-order data: sequence no., ACK no.

a ACKs: either piggybacked, or no-data pure ACK packets if no
data travelling in other direction

a Don’t overload receiver: rwin
* rwin advertised by receiver
0 Don’t overload network: cwin
= cwin affected by receiving ACKs
a Sender buffer = min { rwin, cwin }
o Congestion control:
= Slow start: exponential growth of cwin
= Congestion avoidance: linear groth of cwin
= Timeout; duplicate ACK: shrink cwin
a Continuously adjust RTT estimation

IN2097 - Master Course Computer Networks, WS 2011/2012

60

iﬁ".‘ TCP throughput

a What's the average throughout of TCP as a function of window
size and RTT?

= |gnore slow start
Let W be the window size when loss occurs.
When window is W, throughput is W/RTT
Just after loss, window drops to W/2, throughput to W/2RTT.
Average throughout: 0.75 W/RTT

IN2097 - Master Course Computer Networks, WS 2011/2012

61

'lv‘ TCP Fairness I

Fairness goal: If K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R

connection 2

v esercouscompuartowons ws oz«

%@ Why is TCP fair?

Two competing sessions:
0 Additive increase gives slope of 1, as throughout increases
0 Multiplicative decrease decreases throughput proportionally

60)‘)‘/
S
2
Ko equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

IN2097 - Master Course Computer Networks, WS 2011/2012 63

X/ :
w4 Fairness (more)

Fairness and UDP Fairness and parallel TCP

0 Multimedia apps often do not
use TCP 0

= Do not want rate throttled
by congestion control

0 Instead use UDP:

= Pump audio/video at
constant rate, tolerate
packet loss

0 Research area: Make these
protocols TCP friendly

0 One approach: DCCP
(Datagram Congestion
Control Protocol)

= “UDP with congestion
control”

= Not very popular (as yet)

IN2097 - Master Course Computer Networks, WS 2011/2012

connections

Nothing prevents app from
opening parallel connections
between 2 hosts.

Web browsers do this

0 Example: Bottleneck link of rate

R that is already supporting 9
connections

= New application opens 1
TCP conn — gets rate R/10

= New application opens 11
TCP conns — gets rate R/2!

64

'lv'. TCP and buffer bloat

0 Capacities of router queues
“Large queue = good: Less packet losses at bottlenecks”
= Do you agree? What would happen to TCP?
o Effects of large Buffers at bottleneck on TCP connections
* Once queues are full: Queueing delays increase dramatically
= TCP congestion control gets no early warning
* No duplicate ACKS =» no Fast Retransmit
* Instead: Sudden timeouts
= Congestion windows way too large

= Many parallel TCP connections over same link get warning
way too late

« Synchronisation: Oscillation between “All send way too much”
and “all get frightened by timeouts and send way too little”

* Huge variations in queueing delays = DevRTT becomes very
large = Timeout value becomes very large

IN2097 - Master Course Computer Networks, WS 2011/2012 65

V
X

e

Buffer bloat is a real-world problem

Plot Reproduced from ICSI’s Netalyzr Studies

upload bandwldth

@ cable
e dsl
@ fiber

1 kb bk b 64kb 56kb ' imb

iﬁ".‘ Chapter: Summary

a principles behind transport layer services:
= multiplexing, demultiplexing
= reliable data transfer
= flow control

= congestion control
Q instantiation and implementation in the Internet

= UDP

= TCP
Next:
0 leaving the network “edge” (application, transport layers)
Q into the network “core”

IN2097 - Master Course Computer Networks, WS 2011/2012

67

