
 
                       Chair for Network Architectures and Services – Prof. Carle  

Department for Computer Science 
TU München 
 

Master Course  
Computer Networks 

IN2097 

Prof. Dr.-Ing. Georg Carle 
Christian Grothoff, Ph.D. 
Dr. Nils Kammenhuber 

 
Chair for Network Architectures and Services 

Institut für Informatik 
Technische Universität München 

http://www.net.in.tum.de 



 
                       Chair for Network Architectures and Services – Prof. Carle  

Department for Computer Science 
TU München 
 

Transport Layer 



Network Security, WS 2008/09, Chapter 9    3 IN2097 - Master Course Computer Networks, WS 2011/2012    3 

Chapter: Transport Layer 

Our goals:  
q  Understand principles behind transport layer services: 

§  multiplexing/demultiplexing 
§  reliable data transfer 
§  flow control 
§  congestion control 

q  Learn about transport layer protocols in the Internet: 
§  UDP: connectionless transport 
§  TCP: connection-oriented transport 

•  TCP congestion control 
§  (Maybe: SCTP, if time permits) 



Network Security, WS 2008/09, Chapter 9    4 IN2097 - Master Course Computer Networks, WS 2011/2012    4 

Chapter 3 outline 

q  Transport-layer services 
q  Multiplexing and demultiplexing 
q  Connectionless transport: UDP 
q  Connection-oriented transport: TCP 

§  segment structure 
§  reliable data transfer 
§  flow control 
§  connection management 

q  TCP congestion control 



Network Security, WS 2008/09, Chapter 9    5 IN2097 - Master Course Computer Networks, WS 2011/2012    5 

Transport services and protocols 

q  Provide logical communication 
between application processes 
running on different hosts 
§  ↔Network layer: between hosts 

q  Transport protocols run in end 
systems  
§  Sender side: breaks app 

messages into segments, 
passes to  network layer 

§  Rcver side: reassembles 
segments into messages, 
passes to app layer 

q  More than one transport protocol 
available to apps 
§  Internet: mainly TCP, UDP 

application 
transport 
network 
data link 
physical 

application 
transport 
network 
data link 
physical 



Network Security, WS 2008/09, Chapter 9    6 IN2097 - Master Course Computer Networks, WS 2011/2012    6 

Internet transport-layer protocols 

q  Reliable, in-order delivery 
(TCP) 
§  congestion control  
§  flow control 
§  connection setup 

q  Unreliable, unordered 
delivery: UDP 
§  no-frills extension of 

“best-effort” IP 
q  Services not available:  

§  delay guarantees 
§  bandwidth guarantees 

application 
transport 
network 
data link 
physical  

network 
data link 
physical 

 
network 
data link 
physical 

 
network 
data link 
physical 

 
network 
data link 
physical 

 
network 
data link 
physical 

 
network 
data link 
physical 

application 
transport 
network 
data link 
physical 



Network Security, WS 2008/09, Chapter 9    7 IN2097 - Master Course Computer Networks, WS 2011/2012    7 

Multiplexing/demultiplexing 

application 

transport 

network 

link 

physical 

P1 application 

transport 

network 

link 

physical 

application 

transport 

network 

link 

physical 

P2 P3 P4 P1 

host 1 host 2 host 3 

= process = socket 

Delivering received segments 
to correct socket 

Demultiplexing at rcv host: 
Gathering data from multiple 
sockets, enveloping data with  
header (later used for  
demultiplexing) 

Multiplexing at send host: 
Socket: File handle that allows to send/receive network traffic 



Network Security, WS 2008/09, Chapter 9    8 IN2097 - Master Course Computer Networks, WS 2011/2012    8 

How demultiplexing works 

q  Host receives IP datagrams 
§  Each datagram has source IP 

address, destination IP 
address 

§  Each datagram carries 1 
transport-layer segment 

§  Each segment has source, 
destination port number  

q  Host uses IP addresses and 
port numbers to direct segment to 
appropriate socket 

source port # dest port # 
32 bits 

application 
data  

(message) 

other header fields 

TCP/UDP segment format 



Network Security, WS 2008/09, Chapter 9    9 IN2097 - Master Course Computer Networks, WS 2011/2012    9 

Connectionless demultiplexing (UDP) 

q  Create sockets with port numbers (in Java): 
 DatagramSocket mySocket1 = new DatagramSocket(12534); 

 DatagramSocket mySocket2 = new DatagramSocket(12535); 

q  UDP socket identified by  two-tuple: 
 (dest IP address, dest port number) 

q  When host receives UDP segment: 
§  checks destination port number in segment 
§  directs UDP segment to socket with that port number 

q  IP datagrams with different source IP addresses and/or source 
port numbers: directed to same socket 
§  Receiving process cannot easily distinguish differing 

communication partners on same socket 



Network Security, WS 2008/09, Chapter 9    10 IN2097 - Master Course Computer Networks, WS 2011/2012    10 

Connectionless demux (cont) 

DatagramSocket serverSocket = new DatagramSocket(6428); 

Client 
IP: B 

P2 

client 
 IP: A 

P1 P1 P3 

server 
IP: C 

SP: 6428 
DP: 9157 

SP: 9157 
DP: 6428 

SP: 6428 
DP: 5775 

SP: 5775 
DP: 6428 

Source Port (SP) provides “return address” 



Network Security, WS 2008/09, Chapter 9    11 IN2097 - Master Course Computer Networks, WS 2011/2012    11 

Connection-oriented demux (TCP) 

q  TCP socket identified by 4-tuple:  
§  Source IP address 
§  Source port number 
§  Destination IP address 
§  Destination port number 

q  Receiving host uses all four values to direct segment to 
appropriate socket 

q  Server host may support many simultaneous TCP sockets: 
§  Each socket identified by its own 4-tuple 

q  Example: 
Web servers have different sockets for each connecting client 
§  Non-persistent HTTP will even have different socket for each 

request 



Network Security, WS 2008/09, Chapter 9    12 IN2097 - Master Course Computer Networks, WS 2011/2012    12 

Connection-oriented demux (cont) 

Client 
IP:B 

P1 

client 
 IP: A 

P1 P2 P4 

server 
IP: C 

SP: 9157 
DP: 80 

SP: 9157 
DP: 80 

P5 P6 P3 

D-IP:C 
S-IP: A 
D-IP:C 

S-IP: B 

SP: 5775 
DP: 80 

D-IP:C 
S-IP: B 

Two proccesses 
on same host 

= different sockets 



Network Security, WS 2008/09, Chapter 9    13 IN2097 - Master Course Computer Networks, WS 2011/2012    13 

Connection-oriented demux: Threaded Web Server 

Client 
IP:B 

P1 

client 
 IP: A 

P1 P2 

server 
IP: C 

SP: 9157 
DP: 80 

SP: 9157 
DP: 80 

P4 P3 

D-IP:C 
S-IP: A 
D-IP:C 

S-IP: B 

SP: 5775 
DP: 80 

D-IP:C 
S-IP: B 

One socket per 
communication partner 



Network Security, WS 2008/09, Chapter 9    14 IN2097 - Master Course Computer Networks, WS 2011/2012    14 

Connection-oriented demux: Fast client 

Client 
IP:B 

P1 

client 
 IP: A 

P1 P2 

server 
IP: C 

SP: 9157 
DP: 80 

SP: 9157 
DP: 80 

P4 

D-IP:C 
S-IP: A 
D-IP:C 

S-IP: B 

SP: 5775 
DP: 80 

D-IP:C 
S-IP: B 

Can even have multiple 
sockets between same 

process pair 



Network Security, WS 2008/09, Chapter 9    15 IN2097 - Master Course Computer Networks, WS 2011/2012    15 

UDP: User Datagram Protocol [RFC 768] 

q  “No frills,” “bare bones” 
Internet transport protocol 

q  “Best effort” service; UDP 
segments may be: 
§  lost 
§  delivered out of order to 

app 
q  Connectionless: 

§  No handshaking between 
UDP sender, receiver 

§  Each UDP segment 
handled independently of 
others 

Why is there a UDP? 
q  No connection 
establishment (which can 
add delay) 
q  Simple: no connection 
state at sender, at receiver 
q  Small segment header 
q  No congestion control: 
UDP can blast away as fast 
as desired 



Network Security, WS 2008/09, Chapter 9    16 IN2097 - Master Course Computer Networks, WS 2011/2012    16 

UDP: more 

q  Often used for streaming multimedia 
apps 
§  Loss tolerant 
§  Rate sensitive 

q  Other UDP uses 
§  DNS 
§  SNMP 
§  SIP 

q  Reliable transfer over UDP: 
§  Add reliability at application layer 
→ application-specific error 
recovery! 

source port # dest port # 

32 bits 

Application 
data  

(message) 

UDP segment format 

length checksum 
Length, in 

bytes of UDP 
segment, 
including 

header 



Network Security, WS 2008/09, Chapter 9    17 IN2097 - Master Course Computer Networks, WS 2011/2012    17 

UDP checksum 

Goal: Detect TX errors (e.g., flipped bits) in transmitted segment 
 
Sender: 
q  Treat segment contents as sequence of 16-bit integers 
q  Checksum: addition (1’s complement sum) of segment contents 
q  Sender puts checksum value into UDP checksum field 
 
Receiver: 
q  Compute checksum of received segment 
q  Check if computed checksum equals checksum field value: 

§  NO → error detected. Drop segment. 
§  YES → no error detected. But maybe errors nonetheless? 

More later …. 



Network Security, WS 2008/09, Chapter 9    18 IN2097 - Master Course Computer Networks, WS 2011/2012    18 

Internet Checksum Example 

q  Note 
§  When adding numbers, a carryout from the most 

significant bit needs to be added to the result 

q  Example: add two 16-bit integers 

1  1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0 
1  1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1 
 
1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1 
 
1  1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0 
1  0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1 

wrap around 

sum 
checksum 
(=inverse) 



Network Security, WS 2008/09, Chapter 9    19 IN2097 - Master Course Computer Networks, WS 2011/2012    19 

Pipelined protocols 

Pipelining: Sender allows multiple, “in-flight”, yet-to-be-
acknowledged packets 
§  Range of sequence numbers must be large enough 
§  Buffering at sender and/or receiver 

q Two generic forms of pipelined protocols: 
§ Go-Back-N 
§ Selective repeat 



Network Security, WS 2008/09, Chapter 9    20 IN2097 - Master Course Computer Networks, WS 2011/2012    20 

Pipelining: increased utilization 

first packet bit transmitted, t = 0 

sender receiver 

RTT  

last bit transmitted, t = L / R 

first packet bit arrives 
last packet bit arrives, send ACK 

ACK arrives, send next  
packet, t = RTT + L / R 

last bit of 2nd packet arrives, send ACK 
last bit of 3rd packet arrives, send ACK 

 

U 
sender = 

.024 
30.008 

= 0.0008 
microsecon
ds 

3 * L / R 
RTT + L / R 

= 

Increase utilization 
by a factor of 3! 



Network Security, WS 2008/09, Chapter 9    21 IN2097 - Master Course Computer Networks, WS 2011/2012    21 

Go-Back-N 

Sender: 
q  k-bit sequence number in packet header 
q  “window” of up to N, consecutive unack’ed packets allowed 

q  ACK(n): acknowledges all packets up to and including packet 
seq# n – “cumulative ACK” 
§  May receive duplicate ACKs (see receiver) 

q  Timer for each in-flight packet 
q  Timeout(n): retransmit pkt n and all higher seq # pkts in window 



Network Security, WS 2008/09, Chapter 9    22 IN2097 - Master Course Computer Networks, WS 2011/2012    22 

TCP: Overview   RFCs: 793, 1122, 1323, 2018, 2581 

q  Full duplex data: 
§  Bi-directional data flow in 

same connection 
§  MSS: maximum segment 

size 
q  Connection-oriented:  

§  Handshaking (exchange of 
control msgs) initialises 
sender & receiver state 
before data exchange 

q  Flow controlled: 
§  Sender will not overwhelm 

receiver 
q  Congestion controlled: 

§  Sender will not overwhelm 
network 

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

q  Point-to-point: 
§  one sender, one receiver  

q  Reliable, in-order byte steam: 
§  no “message boundaries” 

q  Pipelined: 
§  TCP congestion and flow 

control set window size 
q  Send & receive buffers 



Network Security, WS 2008/09, Chapter 9    23 IN2097 - Master Course Computer Networks, WS 2011/2012    23 

TCP segment structure 

source port # dest port # 

32 bits 

application 
data  

(variable length) 

sequence number 
acknowledgement number 

Receive window 

Urg data pointer checksum 
F S R P A U head 

len 
not 

used 

Options (variable length) 

URG: urgent data  
(generally not used) 

ACK: ACK # 
valid 

PSH: push data now 
(used, but 

generally ignored) 

RST, SYN, FIN: 
connection estab 
(setup, teardown 

commands) 

# bytes  
rcvr is willing 
to accept 

counting 
by bytes  
of data 
(not segments!) 

Internet 
checksum 

(as in UDP) 



Network Security, WS 2008/09, Chapter 9    24 IN2097 - Master Course Computer Networks, WS 2011/2012    24 

TCP sequence numbers and ACKs 

Sequence numbers: 
q  Byte stream “number” 

of first byte in 
segment’s data 

q  Start value not 0, but 
chosen arbitrarily 

ACKs: 
q  Seq # of next byte 

expected from other 
side 

q  Cumulative ACK 
Q: How should receiver 

handle out-of-order 
segments? 

q  TCP spec doesn’t say 
→ up to implementor 

Host A Host B 

Seq=42, ACK=79, data = ‘C’ 

Seq=79, ACK=43, data = ‘C’ 

Seq=43, ACK=80 

User 
types 

‘C’ 

host ACKs 
receipt  

of echoed 
‘C’ 

host ACKs 
receipt of 

‘C’, echoes 
back ‘C’ 

time 

simple telnet scenario 



Network Security, WS 2008/09, Chapter 9    25 IN2097 - Master Course Computer Networks, WS 2011/2012    25 

TCP Round Trip Time (RTT) and Timeout 

Q: How to set TCP timeout 
value for detecting lost 
packets? 

q  Obviously: Longer than RTT 
§  but RTT varies 

q  Too short: 
§  premature timeout 
§  unnecessary 

retransmissions 
q  Too long: 

§  slow reaction to segment 
loss 

Q: How to estimate RTT? 
q  SampleRTT: measured time 

from segment transmission 
until ACK receipt 
§  Ignore retransmissions 

(why?) 
q  SampleRTT will vary, want 

estimated RTT “smoother” 
§  Average several recent 

measurements, not just 
current SampleRTT 

§  Exponential moving average 
(EMA) 



Network Security, WS 2008/09, Chapter 9    26 IN2097 - Master Course Computer Networks, WS 2011/2012    26 

TCP Round Trip Time and Timeout 

q  Exponential weighted moving average (EMA) 
q  Influence of past sample decreases exponentially fast 
q  Typical value: α = 0.125 

EstimatedRTT = (1 - α)*EstimatedRTT + α*SampleRTT 



Network Security, WS 2008/09, Chapter 9    27 IN2097 - Master Course Computer Networks, WS 2011/2012    27 

Example RTT estimation: 

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T 

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT



Network Security, WS 2008/09, Chapter 9    28 IN2097 - Master Course Computer Networks, WS 2011/2012    28 

TCP Round Trip Time and Timeout 

Setting the timeout 
q  EstimtedRTT plus “safety margin” 

§  Small variation in EstimatedRTT → smaller safety margin 
§  Large variation in EstimatedRTT → larger safety margin 

q  First estimate of how much SampleRTT deviates from EstimatedRTT:  

TimeoutInterval = EstimatedRTT + 4*DevRTT 

DevRTT = (1-β) * DevRTT + 
         β * |SampleRTT-EstimatedRTT| 
 
(typically, β = 0.25) 

 Then set timeout interval: 



Network Security, WS 2008/09, Chapter 9    29 IN2097 - Master Course Computer Networks, WS 2011/2012    29 

TCP reliable data transfer 

q  TCP creates reliable data 
transfer service on top of IP’s 
unreliable service 

q  Pipelined segments 
q  Cumulative acks 
q  TCP uses single 

retransmission timer 

q  Retransmissions are triggered 
by: 
§  Timeout events 
§  Duplicate acks 

q  Initially, let’s consider 
simplified TCP sender: 
§  Ignore duplicate acks 
§  Ignore flow control, 

congestion control 



Network Security, WS 2008/09, Chapter 9    30 IN2097 - Master Course Computer Networks, WS 2011/2012    30 

TCP sender events: 

Data received from application: 
q  Create segment with seq # 
q  Seq # is byte-stream number 

of first data byte in  segment 
q  Start timer if not already 

running (think of timer as for 
oldest unacked segment) 

q  Expiration interval: 
TimeOutInterval  

When timeout occurs: 
q  Retransmit segment that 

caused timeout 
q  Restart timer 
When ack received: 
q  If it acknowledges previously 

un-acked segments 
§  Update what is known to 

be acked 
§  Stop timer for this data 
§  (Re)start timer if there are  

other outstanding 
segments 



Network Security, WS 2008/09, Chapter 9    31 IN2097 - Master Course Computer Networks, WS 2011/2012    31 

TCP sender (simplified) 
        NextSeqNum = InitialSeqNum 
       SendBase = InitialSeqNum 
       loop (forever) {  
           switch(event)  
 
           event: data received from application above  
                 create TCP segment with sequence number NextSeqNum  
                 if (timer currently not running) 
                       start timer 
                 pass segment to IP  
                 NextSeqNum = NextSeqNum + length(data)  
 
            event: timer timeout 
                 retransmit not-yet-acknowledged segment with  
                         smallest sequence number 
                 start timer 
 
            event: ACK received, with ACK field value of y  
                 if (y > SendBase) {  
                       SendBase = y 
                      if (there are currently not-yet-acknowledged segments) 
                               start timer  }  
         }  /* end of loop forever */  

Comment: 
•  SendBase-1: last  
cumulatively  
ack’ed byte 
Example: 
•  SendBase-1 = 71; 
y= 73, so the rcvr 
wants 73+ ; 
y > SendBase, so 
that new data is  
acked 



Network Security, WS 2008/09, Chapter 9    32 IN2097 - Master Course Computer Networks, WS 2011/2012    32 

TCP: Retransmission scenarios 

Host A 

Seq=100, 20 bytes data 

time 

premature timeout 

Host B 

Seq=92, 8 bytes data 

Seq=92, 8 bytes data 

S
eq

=9
2 

tim
eo

ut
 

Host A 

Seq=92, 8 bytes data 

ACK=100 

loss 

tim
eo

ut
 

lost ACK scenario 

Host B 

X 

Seq=92, 8 bytes data 

ACK=100 

time 
S

eq
=9

2 
tim

eo
ut

 

SendBase 
= 100 

SendBase 
= 120 

SendBase 
= 120 

Sendbase 
= 100 



Network Security, WS 2008/09, Chapter 9    33 IN2097 - Master Course Computer Networks, WS 2011/2012    33 

TCP retransmission scenarios (more) 

Host A 

Seq=92, 8 bytes data 

ACK=100 

loss 

tim
eo

ut
 

Cumulative ACK scenario 

Host B 

X 

Seq=100, 20 bytes data 

ACK=120 

time 

SendBase 
= 120 

Retransmit of Seq# 92? 
Or no retransmit? 

No retransmit: We have 
cumulative ACKs! 



Network Security, WS 2008/09, Chapter 9    34 IN2097 - Master Course Computer Networks, WS 2011/2012    34 

TCP ACK generation [RFC 1122, RFC 2581] 

Event at Receiver 
 
Arrival of in-order segment with 
expected seq #. All data up to 
expected seq # already ACKed 
 
Arrival of in-order segment with 
expected seq #. One other  
segment has ACK pending 
 
Arrival of out-of-order segment 
higher-than-expect seq. # . 
Gap detected 
 
Arrival of segment that  
partially or completely fills gap 
 
 

TCP Receiver action 
 
Delayed ACK. Wait up to 500ms 
for next segment. If no next segment, 
send ACK 
 
Immediately send single cumulative  
ACK, ACKing both in-order segments  
 
 
Immediately send duplicate ACK,  
indicating seq. # of next expected byte 
 
 
Immediate send ACK, provided that 
segment starts at lower end of gap 
 
 



Network Security, WS 2008/09, Chapter 9    35 IN2097 - Master Course Computer Networks, WS 2011/2012    35 

A small TCP optimisation: Fast  Retransmit 

q  Time-out period  often 
relatively long: 
§  Long delay before 

resending lost packet 
q  Can detect lost segments via 

duplicate ACKs 
§  Sender often sends many 

segments back-to-back 
§  If segment is lost, there 

will likely be many 
duplicate ACKs. 

q  If sender receives 3 ACKs for 
the same data, it supposes 
that segment after ACKed 
data was lost: 
§  Fast retransmit: 

§  Resend segment 
before timer expires 

§  Assume that only one 
segment was lost 



Network Security, WS 2008/09, Chapter 9    36 IN2097 - Master Course Computer Networks, WS 2011/2012    36 

Host A 

ti
m

eo
ut

 

Host B 

time 

X 

resend 2nd segment 

Resending a segment after triple duplicate ACK 



Network Security, WS 2008/09, Chapter 9    37 IN2097 - Master Course Computer Networks, WS 2011/2012    37 

  
 event: ACK received, with ACK field value of y  
                 if (y > SendBase) {  
                       SendBase = y 
                       if (there are currently not-yet-acknowledged segments) 
                             start timer  
                     }  
                 else {  
                         increment count of dup ACKs received for y 
                         if (count of dup ACKs received for y = 3) { 
                               resend segment with sequence number y 
                          } 
          

Fast retransmit algorithm: 

a duplicate ACK for  
already ACKed segment 

fast retransmit 



Network Security, WS 2008/09, Chapter 9    38 IN2097 - Master Course Computer Networks, WS 2011/2012    38 

TCP Flow Control 

q  Receive side of TCP connection  
has a receive buffer: 

q  Application process may be slow at 
reading from buffer (e.g., mobile 
phone) 

q  Speed-matching service: matching 
the send rate to the receiving 
application’s drain rate 

sender won’t overflow 
receiver’s buffer by 

transmitting too much, 
 too fast 

flow control 



Network Security, WS 2008/09, Chapter 9    39 IN2097 - Master Course Computer Networks, WS 2011/2012    39 

TCP Flow control: How it works 

(Suppose TCP receiver discards 
out-of-order segments) 

q  Spare room in buffer 
= RcvWindow 
= RcvBuffer-[LastByteRcvd 

- LastByteRead] 

q  Receiver advertises spare room 
by including value of RcvWindow 
in segments 

q  Sender limits unACKed data to 
RcvWindow 
§  guarantees receive buffer 

doesn’t overflow 



Network Security, WS 2008/09, Chapter 9    40 IN2097 - Master Course Computer Networks, WS 2011/2012    40 

TCP Connection Management 

Recall: TCP sender, receiver 
establish “connection” before 
exchanging data segments 

q  Initialize TCP variables: 
§  Sequence numbers 
§  Buffers, flow control info (e.g. 
RcvWindow) 

q  Client: connection initiator 
  Socket clientSocket = new   

Socket("hostname","port number");  
q  Server: contacted by client 
  Socket connectionSocket = 

welcomeSocket.accept(); 

 
Note: Cannot distinguish client and server 
after connection establishment 

 

Three way handshake: 
Step 1: client host sends TCP SYN 
segment to server 

§  i.e., SYN bit is set 
§  Specifies initial seq # 
§  No data 

Step 2: server host receives SYN, 
replies with SYNACK segment 

§  i.e., SYN and ACK bits set 

§  Server allocates buffers 
§  Specifies server initial seq.# 

Step 3: client receives SYNACK, 
replies with ACK segment, which may 
contain data 



Network Security, WS 2008/09, Chapter 9    41 IN2097 - Master Course Computer Networks, WS 2011/2012    41 

TCP Connection Management (cont.) 

Closing a connection: 

“Client” closes socket: 
clientSocket.close();  

Step 1: Client end system sends TCP 
FIN control segment to server 

q  Promise: “I won’t transmit any 
further data to you”: 
Half-closed connection 

Step 2: Server receives FIN, replies 
with ACK. Informs application. 
Application closes connection, TCP 
sends FIN. 

Note: Server can continue sending data 
between step 1 and Step 2! 

client 

FIN 

server 

ACK 

ACK 

FIN 

close 

close 

closed 
tim

ed
 w

ai
t 



Network Security, WS 2008/09, Chapter 9    42 IN2097 - Master Course Computer Networks, WS 2011/2012    42 

TCP Connection Management (cont.) 

Step 3: client receives FIN, 
replies with ACK.  

§  Enters “timed wait” – will 
respond with ACK to 
received FINs  

Step 4: server, receives ACK.  
Connection closed.  

Notes: 

q  With small modification, can 
handle simultaneous FINs 

q  Any partner in connection 
can send the first FIN 

client 

FIN 

server 

ACK 

ACK 

FIN 

closing 

closing 

closed 
tim

ed
 w

ai
t 

closed 



Network Security, WS 2008/09, Chapter 9    43 IN2097 - Master Course Computer Networks, WS 2011/2012    43 

TCP Connection Management (cont) 

TCP client 
lifecycle 

TCP server 
lifecycle 



Network Security, WS 2008/09, Chapter 9    44 IN2097 - Master Course Computer Networks, WS 2011/2012    44 

Principles of Congestion Control 

Congestion: 
q  Informally: “Too many sources sending too much data too fast 

for the network to handle” 
q  What’s the difference to flow control? 

§  Flow control: “One source sending too much data too fast 
for the other application to handle” 

q  Manifestations: 
§  Lost packets (buffer overflow at routers) 
§  Long delays (queueing in router buffers) 

q  A top-10 problem! 



Network Security, WS 2008/09, Chapter 9    45 IN2097 - Master Course Computer Networks, WS 2011/2012    45 

Causes/costs of congestion: scenario 1  

q  Two senders, two receivers 
q  One router, infinite buffers  
q  No retransmission 

unlimited shared 
output link buffers 

Host A 
λin : original data 

Host B 

λout 

q  Large delays 
when congested 

q  Maximum 
achievable 
throughput 

 



Network Security, WS 2008/09, Chapter 9    46 IN2097 - Master Course Computer Networks, WS 2011/2012    46 

Causes/costs of congestion: scenario 2  

q  One router, finite buffers  
q  Sender retransmission of lost packet 

finite shared output link 
buffers 

Host A λin : original application-layer data 

Host B 

λout 

λ'in : original data, plus 
retransmitted data 



Network Security, WS 2008/09, Chapter 9    47 IN2097 - Master Course Computer Networks, WS 2011/2012    47 

Causes/costs of congestion: scenario 2  

q  Always:                    for application-layer data (called “goodput”) 

q  “Perfect” retransmission only when loss: 

q  Retransmission of delayed (not lost) packet makes         larger 
(than perfect case) for same 

λ	


in 

λ	

out = 

λ	


in 

λ	

out > 

λ	


in 

λ	

out 

“Costs” of congestion:  
q  More work (retransmissions) for given “goodput” 
q  Unnecessary retransmissions: Link carries multiple copies of same packet 

R/2 

R/2 
λin 

λ o
ut

 

b. 

R/2 

R/2 
λin 

λ o
ut

 

a. 

R/2 

R/2 
λin 

λ o
ut

 

c. 

R/4 

R/3 



Network Security, WS 2008/09, Chapter 9    48 IN2097 - Master Course Computer Networks, WS 2011/2012    48 

Causes/costs of congestion: scenario 3  

q  Four senders 
q  Multihop paths 
q  Timeout/retransmit 

λ	


in 

Q: What happens as        and       
        increase ? λ	



in 

finite shared output 
link buffers 

Host A 
λin : original data 

Host B 

λout 

λ'in : original data, plus 
retransmitted data 



Network Security, WS 2008/09, Chapter 9    49 IN2097 - Master Course Computer Networks, WS 2011/2012    49 

Causes/costs of congestion: scenario 3  

Another “cost” of congestion:  
q When packet is dropped, any upstream transmission capacity 
   used for that packet was wasted 

H
o
st 
A 

H
o
st 
B 

λ
o
u
t 



Network Security, WS 2008/09, Chapter 9    50 IN2097 - Master Course Computer Networks, WS 2011/2012    50 

Approaches towards congestion control 

End-end congestion control: 
q  No explicit feedback from 

network 
q  Congestion inferred from 

end-system observed 
loss, delay 

q  Approach taken by TCP 

Two broad approaches towards congestion control: 

Network-assisted congestion 
control: 

q  Routers provide feedback to 
end systems 
§  Single bit indicating 

congestion (SNA, DECbit, 
TCP/IP ECN bit, ICMP 
source quench ATM) 

§  Explicit rate sender should 
send at 

§  TCP/IP has support for ECN, 
but almost never used 

§  ICMP source quench: dito 



Network Security, WS 2008/09, Chapter 9    51 IN2097 - Master Course Computer Networks, WS 2011/2012    51 

Case study: ATM ABR congestion control 

ABR: available bit rate: 
q  “elastic service”  
q  if sender’s path “underloaded”:  

§  sender should use available 
bandwidth 

q  if sender’s path congested:  
§  sender throttled to minimum 

guaranteed rate 

  

RM (resource management) 
cells: 

q  sent by sender, interspersed 
with data cells 

q  bits in RM cell set by 
switches (“network-
assisted”)  
§  NI bit: no increase in rate 

(mild congestion) 
§  CI bit: congestion 

indication 
q  RM cells returned to sender 

by receiver, with bits intact 



Network Security, WS 2008/09, Chapter 9    52 IN2097 - Master Course Computer Networks, WS 2011/2012    52 

TCP congestion control: Additive increase,  
               Multiplicative decrease  (AIMD) 

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

time co
ng

es
tio

n 
w

in
do

w
 s

iz
e 

Saw tooth 
behavior: probing 

for bandwidth 

q  Approach: Increase transmission rate (window size), probing  
   for usable bandwidth, until loss occurs 

§  Additive increase: increase  CongWin by 1 MSS every 
RTT until loss detected 

§  Multiplicative decrease: cut CongWin in half after loss  



Network Security, WS 2008/09, Chapter 9    53 IN2097 - Master Course Computer Networks, WS 2011/2012    53 

TCP Congestion Control: details 

q  Sender limits transmission: 
  LastByteSent – LastByteAcked 
                   ≤ CongWin 
q  Roughly, 

q  CongWin is dynamic: Function of 
perceived network congestion 

rate =  
CongWin  

RTT  
Bytes/sec 

How does  sender perceive 
congestion? 

q  Loss event = timeout or 3 
duplicate acks 

q  TCP sender reduces rate 
(CongWin) after loss 
event 

Three mechanisms: 
§  AIMD 
§  Slow start 
§  conservative after 

timeout events 



Network Security, WS 2008/09, Chapter 9    54 IN2097 - Master Course Computer Networks, WS 2011/2012    54 

TCP Slow Start 

q  When connection begins, CongWin = 1 MSS 
§  Example: MSS = 500 bytes; RTT = 200 msec 
§  Initial rate = 20 kbps 

q  But: Available bandwidth may be >> MSS/RTT 
§  Desirable to quickly ramp up to respectable rate 

q  When connection begins, increase rate exponentially fast until 
first loss event 



Network Security, WS 2008/09, Chapter 9    55 IN2097 - Master Course Computer Networks, WS 2011/2012    55 

TCP Slow Start (more) 

q  When connection begins, 
increase rate exponentially 
until first loss event: 
§  Double CongWin every 

RTT 
§  Done by incrementing 
CongWin for every ACK 
received 

§  N.B.: Exponential growth 
caused by additions, not 
multiplications or 
exponentiations! 

q  Summary: Initial rate is slow 
but ramps up exponentially 
fast 

Host A 

one segment 

R
TT

 

Host B 

time 

two segments 

four segments 



Network Security, WS 2008/09, Chapter 9    56 IN2097 - Master Course Computer Networks, WS 2011/2012    56 

Refinement: Inferring loss 

q  After 3 duplicate ACKs: 
§  CongWin is cut in half 
§  Window then grows 

linearly 
q  But: after timeout event: 

§  CongWin instead set to 
1 MSS;  

§  Window then grows 
exponentially 

§  to a threshold, then 
grows linearly 

Why this distincion? 
q  3 duplicate ACKs 
indicates: Network still 
capable of  delivering some 
(actually, most) segments 
q  Timeout indicates a more 
alarming congestion 
scenario: (Almost) no 
segments got through! 

Philosophy: 



Network Security, WS 2008/09, Chapter 9    57 IN2097 - Master Course Computer Networks, WS 2011/2012    57 

Refinement 

q  Q: When should the 
exponential increase 
switch to linear?  

q  A: When CongWin 
gets to 1/2 of its 
value before timeout. 

Implementation: 
q  Variable Threshold  
q  At loss event, 

Threshold is set to 
1/2 of CongWin just 
before loss event 



Network Security, WS 2008/09, Chapter 9    58 IN2097 - Master Course Computer Networks, WS 2011/2012    58 

Summary: TCP Congestion Control 

q  When CongWin is below Threshold, sender in slow-start phase, 
window grows exponentially. 

q  When CongWin is above Threshold, sender is in congestion-
avoidance phase, window grows linearly. 

q  When a triple duplicate ACK occurs, Threshold set to CongWin/2 
and CongWin set to Threshold. 

q  When timeout occurs, Threshold set to CongWin/2 and CongWin is 
set to 1 MSS.  



Network Security, WS 2008/09, Chapter 9    59 IN2097 - Master Course Computer Networks, WS 2011/2012    59 

TCP sender congestion control 

State Event  TCP Sender Action  Commentary 

Slow Start (SS) ACK receipt for 
previously 
unacked data  

CongWin = CongWin + MSS,  
If (CongWin > Threshold) 
      set state to “Congestion             
Avoidance” 

Resulting in a doubling of 
CongWin every RTT 

Congestion 
Avoidance (CA)  

ACK receipt for 
previously 
unacked data 

CongWin = CongWin+MSS * (MSS/
CongWin) 
      

Additive increase, resulting in 
increase of CongWin  by 1 MSS 
every RTT 

SS or CA Loss event 
detected by 
triple duplicate 
ACK 

Threshold = CongWin/2,       
CongWin = Threshold, 
Set state to “Congestion Avoidance” 

Fast recovery, implementing 
multiplicative decrease. 
CongWin will not drop below 1 
MSS. 

SS or CA Timeout Threshold = CongWin/2,       
CongWin = 1 MSS, 
Set state to “Slow Start” 

Enter slow start 

SS or CA Duplicate ACK Increment duplicate ACK count for 
segment being acked 

CongWin and Threshold not 
changed 



Network Security, WS 2008/09, Chapter 9    60 IN2097 - Master Course Computer Networks, WS 2011/2012    60 

TCP summary 

q  Connection-oriented: SYN, SYNACK; FIN 
q  Retransmit lost packets; in-order data: sequence no., ACK no. 
q  ACKs: either piggybacked, or no-data pure ACK packets if no 

data travelling in other direction 
q  Don’t overload receiver: rwin 

§  rwin advertised by receiver 
q  Don’t overload network: cwin 

§  cwin affected by receiving ACKs 
q  Sender buffer = min { rwin, cwin } 
q  Congestion control: 

§  Slow start: exponential growth of cwin 
§  Congestion avoidance: linear groth of cwin 
§  Timeout; duplicate ACK: shrink cwin 

q  Continuously adjust RTT estimation 



Network Security, WS 2008/09, Chapter 9    61 IN2097 - Master Course Computer Networks, WS 2011/2012    61 

TCP throughput 

q  What’s the average throughout of TCP as a function of window 
size and RTT? 
§  Ignore slow start 

q  Let W be the window size when loss occurs. 
q  When window is W, throughput is W/RTT 
q  Just after loss, window drops to W/2, throughput to W/2RTT.  
q  Average throughout: 0.75 W/RTT 



Network Security, WS 2008/09, Chapter 9    62 IN2097 - Master Course Computer Networks, WS 2011/2012    62 

TCP Fairness 

Fairness goal: If K TCP sessions share same bottleneck link of 
bandwidth R, each should have average rate of R/K 

TCP connection 1 

bottleneck 
router 

capacity R 

TCP  
connection 2 



Network Security, WS 2008/09, Chapter 9    63 IN2097 - Master Course Computer Networks, WS 2011/2012    63 

Why is TCP fair? 

Two competing sessions: 
q  Additive increase gives slope of 1, as throughout increases 
q  Multiplicative decrease decreases throughput proportionally  

R 

R 

equal bandwidth share 

Connection 1 throughput 

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t 

congestion avoidance: additive increase 

loss: decrease window by factor of 2 

congestion avoidance: additive increase 
loss: decrease window by factor of 2 



Network Security, WS 2008/09, Chapter 9    64 IN2097 - Master Course Computer Networks, WS 2011/2012    64 

Fairness (more) 

Fairness and UDP 
q  Multimedia apps often do not 

use TCP 
§  Do not want rate throttled 

by congestion control 
q  Instead use UDP: 

§  Pump audio/video at 
constant rate, tolerate 
packet loss 

q  Research area: Make these 
protocols TCP friendly 

q  One approach: DCCP 
(Datagram Congestion 
Control Protocol) 
§  “UDP with congestion 

control” 
§  Not very popular (as yet) 

Fairness and parallel TCP 
connections 

q  Nothing prevents app from 
opening parallel connections 
between 2 hosts. 

q  Web browsers do this  
q  Example: Bottleneck link of rate 

R that is already supporting 9 
connections  
§  New application opens 1 

TCP conn → gets rate R/10 
§  New application opens 11 

TCP conns → gets rate R/2 ! 



Network Security, WS 2008/09, Chapter 9    65 IN2097 - Master Course Computer Networks, WS 2011/2012    65 

TCP and buffer bloat 

q  Capacities of router queues 
§  “Large queue = good: Less packet losses at bottlenecks” 
§  Do you agree? What would happen to TCP? 

q  Effects of large Buffers at bottleneck on TCP connections 
§  Once queues are full: Queueing delays increase dramatically 
§  TCP congestion control gets no early warning 

•  No duplicate ACKS è no Fast Retransmit 
•  Instead: Sudden timeouts 

§  Congestion windows way too large 
§  Many parallel TCP connections over same link get warning 

way too late 
•  Synchronisation: Oscillation between  “All send way too much” 

and “all get frightened by timeouts and send way too little” 
•  Huge variations in queueing delays è DevRTT becomes very 

large è Timeout value becomes very large 



Network Security, WS 2008/09, Chapter 9    66 IN2097 - Master Course Computer Networks, WS 2011/2012    66 

Buffer bloat is a real-world problem 



Network Security, WS 2008/09, Chapter 9    67 IN2097 - Master Course Computer Networks, WS 2011/2012    67 

Chapter: Summary 

q  principles behind transport layer services: 
§  multiplexing, demultiplexing 
§  reliable data transfer 
§  flow control 
§  congestion control 

q  instantiation and implementation in the Internet 
§  UDP 
§  TCP 

Next: 
q  leaving the network “edge” (application, transport layers) 
q  into the network “core” 


