

Network Architectures and Services, Georg Carle Faculty of Informatics Technische Universität München, Germany

Master Course Computer Networks IN2097

Prof. Dr.-Ing. Georg Carle, Christian Grothoff, Ph.D., Dr. Nils Kammenhuber, Dirk Haage

Chair for Network Architectures and Services Department of Computer Science Technische Universität München http://www.net.in.tum.de

Chapter 7: Network Measurements Part 2

Chapter 7 Outline – Network Measurements

- Localization of nodes
 - Geoip
 - Network coordinates
- □ Cross-Layer considerations

Localization of nodes

- Provide location-based services
 - Local advertisements
 - Extend/reduce service for local/non-local users (e.g. IPTV often restricted to country boundaries)
- □ Choosing of servers
 - Load balancing between hosting location
 - Choose nearest instance of a service (anycast)
 - Locate nearest peers in P2P networks
 - Content delivery networks
 - Online games (gameserver)
 - Resource placement in distributed systems
 - TOR
- □ Find friends, coworkers, ...
 - Google Latitude
- Optimization of application layer multicast trees

• ...


Localization of nodes (II)

- Mapping IP addresses to geo locations
- Determination of distance via latencies
- □ Triangulation, Trilateration (e.g. wireless networks)
- □ GPS, Cellular positioning/ Cell ID

□ Map IP to a location in the world

- □ Granularity levels
 - Country/ continent
 - City, maybe urban districts
 - Street/ exact location

- Basic data sources
 - AS information
 - Whois/RIR information
 - Provider data
- Additional sources
 - User input
 - Update location manually
 - Accurate positioning devices
 - Smart phone with GPS
 - Verify/ update current position for used public IP
 - Track changes in IP of same user
 - Mitigate effect of changing IP connection
- Reduce bias by combining sources
 - Verify data, filter inaccurate data

- Accuracy depends on location database
 - More accurate for static IPs (server, university, ...)
 - Less accurate for home connections
 - Frequent changes
 - Change in IP often also changes the geo location of that IP
 - Not usable in private networks
 - E.g. cellular network (currently private networks + NAT)
- □ Provider cooperation is required
 - Detailed information for each and every IP
 - Disclose internal structure (subnets, connectivity)
 - Which subnet is used at which site (city, maybe even parts)
 - Update in case of changes
- □ Single point of failure
 - Excessive use slows down localization
 - Not usable for massive requests
- Many different implementations

Network coordinates

- □ Latencies between nodes as a metric for distance
 - Round trip time
 - Simplest measurement at all (ping)
 - Most accurate (only one clock involved)
 - Similar to real distance (propagation speed nearly constant)
- □ How to get?
- Simple approach:

Measurements between all pairs of nodes

- O(n²)
- Does not scale (cannot be used for large networks)
- Rely on actual traffic \rightarrow hybrid measurement
- Normally no traffic to all nodes available
 - Active measurements (even worse scaling)

Network coordinates (II)

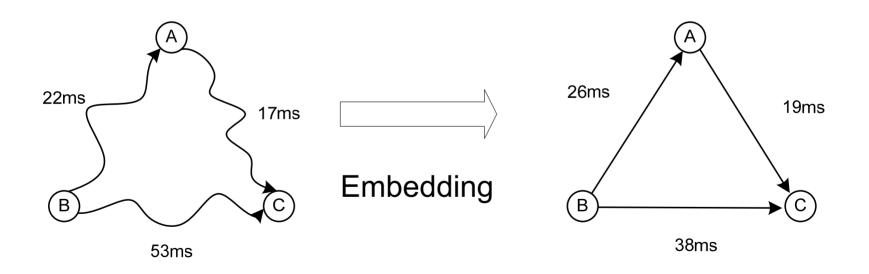
- Measure the distances to some neighbors
 - Neighbors might be known hosts, not near hosts
- □ Calculate a artificial coordinate in a metric space
 - Metric space = distance between nodes can be calculated
 - E.g. Euclidean n-space
- □ Approximate the latency
 - Distance between nodes in the coordinate system is approximation to the latency
- □ Abstract definition:
 - Embed network graph into a metric space
 - Metric embedding/ graph embedding

Internet **Euclidean space (2D)** (x1,y1) RTT(A,D) A Ά (x4,y4) (D)d(B,A) RTT(D,B) RTT(D,C) (x2,y2) В (x3,y3) RTT(B,C) Measured distance Estimated distance

$$d(B,A) = |(x_2, y_2), (x_1, y_1)| = (|x_1 - x_2|, |y_1 - y_2|)$$

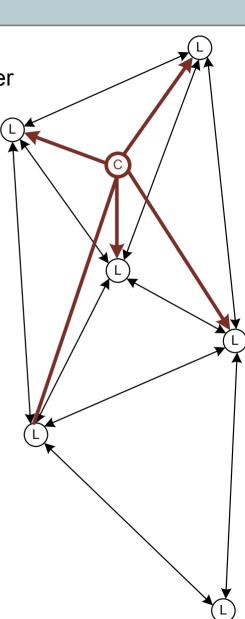
- □ Advantages
 - Small overhead
 - Only requires small number of measurements
 - No additional traffic (application traffic = measurement traffic)
 - Piggy-back the coordinate information
 - Each host can calculate the distance to every other host
 - Only requires the coordinates
- Design goals
 - Accuracy: small error for RTT estimations
 - Scalability: large-scale networks, small overhead, no bottlenecks
 - Flexibility: adapt coordinates to network changes
 - Stability: no drift, oscillation of coordinates
 - Robustness: small impact of error by malicious nodes, nodes with high errors

□ Intuition:

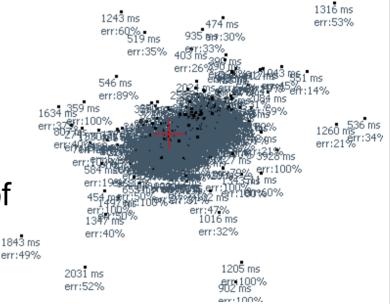

direct latency between 2 nodes should be smaller than any indirection

$$d(a,b) + d(b,c) \ge d(a,c)$$

- Triangle inequality violations (TIV) inherent to Internet routing structure
 - Selective/ private peering
 - Hot potato routing
 - Link metric ≠ latency
 - Asymmetric links (e.g. DSL, UMTS)
- □ TIVs are common
 - >85% of all host pairs part of a TIV
 - For 20-35% exists a path that is at least 20% shorter (Traces: King, Azureus)


Triangle inequality (II)

- Possible spaces for embedding are metric
 - Distance function satisfies triangle inequality
- □ Embedding can not be exact
 - Number and weight of TIVs limits embedding quality



- Global Network Positioning (Ng, Zhang, 2002)
 - Landmark nodes measure distance between eachother
 - New nodes measure distance to landmarks
 - Coordinates relative to landmarks
 - Embedding via Downhill-Simplex in 3D space
 - Problems:
 - Scalability
 - Placement of landmarks
 - Single point of failure
- □ Lighthouse (Pias et al., 2003)
 - Several groups of landmarks
- □ PIC (Costa, Castro, Rowstron, Key, 2004)
 - Generalization of GNP
 - All nodes with known coordinates can be landmarks
- □ Big-Bang-Simulation (2004)
 - Analogy to physics: nodes as particles in a force field

Vivaldi (Dabek, Cox, Kaashoek, Morris, 2004)

- □ Fully distributed
 - No infrastructure, no specialized nodes
- Continuous upgrade of coordinates with new latency values
- Based on application traffic
- Small number of communication partners required for meaningful results
- Can be used with various types of spaces
- □ State of the art
- Actively used (e.g. bittorrent, azureus)

- 1. Choose random (obviously wrong) position
- 2. Initiate communication with some nodes
- 3. Measure latency
- 4. Nodes provide coordinates and error estimation
- 5. Revise coordinates (relative to other nodes)

- □ due to TIVs and measurement errors
 - No exact embedding in low-dimensional spaces
 - Requires at most n-1 dimensions
- Optimization problem
 - Minimize error

(= difference between real and estimated latency)

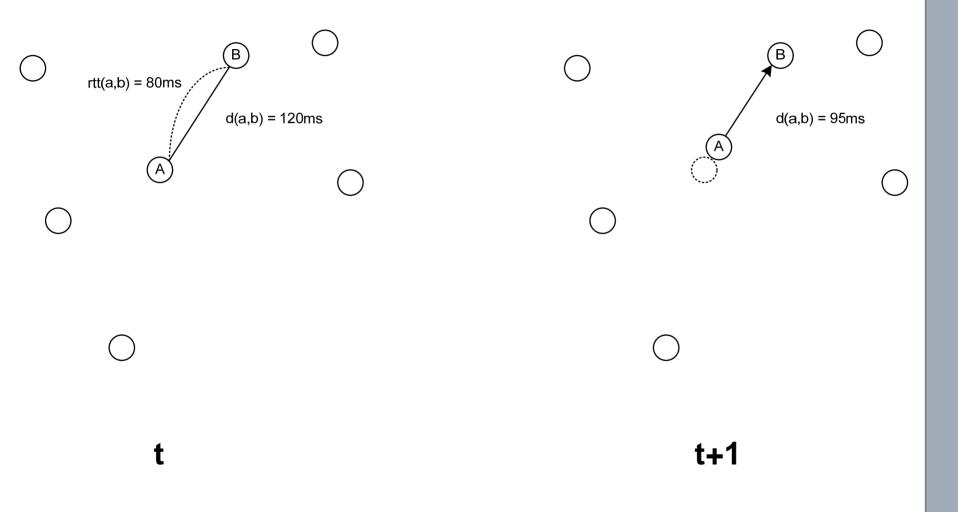
$$E = \sum_{i} \sum_{j} (L_{ij} - ||x_i - x_j||)^2$$
$$||x_i - x_j|| : \text{distance between coordinates i, j}$$
$$L_{ij} : \text{measured latency}$$

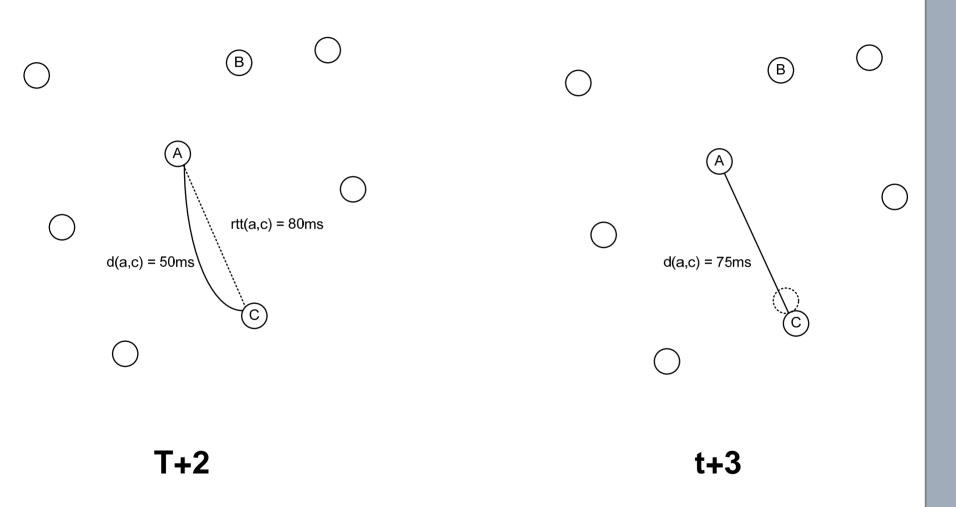
Distance depends on space

Spring Embedder

- Physical analogy: network of springs
- Between each pair (i,j) of hosts exists a spring
 - Length in equilibrium position: L_{ii}
 - Current length: ||x_i-x_j||
 - Potential energy proportional to expansion squared: (L_{ij}-||x_i-x_j|)²
 - Energy of the spring = error
 - Minimal energy in the system = minimal global error
- Force between i and j (Hooks law)

$$F_{ij} = (L_{ij} - ||x_i - x_j||) \times u(x_i - x_j)$$

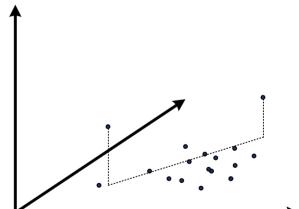

Move node to minimize its energy


- Local
 - Iteratively move each node I by $\delta \cdot F_i$ per step δ = attenuation
- □ Global/ distributed
 - Each node calculates its coordinates
 - Large attenuation: oscillation
 - Small attenuation: slow convergence
 - Small impact of coordinates with high error
 - Adaptive attenuation

$$\delta = c_c \cdot \frac{e_i}{e_i + e_j}, c_c \text{constant}$$

Which space to choose?

- □ Physics:
 - Anology uses 3D space
 - Any space with a definition of distance, difference between coordinates and scalar multiplication possible
- Question:


Which space characterizes the Internet most?

- 2D, 3D
- Sphere, torus
- Complex network → complex space?
- From GNP: embedding in 3D, why?
- □ Result from tests and simulations:
 - 2-3 dimension sufficient
 - More dimensions require more computation without significant improvement

Handling TIVs

- □ Again:
 - TIVs occur for asymmetric routes, links, …
 - Occur quite often
 - Enlarge the error for the embedding
- Instead of using n dimensions, use n-1 + height
 - Euclidean n-space models the core network
 - High connectivity
 - Fast, symmetric links
 - Height models the slow access links
 - Packets are transmitted in the core, not above it
 - Slow hosts are pushed out of the plane

- □ Error below 20% for 80. percentile (2D+H)
- Spherical coordinates do not improve the result
- Adaptive attenuation improve result
- Neighbors
 - < 32: bad results</p>
 - > 64: no improvements
 - Best results with a mixture of near and distant neighbors
- Lookup times in DHTs improved by 30% for 80% of the nodes
- Problems
 - Instability due to churn, latency fluctuation
 - Neighbor decay
 - Latency filter
 - Update filter
 - Drift

Attacks

- Disorder
 - Maximize error in coordinates
 - Denial of service
- Isolation/ Repulsion
 - Move target into "isolated space"
 - Convince target that another node is far away
 - Redirect target to malicious node, replica server
 - Man in the middle attack
- Mitigation based on statistics
 - Classify nodes into bad/good via their behaviour

Cross Layer Considerations

Crosslayer considerations

- Network stack
 - Encapsulation of functionality
 - No knowledge required in upper layers about how the network works

But

- □ Protocols and applications make assumptions on the underlying network
 - Network might change over time
 - Assumptions might not be correct for all parts of the network
- Diverse underlay
- □ Example: TCP
 - Loss = congestion
 - Increasing delay = upcoming congestion
 - Long delay = narrow bandwidth
 - Are these assumptions still true?
 - Wireless networks
 - Satellite links
 - ...
- Include information from different layers in the network stack: Cross layer approach

Implications for measurements

- □ Upper layers are not fully isolated from the underlay
- □ Network types and condition might change the outcome
- Questions that should be answered:
 - Does the measurement change the network and how?
 Does the network condition changes the measurement?
 - UMTS RTT measurements
 - Number of nodes in a WLAN
 - Are the assumption made for the measurement evaluation correct for this specific network
 - Dependency between delay and bandwidth
 - The way the underlay acts on losses (WLAN vs. Ethernet)

- Localization of nodes
 - Required for many purposes
 - GeolP
 - Network coordinates
- Cross layer considerations
 - Take all layers into account while measuring

Thanks for listening! Questions?