
Cross Layer Security Frameworks for Wireless Sensor

Networks

Seeger Jan

Betreuerin: Schmitt, Corinna

Seminar Innovative Internet Technologien und Mobilkommunikation WS09/10

Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München

Email: seeger@in.tum.de

ABSTRACT
A Wireless Sensor Network (WSN) is a tool with many ap-
plications. Because of its characteristic structure and hard-
ware composition, it is much more di�cult to ensure au-
thentication, integrity and confidentiality in WSNs. Several
algorithms have been proposed to fulfill these requirements.
However, securing each OSI layer individually leads to inef-
ficiencies in the operation of the network and security mea-
sures not suitable for the diverse environments WSNs are
deployed in. The two cross-layer frameworks UbiSec&Sens
and the ISA framework compared in this paper aim to reduce
duplication, increase energy e�ciency and provide flexible
security primitives adjustable for a wide array of require-
ments. Both frameworks are usable in di↵erent environ-
ments and increase the flexibility, energy e�ciency and se-
curity strength of a network in contrast to a layered security
approach.

Keywords
Wireless Sensor Networks, Cross-Layer Security, Security
Frameworks, Ubisec&Sens, Integrated Security Architecture

1. INTRODUCTION
A Wireless Sensor Network consists of small, general-purpose,
low-power computing nodes connected over a wireless link.
It is used for sensing and aggregating environmental data
in areas such as agriculture, the military and environmental
monitoring. One example application is prevention of forest
fires by monitoring data such as humidity and temperatures.

A sensor node consists of a low-power general processor
(such as an Atmega 128L), a wireless transceiver (for ex-
ample using the IEEE 802.15.4/Zigbee wireless stack), dif-
ferent sensors and a battery. Processing power is very low
and memory is scarce. To illustrate: A modern personal
computer has about 400 times as much processing power
and more than 5000 times more available memory space.
Energy is also a concern: The energy ratio between sending,
computing and sleeping is about 170:8:1 in a node. It is
therefore sensible to minimize sending and computing oper-
ations.

These tiny sensor nodes are organized in a tree- or star-like
fashion: Each leaf node is linked to an aggregator node,
which in turn can be linked to yet another aggregator node.
The last layer of aggregator nodes is then linked to the base

Figure 1: Structure of a wireless sensor network

station, as illustrated in Figure 1. This structure leads to a
tra�c flow from the leaves over the aggregator nodes to the
base station. Only a negligible amount of data passes back
from the base station towards the nodes, compared to the
amount of data flowing in the reverse direction.

In order to protect the potentially sensitive data being passed
through the network, strong security measures need to be
taken. Security in wireless sensor networks is an active re-
search topic, and many algorithms have been proposed for
use in sensor networks.

Because of the very weak hardware, security algorithms need
to be as computationally lightweight as possible, something
that is not given in most “standard” algorithms and crypto-
graphic protocols such as Kerberos or TLS.

Also, the non-tamper-resistance of the single nodes poses
additional challenges: Any secret material contained in a
single node can be gained by an attacker by simply stealing
the node and reading its secret key store. The Dolevt-Yao
threat model of an attacker situated between two personal
computers is thus not applicable in wireless sensor networks
[4].

One solution for these challenges is to integrate the di↵erent
layers of the traditional security architecture. This approach

1



is called Cross-Layer Security. Cross-Layer Security aims to
provide integrated security services to its host by making
security decisions across all layers.

Two Cross-Layer Security frameworks have been selected
for this overview: The European Union “UbiSec&Sens” [2]
framework, and the “ISA”-Framework envisioned by mem-
bers of the Sikkim Manipal Institute of Technology [9].

2. THE UBISEC&SENS FRAMEWORK
The UbiSec&Sens project (full name is “Ubiquitous Secu-
rity and Sensing in the European Homeland”) is a research
project supported by the European Union as a“Specific Tar-
geted Research Project” with such partners as NEC and the
RWTH Aachen 1

It targets medium- to large-sized Sensor Networks and aims
to provide an integrated and customizable security envi-
ronment for sensor nodes. In the following sections, one
UbiSec&Sens configuration will be explored and relevant al-
gorithms will be explained.

2.1 Authentication
Authentication is tricky in a WSN: Any unique knowledge
by which a node can prove that it is, in fact, itself and not
an attacker, can easily be stolen by an attacker: Because
the nodes are not tamper resistant, the attacker can simply
open the node, and extract the key from its storage location.
Asymmetric cryptography is no help here, since the private
key can compromised just as easily.

One possible idea is reducing the strength of authentication:
Instead of identifying an arbitrary node, we merely try to
re-identify a node that has provided a certain service. This
property is called “Zero Knowledge Authentication” (ZCK)
by Weimerskirch and Westho↵ [7].

Their proposed algorithm works as follows:

1. First, nodes A and B generate a public key from their
global private keys, the identity of the other node and
some random data.

2. Then, the hash function H is applied n times to the
global private key to create the public keys, xA

n for A
and xB

n for B.

3. The first time A and B communicate, their public keys
xn are exchanged.

4. The next steps are repeated for every communication
between A and B.

5. A sends xA
n�1 to B, B checks if H(xA

n�1) = xA
n .

6. B sends xB
n�1 to A, A checks if H(xB

n�1) = xB
n

7. Finally, each node stores the last key that was sent to
them, so instead of storing XB

n , A stores XB
n�1 after

this authentication process.

1See www.ist-ubisecsens.org

ZCK authentication is claimed (without proof) to be the
strongest possible authentication in a WSN by Weimerskirch
and Westho↵ [7].

The attacker can still impersonate a node by reading its
key store, but if he does not provide the service connected
to the key, contact with that node will be broken. False
data injected by the attacker needs to be filtered out by the
aggregation algorithm.

The use of one-way hash functions allows a comparatively
high system security coupled with low computing require-
ments compared to authentication with preshared keys as
practiced by the ISA framework (see chapter 3.2).

The ZCK authentication algorithm thus provides for a com-
putationally lightweight authentication solution for wireless
sensor networks which nevertheless fulfills the needs of other
higher level algorithms.

2.2 Encryption
There are several encryption algorithms that are considered
acceptable for running on a node: As seen in chapter 3.3,
“standard algorithms” such as RC5 can be run on a sensor
node.

However, using a standard encryption algorithm such as
RC5 or even an asymmetric cryptosystem like ElGamal dis-
regards the main purpose of a Wireless Sensor Network: It
is the aggregation and collection of data. Most of the energy
and processing time expended in a Wireless Sensor Network
is dedicated to either sensing data or performing operations
like median, average or movement detection on that data.

For such cases, using a Privacy Homomorphism (from now
on abbreviated “PH”) grants large advantages: A PH is a
cryptosystem with encryption function Ek(x) and decryp-
tion function Dk(x), and an operator � such that the fol-
lowing condition holds:

Dk(Ek(x� y)) = Dk(Ek(x)� Ek(y)) = x� y

If the � operator is +, the homomorphism is called“additive
homomorphism”, if� is ⇤, the homomorphism is called“mul-
tiplicative homomorphism”. This property allows the aggre-
gation of data without decryption of the received packets.
This is called “Concealed Data Aggregation” (CDA) in [8].
CDA saves energy in the nodes, because packets do not have
to be decrypted in order to be processed. Also, concealed
data aggregation protects the transferred data in the case of
an attacker capturing an aggregator node.

The following additive and multiplicative PH proposed by
Westho↵ et al. in [8] is part of the UbiSec&Sens modules.

The symmetric PH proposed by Westho↵ et al. is a prob-
abilistic homomorphism: First, choose the public param-
eters d and g, where d is larger than 2, and g has many
small divisors and integers with an inverse element smaller
than g. The secret key is then the pair k = (r, g0) where
r has an inverse element in Zg, and g = g0

n where n is

2



an integer. Then, partition the sensed value S into ran-
dom parts ai, so that

Pd
i=0 ai mod g0 = S. Then, the

value is encrypted by calculating Ek(a) = (a1r mod g, a2r
2

mod g, . . . adrd mod g). To decrypt, simply use the inverse
element r�1 to compute each ai and then sum up these val-
ues: Dk(a) =

Pd
j=1 aj ⇤r�j mod g0. The encryption is akin

to transforming the sensed value into an number system with
an unknown base.

This algorithm is additively homomorphic: Simply sum up
the encrypted parts to gain the new encrypted value: a+b =
ci = ai + bi mod g. To multiply, proceed similar to manual
multiplication: a ⇤ b = 8i 6= j : ci+j = ai ⇤ bj mod g. Then
simply add up the parts with the same index.

However, since this is a symmetric algorithm, a special key
distribution algorithm needs to be used in order to prevent
an attacker from gaining a key and decrypting the data flow-
ing through the network too easily.

2.3 Key distribution
Connected to chapter 2.2 is the key distribution: Because
every sensing node needs a key to encrypt its data, keys need
to be distributed prior to starting aggregation.

Asymmetric cryptography would be optimal. However, asym-
metric cryptography poses hardware requirements that a
sensor node is not able to fulfill, especially not for encrypting
sensed data (which is a very frequent operation).

A pool of preshared keys would also be feasible. But these
keys would have to be configured before deployment, and
their distribution most probably would not mirror the geo-
graphic distribution of the nodes.

“Topology aware group keying”, proposed in the same pa-
per as CDA [8], solves this problem: It works with a pool
of preshared keys on each node, creates a key distribution
coincident with the geographic distribution of the nodes and
retains as little sensitive data as possible on each node.

It works in the following way:

1. Before deployment, each node is configured with the
same preshared key pool. Each key in that pool has a
unique key ID.

2. When deployed, the nodes with distance 1 to the base
station start broadcasting a list of key IDs randomly
selected from the key pool and deletes its whole key
pool.

3. Any node that receives an ID broadcast either deletes
its whole key pool or randomly chooses a key from the
broadcast ID list.

4. It rebroadcasts the ID list, and ignores all subsequently
received key lists.

5. Finally, all nodes that have not received a broadcast
delete their whole key pool.

Each node n with distance 1 from the base station create a
“routeable region”: In this region, there is a certain number

Figure 2: Key distribution in a single routeable re-

gion [8]

of nodes that have the same keys. Then, the nodes are
operated in a time-slice fashion: Each time slice, only the set
of nodes that have a certain key operates as sensing nodes.
The rest can either work as aggregator nodes or save energy
by going into standby mode. For a visualization of the key
distribution, see Figure 2: Each di↵erent mark represents
a di↵erent chosen key. The density of the key distribution
can be controlled in step 3: By varying the probability with
which the node deletes its key store, the private information
stored in the nodes and the aggregator node density can be
controlled.

It is clear, that such a distribution of the keys grants many
benefits: An attacker needs to capture many nodes before he
can decrypt the tra�c in every time period. Since the prob-
ability of capturing a useful key decreases with the number
of keys already obtained, even with a high key density, the
attacker must expand a comparatively high amount of time
to gain full access to the encrypted data.

The average number of nodes needed is based on a modified
coupon collector’s problem. The probability to find a new
key decreases with the number of keys already found. Since
there is also a number of nodes that do not have any keys
in their key stores, it can be said that the average number
of nodes to collect for full network penetration for n nodes
is higher than the nth harmonic number Hn.

2.4 Data storage
Most sensor networks do not require storage of information:
Sensed data is immediately passed to the aggregator nodes,
the aggregation function is calculated (perhaps several times
in di↵erent levels of the sensor network) and the result is
passed on to the base station.

However, in certain kinds of sensor networks, data storage
is useful: In impassable regions, connectivity to researchers
may not be given, and the data needs to be stored until
someone retrieves the data. Also, redundant data storage
increases the resilience of a network towards loss of sensor
nodes: In a non-storing sensor network, once a significant

3



portion of sensors is destroyed, the whole network becomes
unusable. With distributed storage inside the sensor nodes,
the data can still be retrieved.

“Tiny Persistent Encrypted Data Storage” (from now on
called TinyPEDS) described by Westho↵, Girao et al. [5]
works by partitioning the sensor network into quarters and
then distributing the data in these quarters to achieve re-
dundancy.

Notable is the use of two PH’s: One symmetric PH for im-
mediate encryption and transfer (here, the PH described in
chapter 2.2 can be used), and an asymmetric PH for long-
term storage encryption.

The algorithm works as follows: During the startup phase,
the network is divided into quarters: Each aggregator node
ni has “next node” ni+1, which redundantly stores its data
di. When sensing, the aggregator node sends the symmetri-
cally encrypted data to its next node, where it is added to
the nodes’ own encrypted sensing value. This value is then
encrypted and stored using the asymmetric homomorphism.
So node ni stores Es(di), Ea(di + Es(di�1)), where Es is
the symmetric homomorphism, and Ea is the asymmetric
homomorphism.

During a normal query, the query packet is flooded to all
nodes. Each node tests if it is included in the node set
contained in the query, and if it is, sends the requested en-
crypted data Es(di) back to its aggregator node. The answer
is then aggregated and percolates upwards through the tree
to the base station.

If the sent query is not answered in a certain time period, it is
presumed that a part of the sensor node is lost, and a disaster
query is run. If data from node ni is requested, each node nj

tests if it is not included in the requested node set. It then
sends back its redundant data Ea(dj + Es(dj�1)), Es(dj).
The base station then receives three values, from which it
can recompute the requested value.

TinyPEDS thus allows resilient and energy e�cient data
storage in a wireless sensor network.

3. THE ISA FRAMEWORK
The ISA framework from [9] pursues a di↵erent concept from
UbiSec&Sens: Instead of creating an open toolbox of algo-
rithms that are designed to fit together, the ISA framework
takes a “one-size-fits-all” approach.

“ISA” stands for Intelligent Security Agent, an added com-
ponent in the node graph (see Figure 3) that is responsible
for all security decisions. It is comparable to a TPM in
a personal computer and allows integrated operation of all
security services.

3.1 Tasks of the ISA
The ISA is the sole controller of all security options. When-
ever a packet is sent or a communication channel is opened,
the ISA is consulted in regards to security. Also, the ISA
fulfills several other tasks necessary for secure operation of
the network.

Figure 3: The node component graph with ISA

added

Since ISA aims for component-based security (as opposed
to UbiSec&Sens, which takes a probabilistic approach), each
nodes’ ISA monitors several important parameters that help
to detect local and global intrusion attempts. These roles are
called LIDS and GIDS respectively, which stand for “Local”
or “Global intrusion detection system”.

Among the monitored parameters for the LIDS are the sensed
values, the packet collision ratio, the invalid packets and the
number of retransmitted packets. If any of these parameters
changes abruptly, the ISA reports to the base station.

The GIDS subsystem monitors parameters such as power
consumption, signal strength of neighboring nodes and IDs
of neighboring nodes, and also reports any anomalies to the
base station.

Apart from intrusion detection, the ISA also stores a “se-
curity level” or “security precept”: Whenever an abnormal-
ity is detected, the security level is changed to answer the
perceived threat. This allows the network to provide only
necessary security: When there are no attackers, expensive
encryption operations do not make sense.

3.2 Authentication
Authentication in an ISA sensor network is done with tra-
ditional preshared keys: Each node has a preshared key to-
gether with each other node. This leads to higher space
requirements. But the process of a challenge-response au-
thentication as described below is well understood and re-
searched, whereas the ZCK algorithm from chapter 2.1 is a
comparatively new algorithm.

No special authentication algorithm is given in [9], but a
simple challenge-response protocol like the following is easily
implemented:

4



1. Node A wants to communicate with B. It sends a ran-
dom number rA to B, authenticated and encrypted
with the preshared key KA,B .

2. B receives that number and increases it by 1. Then, it
generates another random number rB . Both numbers
are encrypted and authenticated and sent back to A.

3. A receives both numbers. It checks if B sent back the
correct number rA + 1 and sends rB + 1 back to B.

4. B again checks the received number.

If any of the checks fail, the communication channel is torn
down.

This challenge-response protocol is supported by a reputa-
tion based approach taken from [1]: The ISA saves all the
past communication with a node and decides whether to co-
operate with it based on several metrics: The signal strength
of a node, the number of generated versus the number of for-
warded packets and the number of dropped packets.

This allows a flexible infrastructure with changing sensor
distributions. Also, an adequate ruleset leads to non-cooperative
nodes to be disconnected from the network.

3.3 Encryption
The encryption proposed by [9] is selected by the ISA: Based
on the “security precept” (see chapter 3.1) of the ISA, dif-
ferent security algorithms and parameters are selected.

In the paper, two algorithms are proposed: A simple XOR
encryption which is not described in more detail, and the
RC5 algorithm.

The XOR encryption can be implemented with a simple
feedback shift register or a simple PRNG, where the data
is XORed with the key stream. Although the cryptographic
strength of that encryption is very low, it is, however energy
saving and computationally lightweight.

RC5 is an algorithm proposed by R. L. Rivest in [6] which
is computationally lightweight and highly configurable. It’s
basic structure is that of a regular feistel chi↵re. A novel
feature is the use of “data-dependent rotation”: One half of
the ciphertext is rotated by the other half of the ciphertext,
as can be seen in algorithm 1. RC5 has been studied ex-
haustively, and is generally thought to be secure by current
standards.

Because of it’s simplicity, the source code can be included
here (see algorithm 1).

A = A + S[0];
B = B + S[1];
for i = 1 to r do

A = ((A � B) n B) + S[2 * i];
B = ((B � A) n A) + S[2 * i + 1];

end

Algorithm 1: The RC5 algorithm

Derivation of the key material S from the original key is a
bit more complex. However, expansion of the key material
needs to be done only once for each key.

RC5 is highly configurable, and the ISA uses that property
to configure di↵erent security settings based on the perceived
threat level. Security configuration is highly configurable,
but in the ISA paper, four levels are proposed:

Level 0 Simple XOR “encryption”

Level 1 RC5 with 80 bit key and 4 rounds

Level 2 RC5 with 80 bit key and 8 rounds

Level 3 RC5 with 80 bit key and 12 rounds

Note that the key size is not changed. This is because in-
creasing the key size would either mean redistributing keys,
or distributing larger keys in advance. Both is a highly en-
ergy ine�cient operation and so the key size is not changed.

3.4 Key distribution
The use of preshared keys requires an intelligent key dis-
tribution algorithm. Since the number of keys increases
quadratically with the number of nodes, it is helpful to gen-
erate the node-to-node keys from a central master key kept
in the base station. For that, a procedure taken from [3] is
used: It allows the computation of pairwise keys from a cen-
tral master key. However, it does not easily allow derivation
of the master key from the pairwise node keys unless a cer-
tain number of users cooperate, i.e. until a certain number
of nodes have been captured.

The approach is taken from coding theory:

Let n be the number of nodes in the network. Then create
a public k ⇥ n encoding matrix G that is an MDS code, i.e.
that has the maximum possible hamming distance between
code words. The base station creates a private key matrix
D. Then, the global key matrix K is given by K = (DG)T G.
If user i wants to communicate with user k, the column Ki,j

is chosen. Since K is symmetric and G is publicly known,
it su�ces to send (DG)T

i to node i in order to allow it to
communicate with any other node. Because G is an MDS
code, it is not possible to compute D from less than k keys.

On the other hand, once the attacker has captured k nodes,
he can deduce D and so has access to all pairwise keys be-
tween all nodes. This contrasts with the UbiSec&Sens ap-
proach in chapter 2.3, where there is only a certain prob-
ability (which rises with the number of captured nodes) of
network compromise.

4. CONCLUSION
ISA and UbiSec&Sens aim to provide the same benefits to a
wireless sensor network. However, from the preceding chap-
ters, it should be clear that both frameworks use di↵erent
techniques to reach their goal.

UbiSec&Sens aims to provide an “economic” security level,
i.e. provide the necessary security with as little overhead

5



as possible. This is achieved by choosing from a carefully
selected pool of algorithms which are tuned to work together
as well as possible. This allows high energy e�ciency and
a long lifetime of the sensor network. However, it must be
remembered that, at least in the described implementation,
UbiSec&Sens does not aim to provide “hard” security, i.e.
security comparable to a personal computer.

ISA on the other hand tries to ensure component based se-
curity. Each node monitors itself for possible intrusions and
alarms the base station. While achieving component based
security is a di�cult target in a WSN, the precautions of
the ISA provide more secure components than the described
UbiSec&Sens implementations, which does not concern itself
with compromised nodes in a local manner. Also, the ISA
security precautions are highly flexible: The security level of
the total network changes depending on the needed security
level. This allows easy deployment and low configuration ef-
fort. Note however that the addition of a new component in
the sensor node makes it impossible to use standard nodes
for an ISA network.

ISA and UbiSec&Sens are both able to provide energy ef-
ficient security to a wireless sensor networks. However, both
frameworks are applicable to di↵erent environments: UbiSec’s
modularity at deployment time and high energy e�ciency
makes it suited to long-term deployment, while ISA is bet-
ter used in large networks that are highly dynamic, both in
their security requirements and network structure.

5. REFERENCES
[1] A. Agah, S. Das, and K. Basu. A game theory based

approach for security in wireless sensor networks. In
2004 IEEE International Conference on Performance,
Computing, and Communications, pages 259–263, 2004.

[2] F. Armknecht, A. Hessler, J. Girao, A. Sarma, and
D. Westho↵. Security Solutions for Wireless Sensor
Networks. In 17th Wireless World research Forum
meeting. Citeseer, 2006.

[3] R. Blom. An optimal class of symmetric key generation
systems. In Proc. of the EUROCRYPT, volume 84,
pages 335–338, 1985.

[4] D. Dolevt and A. Yao. On the Security of Public Key
Protocols·.

[5] J. Girao, D. Westho↵, E. Mykletun, and T. Araki.
TinyPEDS: Tiny persistent encrypted data storage in
asynchronous wireless sensor networks. Ad Hoc
Networks, 5(7):1073–1089, 2007.

[6] R. Rivest. The RC5 encryption algorithm. Dr Dobb’s
Journal-Software Tools for the Professional
Programmer, 20(1):146–149, 1995.

[7] A. Weimerskirch and D. Westho↵. Zero
common-knowledge authentication for pervasive
networks. Lecture Notes in Computer Science, pages
73–87, 2004.

[8] D. Westho↵, J. Girao, and M. Acharya. Concealed data
aggregation for reverse multicast tra�c in sensor
networks: Encryption, key distribution and routing
adaption. IEEE Transactions on mobile computing,
October 2006.

[9] K. Yadav, K. Sharma, and M. K. Ghose. Wireless
sensor networks security: A new approach., 2008.

6


