
POSTER 04 – EVALUATION OF BUILDING BLOCKS FOR PASSIVE ONE-WAY-DELAY MEASUREMENTS

Abstract— Service Level Agreements (SLAs) specify the

Quality of Services (QoS) negotiated between provider and
customer. QoS Measurements provide a suitable way to proof
the fulfillment of the given guarantees. During service usage
the traffic of interest is already present in the network. This
traffic can be utilized for passive (non-intrusive) measurement
methods avoiding the disadvantages of sending test traffic for
active (intrusive) measurements. Some applications (e.g.
interactive applications like IP telephony) rely on guarantees
for one-way metrics like one-way delay. One-way metrics
usually cannot be derived from round trip measurements.
Therefore specific methods are required to measure one-way
metrics.
In this paper we evaluate the necessary building blocks for
passive one-way-delay measurement. In particular we discuss
different functions for the generation of packet identifiers
needed to correlate packet arrivals at the ingress and egress
measurement point. We have implemented a flexible and
modular meter, which allows us to use and compare different
functions for the packet ID generation. In experiments we have
measured the performance of the different methods
investigated in this paper. We conclude with the experiment
results and identify the applicability and efficiency of the
different methods.

Index terms-- Passive one-way-delay measurements, IP
metering, SLA validation

I. INTRODUCTION

There exist a variety of motivations for performing passive
measurements in IP networks. Many applications require the
measurement of the Quality of Service (QoS) for the
transport of specific IP flows or traffic aggregates. Network
providers and customers are interested whether negotiated
QoS values in SLAs are met (SLA validation).
Measurements also provide the basis for usage-based
accounting. Furthermore, measurement results are an
important input for traffic engineering decisions.
SLAs are usually negotiated between network providers and
customers or between neighboring network providers. One-

way metrics like one-way delay are important for the
observed quality especially for interactive applications.
Therefore it is very likely that SLAs will contain guarantees
for one-way metrics. Forward and return path for a data
transmission may not have the same characteristics (even
different paths can be used) and therefore can differ in
quality. This means that one-way metrics cannot be derived
directly from round-trip metrics, and that suitable
measurement methods for one-way metrics are required for
SLA validation. Since the traffic of interest is already
present in the network, the measurement goal can be
achieved efficiently by passive measurements avoiding the
effort and the disadvantages of sending test traffic.
In this paper, we investigate requirements of a passive
measurement system for one-way-delay measurements.
Based on this we investigate how the selection of algorithms
and parameters of the different building blocks influence the
performance (resource consumption, speed) of the overall
system. We focus on the analysis and comparison of
different packet identifier (ID) generation functions. For this
we investigate and compare the usage of (1) a simple
combination of highly variable IP header bytes, (2) CRCs,
(3) a simple hash function used in [DuGr00] and (4) the
MD5 message-digest algorithm [RFC1321, Touc95]. We
investigate these packet ID generation functions as part of a
modular passive meter, which we have implemented based
on an extended Linux NetFilter classifier [Russ00]. The
meter is suitable for passive measurement of one-way-delay.
It has a modular structure that allows us using and
comparing different packet ID generation functions. We
present the influence of these functions to the performance
and the resource consumption of the system.
The paper is structured as follows. Section II compares the
active and passive measurement approach and highlights the
differences. Section III describes the requirements for
passive one-way-delay measurements and shows the key
building blocks of a passive measurement system. Section
IV discusses how packet IDs can be generated most
efficiently and gives an overview on related work. Section
V describes our meter implementation that was used for the
measurements presented in section VI. Section VII
concludes the paper and identifies future work.

Evaluation of Building Blocks for Passive
One-way-delay Measurements

Tanja Zseby, Sebastian Zander, Georg Carle

GMD FOKUS
Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

[zseby, zander, carle]@fokus.gmd.de

POSTER 04 – EVALUATION OF BUILDING BLOCKS FOR PASSIVE ONE-WAY-DELAY MEASUREMENTS

II. PASSIVE VS. ACTIVE MEASUREMENTS

Active measurements inject test traffic into the network in
order to measure network characteristics. In contrast to this,
passive measurements rely on the traffic that already exists
in the network. In order to distinguish purely passive
measurement methods from methods where packets are
modified by the measurement process (e.g. by adding a
timestamp to the packet) we call the latter semi-active
measurement methods.
The development of active measurement methods to survey
large parts of the Internet at high precision is an active field
of research (e.g. [PaAM00], [KaZe99], [PaMA98],
[UiKo97]). Active measurements give a prediction of the
expected treatment of traffic in the observed part of the
network. Active measurements are controllable experiments,
which can be performed at any time and with any kind of
traffic pattern that is of interest for the specific measurement
objective [SeSK97].
Despite these advantages, active measurement methods have
a number of disadvantages, mostly due to the approach of
sending additional test traffic through the network under
test. In order to obtain measurement results that are
representative for certain applications, active measurements
require the generation of appropriate (artificial) test traffic
to emulate the expected traffic mix. In most cases this task
is not trivial. Furthermore, test traffic always generates
additional load on network links and routers and can
significantly influence the measurement results. It may lead
to additional costs if accounting is usage-based, and it might
also irritate intermediate providers. Especially if test traffic
is not recognizable as such, providers may suspect an attack.
For SLA validation, care must be taken that injected test
traffic is treated equal to regular traffic. Furthermore, if
interdomain measurements are done, the test traffic should
be generated in a way that a foreign provider cannot
distinguish the test traffic from regular traffic. Otherwise
providers could apply special treatment to the test traffic in
order to influence the measurement results.
In contrast to this, passive measurements are based on the
already existing traffic in the network. They provide a
statement about the treatment of the current traffic in the
observed network section. Since no test traffic is generated,
passive measurements can only be applied in cases where
the kind of traffic we are interested in is already present in
the network. This is the case for most applications where
statements about the actual situation in the network are
required (like SLA validation, traffic engineering). Active
measurements can always be applied supplementary, in
order to predict the future network situation during times
where no regular traffic is transmitted.
Passive measurements mainly have been used for simple
tasks like packet counting (e.g. NeTraMet [RFC2123]
[Brow97] and NetFlow [Cisc99]) and associated metrics,
like volume, so far. The area of packet filtering and
classification is an active field of research, which
permanently comes up with new fast algorithms and
methods to improve the filtering performance (e.g.
[BoSS99], [GuMc99]). Passively measuring round-trip

metrics is possible at a single measurement point by using
packet pair matching techniques that rely on existing packet
pairs like TCPdata/ACK, DNS request/response, etc.
[Brow00]. Nevertheless, this method only works for
protocols based on packet pairs. It requires classification
based on higher layer information (which is for instance not
possible if data is encrypted) and only measures round-trip
metrics. Difficulties arise if two measurement points are
involved in the measurement like for passive one-way delay
(OWD) measurements.

III. PASSIVE ONE-WAY-DELAY MEASUREMENTS

An approach to realize passive OWD measurements is to
generate a timestamp and a unique packet ID for each
packet at two measurement points and to send this
information to a control instance that calculates the delay.
The packet ID is needed to associate the timestamps from
the different measurement points to the correct packet.
For each packet that is measured a timestamp and a packet
ID have to be generated, stored and transmitted to a
collection point where the QoS computation takes place,
based on the results from the different measurement points
(Figure 1). Therefore the amount of measurement result data
that arises per second depends on the number of measured
packets n per second, the number of bits lt used for the
representation of the timestamp and the number of bits lid

for the packet ID.

Timestamping

Classification

Packet ID
Generation

Measurement
Result Transfer

Delay Calculation

MP1

pkt, t1

pkt, t1, [class]

id, t1, [class]

discard

MP1, id, t1, [class] MP2, id, t2

Timestamping

Classification

Packet ID
Generation

Measurement
Result Transfer

MP2

pkt, t2

pkt, t2

id, t2

discard

Packet Capturing Packet Capturing

pkt pkt

Figure 1: Passive One-Way-Delay Measurements

The main building blocks for implementing a one-way-
delay measurement are shown in Figure 1. The processes
involved are packet capturing, timestamping, classification,
generation of a packet ID and transfer of measurement data.
The requirements for the building blocks are examined in
detail in the following subsections. Based on these building
blocks, we investigate alternative methods for implementing
them, in order to identify the most efficient way to perform
the needed tasks.
Further issues that must be dealt with are privacy issues
when capturing traffic from customers, difficulties in packet
event correlation when packets are lost or duplicated, and
the overall amount of measurement data captured and
transmitted for evaluation.

POSTER 04 – EVALUATION OF BUILDING BLOCKS FOR PASSIVE ONE-WAY-DELAY MEASUREMENTS

A. Packet Capturing

A certain amount of bytes needs to be captured per packet
as basis for the generation of a packet ID. The packet ID
collision probability depends on the generation function and
the number of bytes that are used as input. In [DuGr00] it is
stated that the first 40 Bytes starting at the IP header are
sufficient. However, the number of bytes that can be
captured also depends on the processing power remaining
for the measurement task. The packet capturing
performance of a machine is limited by

• the number of interrupts generated by the NIC,
• the number of context switches,
• the amount of bytes transferred to user space,
• the current load of the machine (caused by other

processes e.g. for the packet ID generation)
The number of interrupts depends on the number of packets
that have to be passed from the hardware to the kernel. The
number of context switches depends on the number of
packets that have to be passed from kernel to user space.
Both can be minimized through bundling or batching of
packets.
In case of interrupt bundling, packets are queued in the NIC
buffer until an interrupt is generated. Thus the accuracy
decreases because timestamps are normally generated in the
kernel and not on the NIC. The number of context switches
can be reduced significantly by copying multiple packets at
once (batching) instead of copying each packet separately
from kernel to user space. The amount of bytes transferred
to user space could be minimized through minimization of
the number of bytes captured or by doing the packet ID
generation in the kernel. Nevertheless in our experiments
we observed that the processing performance is influenced
only slightly by the number of bytes copied.
Since the packet ID generation function is called per packet,
there is a tradeoff between the complexity of the function,
the length of the packet ID and the remaining collision
probability. Sampling can reduce the number of packets
processed per time interval.
A dedicated metering device, which is attached to the
network segment of interest, can use its full processing
power for the measuring task. In case of a non-switched
Ethernet subnet, the device can capture packets by operating
its NIC in promiscuous mode, while in other cases an
optical splitter or a monitoring port on a switch is needed
for packet capturing. If measurements run as additional
functions on a router, only a certain amount of processing
capacity is available for measurements. It has to be taken
care that the routing functionality is not negatively affected
by measurements. Due to possible load changes it may be
difficult to ensure that there will be always sufficient
processing capacity for both routing and measurement tasks.
Therefore we focus in the following on the first alternative.
In contrast to results in [ClDG00] we encountered no packet
loss in our measurements on the hardware (Intel Fast
Ethernet E100Pro) or the operating system kernel (Linux
2.4) as long as the test system is not in an overload state and
the kernel socket buffers are sufficiently large to avoid
buffer overflows during context switches.

B. Timestamping

A number of issues have to be considered for the basic
function of assigning timestamps to packets for subsequent
delay calculation. Internal buffering in the hardware and on
the way through the kernel causes additional packet delay.
Even if all involved measurement devices are equipped with
the same hardware and operating system, packets can
experience different delays (e.g. due to CPU load and the
level of buffer filling). In order to reduce effects from
additional variable delays, the timestamp should be assigned
to the packet as early as possible.
A further problem that has to be solved when using two
measurement points is clock synchronization between both
points. Current solutions are based on the Network Time
Protocol (NTP) [RFC1305], the Global Positioning System
(GPS), and radio signals (e.g. DCF77). Each solution has its
own drawbacks and advantages.
NTP is limited in its accuracy especially in large networks.
Subsequent NTP packets may experience different queuing
delays, resulting in relatively imprecise clock
synchronization. GPS provides an adequate solution for the
clock synchronization problem. It can be received
everywhere on earth, and a GPS signal can achieve an
accuracy with a maximum deviation of 100 nanoseconds.
For the achievable accuracy one has to take into account
that there is a loss in accuracy on the way from the GPS
receiver to the clock tick in the kernel. Nevertheless, since
delay values usually lie in the range of milliseconds, the
achievable accuracy should be sufficient for the
measurements. A certain drawback of GPS is that GPS
receivers require a direct “intervisibility” with the satellites.
This can become a severe problem since measurement
devices are frequently positioned close to main nodes of the
infrastructure, frequently located in server-rooms that may
lack a window or may be located at the basement.
Furthermore, GPS is still more expensive compared to other
solutions.
A further possibility is to use radio signals for time
synchronization. For instance the DCF77 radio signal,
which is broadcasted at 77.5 kHz from a station near
Frankfurt/Main in Germany, provides date and time with an
accuracy of at least one millisecond. The signal can be
received almost everywhere in Central Europe and is used
amongst other purposes for the synchronization of public
clocks (e.g. at railway stations). One problem with radio
signals is that a proper reception is also not guaranteed
everywhere. Furthermore, atmospherics may interfere with
the signal. Due to its limitations in coverage, the DCF77
signal can only be used for measurements within Central
Europe. But since radio signals all over the world are
synchronized with each other, measurements with devices in
different continents can be realized as long as any suitable
local radio signal can be received in the area of interest.
A timestamp can be represented as absolute time. With this
the number of bits needed for the representation of the
timestamp depends only on the desired accuracy for the
measured metric. A possibility to reduce the number of bits
lt used for the timestamp is to use relative timestamps. One

POSTER 04 – EVALUATION OF BUILDING BLOCKS FOR PASSIVE ONE-WAY-DELAY MEASUREMENTS

approach is to make an assumption on the maximum time
tmax a packet needs to traverse the network from the ingress
to the egress measurement point. With this upper limit the
timestamp needs to be non-ambiguous only within this limit.
In this case the value lt depends not only on the desired
accuracy of the time representation but also on the
predetermined limit for the maximum time the packet needs
to traverse the network. Another possibility is to use an
absolute timestamp only for the first packet in a given time
interval [0,tint] and use timestamps relative to this for
successive packets that arrive in the same interval.
Further issues are that the time that is needed for the
timestamping process can differ for subsequent packets,
which can also lead to inaccuracy [ClDG00].

C. Classification

A classification of packets is required if only selected
packets are used for the measurement. A pre-selection is
useful to reduce the amount of resulting measurement data
and the required processing time for the subsequent
processes (like packet ID generation). It also could be
considered to place the classification before the
timestamping in order to relieve the timestamping process.
But this would contradict the requirement to do the
timestamping as early as possible.
Classification can filter out packets with specific
characteristics. This can be for example all packets that
belong to a specific flow (characterized by a common
quintuple [src,dst,src_port,dst_port,proto]) or traffic
aggregate (characterized by a common DiffServ Codepoint)
to determine the QoS for specific applications or traffic
classes. Another possibility is to select packets according to
the packet characteristics (e.g. packet length) or to bit
patterns within the packet to achieve sampling [DuGr00].
In certain cases it is important to maintain the information to
which flow or class the measured packet belongs to. For
instance if the quality for different DiffServ traffic
aggregates is measured simultaneously it is desirable to
keep information about the class together with the packet ID
and timestamp. If the packet ID is generated with a bijective
function on the header (e.g. compression), the additional
information can be extracted from the packet ID directly.
In all other cases, the needed information has to be
transferred to the analysis application in addition to the
packet ID. Since the packet ID provides a unique mapping
to the packet, this additional information does only need to
be transferred from one measurement point. The other
measurement point can determine the information via
mapping its packet ID to the information stored under the
same packet ID at the analysis point.

D. Packet ID Generation

Unlike semi-active measurements, passive measurements
are based on methods where packets are neither marked nor
modified in another way. Therefore the recognition has to
be based on fields that already exist in the packet. In order
to get the same packet ID for one packet at both
measurement points the packet ID generation should be

based only on fields that are invariant or predictable during
the transport. Fields that are highly variable between the
packets (e.g. the datagram ID) are more suitable than fields
that are nearly constant or vary only between a few values
(e.g. version field). The generation of a packet ID should be
based on fields that

• already exist in the packet (no modification of the
packet),

• are invariant or predictable during the transport (at least
on the path from the ingress to the egress second
measurement point) and

• are highly variable between the different packets.
The request for low collisions (uniqueness of the ID)
contradicts the request for a small packet ID, because the
more bits are used for representing the packet ID the lower
is the probability of collisions. The collision probability
within a traffic trace depends on

• the distribution of the bit sequences taken as input to
the packet ID generation (that means it is highly
dependent on the considered traffic mix),

• the packet ID generation function,
• the size of the packet ID lid,

the used Operating System (OS) (if the datagram ID is
considered, see section IV.C)
The goal is to achieve an acceptable low probability of
collisions with a packet ID that does not exceed the
available capacity for the measurement result data transfer.
As for the timestamp, the packet ID only needs to be unique
in the given time interval [0, tmax]. This limits the number of
possible combinations to the number of packets nmax that can
be observed within thid interval. For example for a 155
Mbits/s link with an average packet size of 512 Bytes and a
maximum time to traverse the network of 10s, nmax would be
378,420 packets. This amount of combinations can be
represented by 19 bits.
In most cases we can make some assumptions about the bit
sequences (unprocessed packet fields) that we want to
transfer into packet IDs:

• IP header fields and certain combinations of them are
often limited in their variance on one link (e.g. what
addresses occur).

• For some fields certain values have a very low
probability to occur (e.g. certain addresses or
combination of flags).

• IP header fields (and also the transport header) for
packets of one data flow are often very similar (e.g.
source, destination, protocol, port stay the same
[RFC2507]). That means that the headers of (more or
less) successive packets are often similar, especially if
only a few flows are active.

With these assumptions about the variance of the original
bit sequence the number of bits for the packet ID can be
limited according to the possible occurring combinations.
Knowledge about the expected traffic mix therefore can
reduce the number of required bits. Furthermore, the
maximum number of bits lid, max that can be allocated for a
packet ID depends on

POSTER 04 – EVALUATION OF BUILDING BLOCKS FOR PASSIVE ONE-WAY-DELAY MEASUREMENTS

• the rate PS at which the selected packets occur on the
link,

• the available bandwidth for the measurement result
transfer LM,

• and the number of bits lt needed to represent the
timestamp.

The overall packet rate PT depends on the packet size s and
the rate for data traffic LD on the link. The maximum packet
rate PT,max can be calculated from the maximum data rate and
the smallest packet size smin:

min
max, s

L
P D

T = (1)

The packets of interest are the packets that were selected for
the measurement. This can be all packets on the link,
packets selected according to certain characteristics (e.g. all
packets that belong to a specific flow, all packets with a
specific size, etc.) or packets selected in accordance to
random patterns. The average packet rate for the selected
packets (Ps) can differ significantly from the average packet
rate for all packets on the link (PT). The selection of only
specific packets can lead to a less frequent occurrence of
bursts. In that case smaller buffers (e.g. for buffering
timestamp and packet ID for each packet) may be sufficient
to handle the capturing of selected packets.
Nevertheless, the maximum possible packet rate for the
selected packets PS,max equals the maximum packet rate for
all packets on the link, PT,max because it can usually happen
that two packets that meet the selection criteria directly
follow each other. Whether this happens is of course not
only dependent on the traffic mix but also on the selection
strategy. For instance a selection pattern that filters out only
packets of one flow with TCP sequence numbers that are a
multiple of 50, would probably ensure a certain minimum
distance between two selected packets. Nevertheless it has
to be taken into account that packets can be re-ordered or
lost when estimating the minimum distance between
selected packets.
The minimum content of a measurement report is the
timestamp and a packet ID per packet. This leads to a
minimum size of ltotal=lid+lt bits per packet in the
measurement report. We make the following assumptions in
order to calculate the maximum number lid,max of bits a packet
ID can have:

• The maximum packet rate of the selected packets is
equal to the maximum packet rate on the link (PS,max=
PT,max).

• The bandwidth available (or reserved) for the
measurement result transfer LM is only a fraction r of
the overall bandwidth of the link LD

D

M

L

L
r = (2)

• Measurement reports are transmitted immediately after
generation (no buffering).

• Bursts of packets with smallest size smin can occur.

If one report is generated per packet, the maximum report
rate PR,max equals the maximum packet rate PT,max. On the
other Hand PR,max should not exceed the available rate for the
report transfer LM/ltotal:

min
max,max, s

L
PP D

TR == (3)

tid

M

total

M
R ll

L

l

L
P

+
==max, (4)

tid

M

total

MD

ll

L

l

L

s

L

+
==

min

(5)

With this the maximum number of bits allowed per packet
ID is given by:

tid lsrl −⋅=)(minmax, (6)

So we are looking for a recognizable unique ID that consists
of a maximum number of lid,max bits.

E. Measurement Result Transfer

In order to calculate QoS parameters like delay, two
timestamps have to be compared. If more than one
measurement point is involved the measurement results
(timestamps and packet ID) from the different measurement
points have to be collected at a common location in order to
calculate the delay value. This collection point can be
located on a separate host. It also can be co-located with
one of the meters in order to reduce the amount of data that
has to be transferred. The following possibilities to transfer
the measurement results have to be distinguished:

a) In-packet: The measurement results (timestamps and
packet ID) from the first measurement point for packet
recognition and the timestamp are carried within the
packet.

b) In-band: The measurement results are sent directly on
the same path as the data.

c) Out-of-band: The measurement results are sent on a
separate path.

Solution a) requires the modification of packets. This would
lead to a semi-active measurement method with all its
disadvantages (e.g. the need for packet modification at link
rate). The advantage is that the analysis can take place
directly at the second measurement point. This method is
efficient especially if packets already contain information
that can be used for the packet event correlation (e.g. an
IPsec authentication header).
Solution b) leads to additional load on the network under
test. That means measurement result data packets can
influence the original data flow and can lead to the same
disadvantages that active measurements observe. The in-
band sending of packets with measurement results therefore
somehow contradicts to the passive approach where no
influence on the original traffic is desired. It could be seen
as a special form of semi-active measurements, where

POSTER 04 – EVALUATION OF BUILDING BLOCKS FOR PASSIVE ONE-WAY-DELAY MEASUREMENTS

measurement data is send in separate packets instead of
including the information directly into the data packets (by
modifying them). Nevertheless, there is a difference
between sending test traffic for active measurements and the
transmission of measurement results. The amount, type and
timeframe for the sending of test traffic for active
measurements is dictated by the measurement task. In
contrast to this, the sending of measurement results can be
controlled by other means. For instance it could be sent with
a lower priority (e.g. lower-than-best-effort class) or only at
times when the network is lightly loaded, or routed over
paths that are currently not loaded (e.g. via MPLS). Which
alternative is to be preferred depends on the policy for the
evaluation of the metric (e.g. real-time or non-real-time).
Solution c) requires a separate path to the analysis
application. This can be achieved for instance via a second
interface card and a separate measurement network that
connects all measurement points. This approach does not
influence the data traffic but requires capacity in a different
network.
In all three cases additional capacity (either on the existing
network or on a separate network is required). For economic
reasons even a separate reporting network would probably
have a lower capacity then the “production network”.
Therefore to save resources (storage capacity and
bandwidth) the measurement result traffic should be kept as
low as possible.

IV. PACKET ID GENERATION

A. Requirements

In order to reduce the number of bits used for the packet ID
an appropriate function can be used to transform the
considered Bytes of the packet into a smaller ID. The
transformation should be done in a way that

• the resulting ID is as small as possible,
• the probability for collisions is as low as possible and
• the ID generation is fast.

Furthermore, it would be advantageous (but not required)
• to use an operation that always leads to an ID with the

same fixed length. This would ease the handling,
transmission and the estimation of the overhead caused
by measurement result transport.

• to use a bijective operation. With this the original bit
sequence could be derived from the ID. Certain
attributes like source and destination could be stored
without transferring them in addition to the ID.
Nevertheless a bijective function would probably
require too many bits for the packet ID and can only be
used if substantial assumptions can be made about the
traffic mix in advance.

B. Considered Packet Fields

In the passive approach measurement packets are not
modified. That means that only already existing fields of the
packets can be used to compute a packet identifier. For the
generation of a packet ID different fields of the packet and

different methods can be used. In order to generate a unique
packet ID that can be recognized at the second measurement
point only the parts in the IP packet that do not change on
the way to the receiver (immutable during transport) can be
taken into account. Fields that are mutable but predictable
could also be used for the packet ID generation.
Furthermore, it is advantageous to consider fields that are
highly variable between different (successive) packets.
Whether fields with low variability (e.g. version field)
should be considered in the ID calculation depends on the
implementation (i.e. they should be included as long as
there is no significant performance decrease).
The following table shows the IP header fields, their
immutability on the path and their variability between
different packets. The last column indicates whether we
consider this field in our packet ID generation functions
(see section VI).

Header Field Immutability on
the Path

Variability Between
Packets

Considered

Version Yes Extremely small (IPv4,
IPv6)

No

Header Length Yes Small (only if options
are present)

No

Type of
Service (TOS)

No (some routers
change this field)

Can be high (but
usually not used)

No

Total Length Yes Can be high (although
certain packet sizes
have a higher
probability than others
e.g. 40, 552, 576, 1500
bytes [nlanr97])

Yes

Datagram ID Yes High Yes
Flags No (intermediate

routers may set the
“don’t fragment”
flag)

Moderate No

Fragment
Offset

No (changed if re-
fragmentation is
done => rare but
possible)

Can be high (depends
on amount of
fragmentation and
packet size
distribution)

No

Time to Live
(TTL)

No (decrements at
each router)

Can be high No

Protocol Yes Small Yes
Header
Checksum

No (changes always
if other header-
fields changed)

Can be high No

Source
Address

Yes Can be high Yes

Destination
Address

Yes Can be high Yes

Table 1: Immutability and variability of IP header fields

The TTL, the header checksum and also the Type-of-
Service byte are mutable on the path [RFC2402] and
therefore excluded from the packet identification. The flags
field and the fragment offset are also mutable due to
fragmentation and because routers are allowed to set the
“don’t fragment” bit. Since fragmentation splits up one
datagram into multiple fragments, it makes the generation of
a unique packet ID more complicated and let the question
arise whether datagrams or fragments should be considered
for the measurements (see section IV.C). In [DuGr00] it is

POSTER 04 – EVALUATION OF BUILDING BLOCKS FOR PASSIVE ONE-WAY-DELAY MEASUREMENTS

assumed that fragmentation is done at the network edges
only. Therefore in their approach flags and fragment offset
are included in the packet ID generation. Furthermore, the
IP header may contain options. Some of these are mutable
and therefore should not be included in a packet ID
generation [RFC2402]. In [DuGr00] the presence of
variable options is neglected since they are used only rarely.

C. Datagram ID and Fragmentation Issues

The datagram ID usually is the most variable field of the IP
packet header. Therefore it is very well suited as one base
field for the packet ID generation. Nevertheless there are
certain issues that have to be considered when using the
datagram ID for the packet ID generation. The datagram ID
is represented as a 16 bit field. This leads to a wraparound
at least after 65535 packets from the same source to the
same destination (dependent on the implementation whether
a global or per destination counter is used).
The datagram ID is only unique for a specific combination
of source, destination and protocol fields (in some cases
only the source address or source and destination are used).
If packets from different sources or to different destinations
are measured, source and destination should also be
considered in the packet ID generation.
If fragmentation takes place on the way from the sender to
the receiver, fragments with the same ID will occur on the
network. In this case the fragment offset could be included
in the packet ID generation to reduce the collision
probability. A more problematic case occurs if packets are
fragmented or re-fragmented on the way between the ingress
to the egress measurement point. A solution is to instruct
both meters to always re-assemble fragmented packets. If
re-fragmentation can be excluded it would be sufficient to
instruct only the egress to re-assemble the packets.
Simply excluding fragmented packets from the
measurement is not a solution. For SLA validation we are
looking for maximum delay values to compare them with
thresholds. Therefore especially packets for which high
delay values are expected should be considered for the
measurement. Since fragmentation takes time it is likely that
especially fragmented packets will experience higher delays.
Furthermore, large packets experience higher delay values
anyway [RFC889] and at least the first fragment of a packet
has the size of the MTU on the link.
The datagram ID for retransmitted TCP packets can be
equal to the one in the original packet [RFC791]. Since the
packets are indeed equal [DuGr00] there is no way to
distinguish them. In this case the arrival times at the
measurement points (represented in the timestamp) might be
used to decide which of the equal packet IDs on the
different measurement points could belong to the same
packet. Nevertheless in this special case it is impossible to
ensure that a correct packet correlation is performed.
The assignment of datagram IDs depends on the operating
system. In Solaris, FreeBSD and Linux up to Kernel 2.2 the
datagram ID is increased per source/destination pair or in
old versions a global counter has been used. Due to security
reasons this behavior was changed in some operating

systems. Predictable IDs are problematic because they can
be used to discover the number of hosts behind a
firewall/NAT and simplify certain attacks (e.g. DNS
poisoning). For this reason OpenBSD implements a method
that leads to more random values in the datagram ID instead
of increasing the ID by one per packet. Linux 2.4 simply
sets the “don’t fragment” flag for packets that are smaller or
equal to the path MTU (PMTU) and therefore don’t need to
be fragmented. The datagram ID for these packets is set to
zero. In case the PMTU cached by the Linux kernel per
source destination pair changes the source gets an ICMP
message, the PMTU is updated and the packet is fragmented
at the source and retransmitted. Nevertheless [RFC791]
states that an identifier has to be chosen that is “unique for
this source destination pair and protocol for the time the
datagram (or any fragment of it) could be active in the
network". Although Linux is still perfectly interoperable it
does not comply to this statement. In addition it might be
difficult to fulfill this requirement anyway in future high
speed networks providing Gigabit speed with only 16 bit for
the identifier. With a datagram ID set to zero the collision
probability increases for packet IDs that include the
datagram ID. Since the majority of the Internet traffic is not
fragmented due to the PMTU discovery the datagram ID is
not usable for packet identification on new Linux kernels.
The different implementations of the operating systems lead
to a collision probability (for packet IDs based on the
datagram ID) that is not only dependent on the traffic mix,
but also on the used operating system and kernel version.

D. Related Work

In [GrDM98] specialized ATM hardware is used for passive
one-way delay measurements. Packet recognition is based
on a 32-bit AAL5 CRC calculated in hardware over the
ATM-cell payload. The amount of duplicate cells was found
to be less than 1 percent in traces with several million cells
from NFS traffic.
In [DuGr00] a hash function over the invariant header fields
and parts of the payload is used to generate a packet ID. It is
shown that with their traces the consideration of the first 40
Bytes is sufficient to reduce the probability of duplicate
packet IDs to less than 10-3.

E. Packet ID Functions

There are different possibilities to generate a packet ID.
Section IV.B already addresses the issue which parts of the
packet should be chosen for an ID generation. This section
deals with the ID generation function itself. Therefore in
this section the functions are compared by assuming that
always the same selection of packet fields is used as basis
for the calculation of the packet ID. There are different
possibilities to generate a packet ID:

• Unprocessed selected header fields
• One-way hash functions (DuGr00, MD5, SHA-1, etc.)
• Checksums, CRC
• Compression functions

POSTER 04 – EVALUATION OF BUILDING BLOCKS FOR PASSIVE ONE-WAY-DELAY MEASUREMENTS

Functions that map a large bit sequence (part of the packet)
to a smaller bit sequence (the packet ID) can always
increase the collision probability. Especially if no
assumptions can be made about the original bit sequence it
is difficult to avoid collisions. Using the selected fields of
the packet without further processing means to use the
calculation basis itself instead of a derived ID. This would
lead to the minimum collision probability that ever can be
achieved with the given traffic mix. Furthermore, it would
reduce the required processing power because no function
has to be performed on the selected fields. Nevertheless this
method would result in a packet ID size lid that is equal to
the sum of the bits of the selected fields. Especially for
small packets this would increase the rate required for the
measurement report messages up to the rate for the data
flow itself (see section III.E for discussion on this).
The hash-function used in [DuGr00] is a simple modulo
operation over the first 40 Bytes of the IP packet.
The message digest MD5 [RFC1321] is a cryptographic
hash function that generates a 128-bit fingerprint from a
message with an arbitrary length. It is mainly used for
message authentication. Such hash functions are often used
together with digital signatures in order to make these more
resistant against forgery. Cryptographic hash functions are
designed to be collision resistant in a way that it is nearly
impossible to find two messages that have the same message
digest. In [RFC1321] the difficulty of finding two messages
that have the same message digest is denoted to be on the
order of 264 operations. The difficulty in finding a message
that has a given message digest is even higher (on the order
of 2128 operations). It is important to notice that collision
resistance here just means that it is nearly impossible to
generate a message that would result in a specific digest
(which simply means one cannot find a reverse function).
The fact that it is difficult to find two messages that lead to
the same digest does not imply that it would be impossible
that by accident two messages would result in the same
digest, leading to a collision. However MD5 provides a
good distribution of hash values, which makes collisions
rare.
An advantage for using the MD5 hash function for the
packet ID generation is the re-usability for IPsec. MD5 is
one alternative to calculate the Integrity Check Value (ICV)
in the IPsec Authentication Header [RFC2402]. If MD5 is
suitable as packet ID, a semi-active one-way-delay
measurement can be realized by using the ICV as ID for the
packet event correlation. Furthermore, the AH contains a 16
bit field reserved for future use. This field can be used to
carry a timestamp from the first to the second measurement
point. If the delay calculation takes place at the second
measurement point, no further measurement result data
transfer is required.
CRCs have been developed for error detection and
correction. That means if messages differ in only a few bits,
the CRC of these messages should differ in order to indicate
errors. Nevertheless CRCs were not designed to be collision
resistant. In contrast to cryptographic hash functions it is
possible to generate two files that would produce the same

CRC. The frequency of collisions depends on the size of the
CRC and the generator polynom.
If substantial assumptions can be made about the expected
traffic, the selected packet fields can be converted into a
packet ID by using a compression function. This procedure
would maintain the lowest possible collision probability that
can be gained with the unprocessed fields. The applicability
of a compression function always implies redundancy in the
original message. Indeed redundancy can be found if
assumptions about the expected traffic can be made in
advance. Fist of all, one can apply general IP rules to
exclude specific bit combinations. For instance the source
address field should not contain a multicast address, and
private IP addresses should not occur in a backbone
network. Furthermore, one can make assumptions due to
reality and experience (e.g. version is either 4 or 6, TOS
field not used, TTL maximum value etc.). The next step
would be to make assumptions about the expected traffic
mix (e.g. expected combinations of source and destination
addresses). The degree of achievable compression
determines the required size of the packet ID. It heavily
depends on the number and scope of the assumptions. An
advantage of (lossless) compression functions is that they
are bijective. This means if one needs further information
on the measurement (e.g. destination addresses) one can
extract this information directly from the packet ID.
Furthermore, successive packets of a data flow contain time
redundancy. For instance for one IP flow the quintuple
source address, destination address, protocol and the port
numbers remain the same in all packets. This can be utilized
if measurements are done in a flow specific way (e.g. one-
way delay per flow is needed).

V. METER IMPLEMENTATION

The design of a flexible IP meter has to take several
requirements into consideration:

• Classification speed (time taken per packet),
• Classification functionality (with respect to filter

attributes),
• Packet evaluation functionality (with respect to

calculation of flow properties),
• Ease of extensibility (for adding new functionality) and
• Control and data access interfaces of the meter system.

For the design of our meter system we put the focus on
flexibility and extensibility while retaining acceptable
classification speed. Figure 2 shows the core of the meter
implementation without the external interfaces.

POSTER 04 – EVALUATION OF BUILDING BLOCKS FOR PASSIVE ONE-WAY-DELAY MEASUREMENTS

Storage &
Collector

Evaluator

Ruleset
Manager

rule
data

measure-
ment data

meter control measurement
results

packets from
networkcontrol flow

data flow

Action
Modules

Classifier
Classifier
Modules

Module
Manager

Module
Manager

Figure 2: Meter Implementation

The Ruleset Manager processes and stores incoming filter
rule descriptions. The description has to be syntax-checked
and processed to an internal format before storage in the
meter’s rule database. The Ruleset Manager instructs the
other core components according to the given metering task.
The Classifier’s task is to manage the set of installed filter
rule patterns and to identify the matching rule(s) for
incoming packets. The classifier component delivers the
packet data and corresponding metadata (length, timestamp,
rule ID) to the Evaluator for further analysis (i.e. calculation
of flow properties). The Evaluator component is responsible
for the execution of the actions specified in a complete filter
rule description and is composed of a Module Manager and
Action Modules. The filter action tells which metrics shall
be calculated for that specific flow. For each metric (e.g.
volume, bandwidth, jitter, RTT) an Action Module
implements the required algorithm. The Module Manager
has to identify which Action Modules have to be used and
to apply those actions onto the corresponding flow data.
Furthermore it has to make sure the Action Modules
required for the installed filters are present and properly
initialized. The Collector will be instructed by the Ruleset
Manager to query the accumulated measurement data (e.g.
volume counters) from the flow database inside the
Evaluator. Data collection tasks (e.g. retrieve accounted
volume every 60 seconds for flow A) are scheduled in the
Collector so that data is retrieved at the correct point in time
specified by the filter rules. The Collector forwards the
measurement results to the Storage component. The Storage
component gathers the measurement data sent to it by the
Collector and stores them into an internal repository. The
repository inside the Storage allows to accumulate
measurement data from a number of measurement intervals
(e.g. 20 volume counters taken once every minute).
Accumulation of measurement data allows to reduce the
number of result packets transmitted.
We decided to base our first classifier on the existing
NetFilter classifier [Russ00], which is running entirely in
the Linux 2.4. kernel. Different classifier modules allow
matching of additional packet fields (e.g. RTP header info)
apart from the standard attributes (SrcIP, DstIP, SrcPort,

DstPort, Protocol). The NetFilter implementation has been
enhanced to support measurement on a dedicated device
(via promiscuous mode) and to minimize context switches.
Additionally we have developed new classifier modules
(e.g. for matching RTP packets). Using NetFilter as
classifier limits the applicability of the meter to the Linux
operating system. Since the classifier interface is well
defined it would be possible to use libpcap [PCap00] and a
portable classifier implementation to run the meter on other
UNIX platforms (e.g. FreeBSD, Solaris).
Having the classifier in the kernel means timestamping and
metadata generation is done in the kernel. Therefore we get
the most accurate timestamps (as possible in software) and
access to all important metadata (e.g. incoming/outgoing
interface etc.). However the main advantage of
classification in the kernel is that only the interesting
packets (i.e. packets that are matched by a classification
rule) are passed to user space. Therefore we have no
unnecessary context switches. The number of context
switches is further decreased due to batch delivery. The
snap size (i.e. the number of bytes of each packet that is
passed to user space) can be configured so that data copying
can be reduced to the necessary minimum.
We have decided to do packet evaluation in user space for a
number of reasons. First evaluation might get quite complex
(e.g. packet ID generation) and we want avoid bloating the
kernel with complex functions. Putting complex functions in
the kernel might also decrease performance due to blocking
problems. Since there are numerous evaluations possible it
should be easy to add a new action module to the meter.
Writing such an extension as kernel module is far more
complex than implementing a shared library. However,
doing evaluation in the kernel could save some more
processing time depending on the task. In the case of packet
ID generation we could for example further reduce context
switches and copy operations because we would then only
need to copy the packet ID to user space instead of the first
part of the packet used as input for the ID generation
function. However, we think that the performance gain is
only marginal compared to the disadvantages mentioned
above.
Our meter implementation has building blocks with well-
defined interfaces so that single parts of the meter can be
exchanged. The building blocks are realized as C++ classes.
Furthermore, our meter is very flexible because we use
loadable modules for the classification and evaluation. In
fact these are shared libraries and Linux kernel modules that
could be added or even exchanged during runtime. The
interface for these modules have been well defined so that
new modules can be written without knowing the internals
of the meter.

VI. MEASUREMENTS

This section presents the measurements we did with the
meter implementation described in section V. We have
implemented the following packet ID generation functions:
Unprocessed fields, a 16 bit hash function, CRC-16, CRC-

POSTER 04 – EVALUATION OF BUILDING BLOCKS FOR PASSIVE ONE-WAY-DELAY MEASUREMENTS

32 (from AAL5), the standard 128 bit MD5 and a folded 32
bit MD5.
The packet ID is generated on a basis of 40 Bytes that
consist of the header fields selected in section IV.B (total
length, datagram ID, protocol, source and destination
address) and 27 Bytes of the payload. We use an absolute
timestamp represented by 64 bits (struct timeval).
Approaches to reduce the number of bits by using relative
timestamps are dependent on the considered network and
are currently not considered in our implementation. In order
to compare the possible packet ID generation functions we
use the following comparison criteria:

• Size of the resulting ID
• Probability of collisions
• Processing time to generate ID
• Effort to encode additional info (like source and

destination address) in the ID

A. Test Setup

For the test setup we use a SUN Sparc 20 machine for
traffic generation and a Linux host as destination (Fast
Ethernet). Another Linux host (PIII-550, Intel Fast Ethernet
E100Pro, Kernel: 2.4), which is connected to the same hub,
is used as measurement device. The traffic flow generation
is based on an ATM test system developed at GMD
FOKUS. The test system includes a special hardware, the
TANYA ATM test interface [KrMT99, CaTZ00]. Our
meter implementation described in section V is running on
the measurement device. The architecture of the testbed
with the meter and flow generator is shown in Figure 3.

->
setup
<-
connect

Cisco Router
Tanya Traffic
Generator Hub

Measurement System

Test Traffic
Destination

Figure 3: Test Setup

For the first test we use a synthetic flow with 120,000 UDP
packets with a size of 64 bytes each generated by the
TANYA traffic generator. The different packet ID
generation modules are loaded and for each packet seen by
the meter a timestamp and a packet ID is generated. For a
second test we used an RTP video flow, which consists of
83,114 packets.

B. Packet ID Generation Performance

For measuring the Packet ID generation performance we
measured the time that is needed for each packet to generate
the ID. The average packet ID generation time for each
function is shown in Table 2.

C. Packet ID Collision Probability

For very first tests on the collision probability of the
different packet ID generation functions we calculated the
number of collisions that occurred in the measured traces.
The results are shown in Table 2. Since the collision
probability highly depends on the traffic mix we plan to
perform further tests with traffic traces captured in different
networks (see section VII).

D. Results

Table 2 shows the results of the comparison of the different
packet ID generation functions.

Unprocessed
Fields

CRC-16 16-bit Hash

Size of ID 320 bit 16 bit 16 bit
Collision
Probability
(artifical traffic)

0.0 0.835283 0.991543

Average
processing time
(artifical traffic)

0s (used as
reference)

2.84855 us 1.76284us

Collision
Probability (RTP
Flow)

0.0 0.716799 0.992769

Average
processing time
(RTP Flow)

0s (used as
reference)

2.89509 us 1.74516 us

Effort to store
source, dest

0 64 bit 64 bit

CRC-32 Folded MD5 MD5-128
Size of ID 32 bit 32 bit 128 bit
Collision
Probability
(artifical traffic)

0.0 0.0 0.0

Average
processing time
(artificial traffic)

1.86471 us 5.46122us 5.75711us

Collision
Probability (RTP
Flow)

0.000024 0.000024 0.0

Average
processing time
(RTP Flow)

1.85348 us 5.46099 us 5.56622 us

Effort to store
source, dest

64 bit 64 bit 64 bit

Table 2: Comparison of Different Packet ID Generation
Functions

If the plain fields are used, no additional processing time is
required, but the ID would have to consist of 320 bit. On the
other hand if a small ID of 16 bit (CRC or simple hash) is
used only 216 identifiers can be represented. As expected
many collisions can be observed in this case, because the
used traffic traces contain much more packets than IDs
possible. If the ID is extended to 32 bit the collisions are
reduced to zero for the used artificial traffic. For the RTP
flow one collision occurred with the CRC-32 and the folded
MD5. As expected the average ID calculation time remains
nearly the same in both experiments. The MD 5 operations
take about 3 times as long as the CRC calculation. The
folding operation to generate a folded MD5 seems to be
negligible small.

POSTER 04 – EVALUATION OF BUILDING BLOCKS FOR PASSIVE ONE-WAY-DELAY MEASUREMENTS

VII. CONCLUSIONS AND FUTURE WORK

In this paper we evaluated the building blocks needed for
passive one-way-delay measurements. We investigated what
parameters influence the packet capturing, the timestamping
and the classification process. We then identify the
requirements for the selection of suitable functions for the
generation of a packet ID, which is used for the packet
event correlation at the involved measurement points. On
one hand the ID has to be sufficiently small to not exceed
the available capacity for the measurement result data
transfer. On the other hand the probability of collisions
(occurrence of duplicate IDs) should be minimized for the
given scenario.
We first investigate which packet header fields are most
suitable as basis for an ID generation function. Then we
compare different functions for generating a packet ID with
the approach of using the unprocessed packet fields as
identifier. We have developed a flexible meter that allows
us to plug in different packet ID generation functions as
independent modules. We implemented a simple 16-bit hash
function, a CRC-16, a CRC-32, the standard 128-bit MD5
and a 32-bit folded MD5 function as modules. First
measurements show the differences in terms of processing
time and collision probability for the different functions.
We plan to continue this work by evaluating the functions
against large traffic traces captured in different networks
and with varying number of bytes as basis for the packet ID
generation. The meter will be extended with control
functions to dynamically configure the appropriate functions
that have to be loaded for a given measurement task.
Furthermore, we are working on the implementation of
semi-active measurement methods and will compare them
with the purely passive approach.

VIII. ACKNOWLEDGEMENTS

We would like to thank Carsten Schmoll who designed and
implemented the largest part of the meter we used for the
measurements and Lutz Mark for helping us with the test
traffic generation.

IX. REFERENCES

[BoSS99] Niklas Borg, Emil Svanberg, Olov Schelen: Efficient Multi-
field Packet Classification for QoS Purposes, IEEE/IFIP
Seventh International Workshop on Quality of Service
IWQoS '99 UCL, London, Jun 1 - June 4, 1999

[Brow00] Nevil Brownlee: Packet Matching for NeTraMet
Distributions, Presentation at RTFM Get-Together, IETF
Adelaide, March 2000,
http://www.auckland.ac.nz/net/Internet/rtfm/meetings/

[Brow97] N. Brownlee: Reference Manual NeTraMet & NeMaC
Version 4.1, Information Technology Systems & Services,
The University of Auckland, New Zealand, November 1997
(http://www.auckland.ac.nz/net/Accounting/ntm.Release.not
e.html)

[CaTZ00] Georg Carle, Jens Tiemann and Tanja Zseby: Assessment of
Accounting Meters with Dynamic Traffic Generation based
on Classification Rules, in proceedings of The First Passive
and Active Measurement Workshop (PAM2000), pages 127-
133. The University of Waikato, New Zealand, April 2000.

[Cisc99] NetFlow Services and Applications, White Paper, Cisco
Systems, 1999

[ClDG00] John Cleary, Stephen Donnelly, Ian Graham, Anthony
McGregor, Murray Pearson: Design Principles for Accurate
passive Measurement, The First Passive and Active
Measurement Workshop PAM 2000, Hamilton, New
Zealand, April 3-4, 2000

[DuGr00] Nick Duffield, Matthias Grossglauser: Trajectory Sampling
for Direct Traffic Observation, Proceedings of ACM
SIGCOMM 2000, Stockholm, Sweden, August 28 -
September 1, 2000.

[GrDM98] Ian D. GRAHAM, Stephen F. DONNELLY, Stele MARTIN,
Jed MARTENS, John G. CLEARY: Nonintrusive and
Accurate Measurement of Unidirectional Delay and Delay
Variation on the Internet, INET'98, Geneva, Switzerland,
21-24 July, 1998

[GuMc99] Pankaj Gupta and Nick McKeown: Packet classification on
multiple fields, Proceedings of ACM SIGCOMM'99, ACM,
August 1999.

[KaZe99] S. Kalidindi, M. Zekauskas: Surveyor: An Infrastructure for
Internet Performance Measurements, Proceedings of
INET’99, San Jose, CA, USA, June 22-25, 1999

[KrMT99] N. Kroth, L. Mark, J. Tiemann: A Framework for Testing IP
QoS over ATM Networks: Implementation and Practical
Experiences, Proceedings of the 2nd International
Conference on ATM (ICATM'99), Colmar, France, 21 - 23
June 1999

[nlanr97] http://www.nlanr.net/NA/Learn/packetsizes.html
[PaAM00] V. Paxon, A. Adams, M. Mathis: Experiences with NIMI,

The First Passive and Active Measurement Workshop (PM
2000), Hamilton, New Zealand, April 3-4, 2000.

[PaMA98] V. Paxon, J. Mahdavi, A. Adams, M. Mathis: An
Architecture for Large-Scale Internet Measurement, IEEE
Communications Vol 36 No 8, p. 48-54, August 1998

[PCap00] tcpdump/libpcap, http://www.tcpdump.org
[RFC1305] D. Mills: Network Time Protocol (Version 3) specification,

implementation and analysis, RFC 1305, University of
Delaware, March 1992.

[RFC1321] R. Rivest: The MD5 Message-Digest Algorithm, RFC1321,
April 1992

[RFC2402] S. Kent, R. Atkinson: IP Authentication Header, RFC 2402,
November 1998

[RFC2507] M. Degermark, B. Nordgren, S. Pink: IP Header
Compression”, RFC 2507, February 1999

[RFC791] Jon Postel (Editor): Internet Protocol, RFC 791, September
1981

[RFC889] D. Mills: Internet Delay Experiments, RFC 889, December
1983

[Russ00] Paul Russel: Linux 2.4 Packet Filtering HOWTO,
http://netfilter.samba.org/ unreliable-guides/packet-filtering-
HOWTO.html, May 2000

[Touc95] Joseph D. Touch, Performance Analysis for MD5,
Proceedings of ACM SIGCOMM'95, Cambridge,
Massachusetts, USA, August 28 - September 1, 1995

[UiKo97] Henk Uijterwaal, Olaf Kolkman: Internet Delay
Measurements using Test Traffic - Design Note, RIPE NCC,
Document RIPE-158, May 1997

