

The SLICES/pos Framework: A Methodology and Toolchain for Reproducible Network Experiments

Sebastian Gallenmüller¹, Dominik Scholz¹, Henning Stubbe, Manuel Simon, Georg Carle

Chair of Network Architectures and Services School of Computation, Information, and Technology Technical University of Munich

Tur Uhrenturm

Reproducibility

Reproducible experiments

- Everyone agrees that reproducible research is important
- The best solution our community has come up so far:

ТШ

Reproducibility

Reproducible experiments

- Everyone agrees that reproducible research is important
- The best solution our community has come up so far:

Reproducibility

Problems with reproducibility

- Two workshops at SIGCOMM conference dedicated to reproducible research:
 - SIGCOMM'03: MoMeTools workshop
 - SIGCOMM'17: Reproducibility workshop
 - Problems remained the same over 14 years

Best solution so far ...

- Artifact Evaluation Committees & Reproducibility Badges
- Problems:
 - High effort
 - Potentially low robustness (CCR Apr. '20²)

3

ACM's badges awarded by the Artifact Evaluation Committee

²[1] N. Zilberman, "An Artifact Evaluation of NDP," Comput. Commun. Rev., Jg. 50, Nr. 2, S. 32–36, 2020

What is reproducibility?

- 3-stage process according to ACM³:
 - 1. Repeatability: Same team executes experiment using same setup
 - 2. Reproducibility: Different team executes experiment using same setup
 - 3. Replicability: Different team executes experiment using different setup
- Our testbed-driven approach mainly targets the experimental setup
- → Focus our effort on repeatability and reproducibility
- → Replicability requires additional effort by others

³[2] ACM, Artifact Review and Badging Ver. 1.1, 2020. Adresse: https://www.acm.org/publications/policies/artifact-review-and-badging-current S. Gallenmüller — The SLICES/pos Framework: A Methodology and Toolchain for Reproducible Network Experiments

Reproducibility-as-a-Service

ТШ

How can we limit effort spent on reproducibility?

- Reduce amount of work for artifact evaluators or other researchers
- Make reproducibility part of experiment design
- → Automate entire experiment (setup, execution, evaluation)

How can we create robust, reproducible experiments?

- Document all relevant parameters for experiments
- Automate the documentation of experiments
- → Well-structured experiment workflow serving as documentation

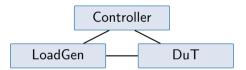
The Plain Orchestrating Service (pos)

Our solution to create reproducible research

- 1. Create a testbed management system
- 2. Create a well-defined experiment workflow

The Plain Orchestrating Service (pos)

Our solution to create reproducible research

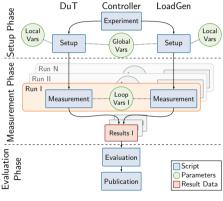

- 1. Create a testbed management system
- 2. Create a well-defined experiment workflow

Achieving Repeatability

- Automation
- Live images
 - Researchers must automate configuration
 - No residual state between reboots
- → Experiments become repeatable

Achieving Reproducibility

- Providing access to experiment infrastructure
- Other researchers can easily (re-)run experiment
- → Experiments become reproducible



Minimal pos experiment topology

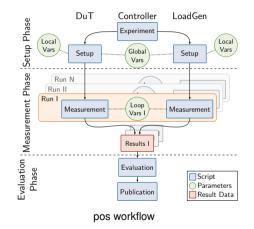
pos' Methodology

Setup phase

- Controller manages experiment workflow
- Initialization of experiment nodes
 - Reboot experiment nodes
 - Live Linux images via network boot
 - Recover from possible error states
 - Supported interfaces:
 - IPMI
 - Intel management engine
 - Network-controlled power plugs
- Configuration of experiment nodes:
 - Prepare system for experiments (e.g., install software, configure addresses)
 - Install testbed utility scripts (e.g., synchronization tool)
 - Global / local variables (vars) help parametrize configuration
- Configuration and initialization are fully automated

pos' Methodology

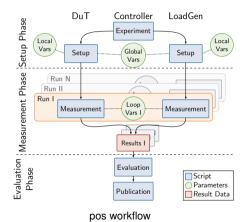
Measurement phase


- Performing the actual experiment
- Repeated execution of measurement script
- Loop variables parameterize each measurement run
 - · For instance, different packet rates and different packet sizes
 - Experiment results of each run is associated to a specific set of loop vars

Loop vars example

- pos calculates the cross product for the given loop vars:
 - pkt_rate: [1000, 5000]
 pkt_sizes: [64, 1500]
- Measurement script is executed for each tuple in the cross product:
 - Run1: {pkt_rate: 1000, pkt_size: 64}
 - Run2: {pkt_rate: 1000, pkt_size: 1500}
 - Run3: {pkt_rate: 5000, pkt_size: 64}

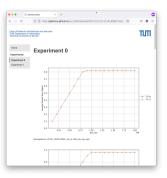
• ...



ТШ

pos' Methodology

Evaluation phase


- Result file upload from experiment nodes to the controller:
 - pos tags all result files with the specific measurement run
 - → result_run1.csv
 - · Loop vars can be considered as metadata for the result
 - → Run1: {pkt_rate: 1000, pkt_size: 64}
- Collected results / loop vars for experiment evaluation
 - Plotting tool evaluates loop variables and measurement files
 - Loop vars are used for automated plotting, e.g., aggregating over pkt_rate
- Well-defined format for pos scripts, loop vars, and results:
 - · Well-defined format allows automated evaluation
 - Automated preparation of experiment artifacts (git repository, website)
 - e.g., https://gallenmu.github.io/pos-artifacts/

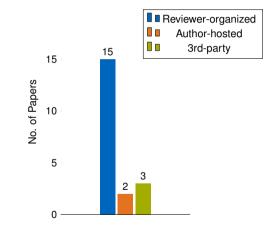
- pos is . . .
 - a testbed orchestration service, and
 - an experiment methodology.
- Methodology makes experiments
 - repeatable as everything is automated,
 - reproducible as others can re-run the automated pos experiments, and
 - easier to replicate as the experiment scripts document experiments.
- → pos reduces the effort to create reproducible experiments.
- → pos complements the ACM awards—it does not replace them.

Conclusion

- pos is . . .
 - a testbed orchestration service, and
 - an experiment methodology.
- Methodology makes experiments
 - repeatable as everything is automated,
 - reproducible as others can re-run the automated pos experiments, and
 - easier to replicate as the experiment scripts document experiments.
- → pos reduces the effort to create reproducible experiments.
- → pos complements the ACM awards—it does not replace them.
- Example experiment:
 - VM: https://virtualtestbed.net.in.tum.de
 - Repository: https://github.com/gallenmu/pos-artifacts
 - Website: https://gallenmu.github.io/pos-artifacts

Website generated by pos experiment workflow

8



CoNEXT'23 — Artifact Evaluation

Analysis of AE — Infrastructures used for Reviewing

Infrastructures used for AE

Infrastructure used for reviewing

- 1. Reviewer-organized infrastructure
- 2. Author-hosted infrastructure
- 3. 3rd-party infrastructure (e.g., testbeds)

Note: Some of the papers did use more than one or no infrastructure at all (e.g., only provided data sets).

Analysis of AE — Reviewer-organized infrastructure

Examples of hardware requirements for reviews

- 3 × artifacts require Nvidia GPUs
- 3 × artifacts require Intel Tofino switch(es)
- 1 × artifact requires Intel SGX-capable CPUs
- RAM requirements:
 - Most demanding artifact required 512 GB in one machine
 - Another artifact requires several machines with at least 64 GB

Strategies of authors to fulfill review requirements and potential issues:

- Authors rely on reviewers to organize the infrastructure for executing experiments
 - Some authors/reviewers approached AEC
 - AEC tried to organize infrastructure
 - AEC redistributed reviews to other reviewers
- Authors reduce requirements for experiments (e.g., simpler simulation, bmv2 instead of Tofino)
 - · Results of simplified setup may significantly differ from actual results

Author-hosted infrastructure

- · Authors share access to their infrastructure and prepare artifacts for review
- · Reviewers can efficiently review due to a well-prepared infrastructure

Potential issues

- Authors need to collect access credentials (takes additional time to start reviews)
- Reviewer anonymity could be at risk (authors of this year's CoNEXT assured that they will honor the reviewers' anonymity)
- Long-term availability of the infrastructure (all platforms for CoNEXT'23 were only available during the review phase)
- Reviewers mentioned that specific configuration was hidden, as not all of the scripts to create the infrastructure were available

Analysis of AE — 3rd-party infrastructure

Mentioned testbeds

- IoT-lab (IoT-focused testbed)
- Colosseum (testbed allowing low-level emulation of wireless links through FPGAs)
- pos-based testbed with the ability to hardware timestamp using optical taps

Different utilization of testbeds for AE

- 1. Reviewers were required to apply for testbed access to reproduce experiments
- 2. Authors provided a data set generated in a testbed to avoid reviewers having to apply for testbed access
- 3. Authors simplified experiments (e.g., VMs or containers) so reviewers can perform experiments without testbed access

Key takeaways

- 1. Testbed access provides the most insight but also involves the highest effort for reviewers
- 2. Providing data sets involves less effort for reviewers but may hide the steps of the data acquisition
- 3. Simplified examples provide a compromise between the two, but may significantly differ from actual results

Analysis of AE — 3rd-party infrastructure

ТШТ

Best current practice: Providing easy access to testbeds

- Good example: day pass of Chameleon testbed^a
- Reviewers get an author-provided token to access testbed
- Reduced effort for the reviewer to gain access
- Provided hardware fulfills requirements to run artifacts

Example for day-pass token

 $a_{https://www.chameleoncloud.org/blog/2022/01/24/interactive-science-made-easy-with-chameleon-daypass/$

S. Gallenmüller — The SLICES/pos Framework: A Methodology and Toolchain for Reproducible Network Experiments

Other Communities

Systems community

- Growing number of conferences offer AE:
 - in 2023: Usenix ATC, Usenix OSDI, ACM EuroSys, ACM SOSP^a

Reducing the effort: collaboration with testbeds for AE

- Some of them collaborate directly with testbeds, e.g., CloudLab, Chameleon
- For authors, sharing access to such an infrastructure is easier than providing access to own infrastructure
- Reviewer get access to an existing infrastructure and are not limited to the capabilites of their research group/institute
- Testbeds provide long-term access to their facilities that is not easy to provide for individual researchers

ahttps://sysartifacts.github.io/

15

Recommendations for AE process

Trade-off between artifact availability and preparation time

- Authors prioritize paper submission
 - Authors focused on reviewer comments before creating artifacts
 - We offered approx. 1 week between paper submission deadline and AE deadline
 - 1 week may not be enough to create high-quality artifacts
 - Last round of reviews (one-shot revisions), took longer to evaluate as authors less time to prepare
- SIGCOMM conference opted for a different timing
 - AE after conference
 - · Reviewers and evaluators benefit from more time to prepare and evaluate artifacts
 - Badges are only awarded retrospectively

Recommendations for AE process

Preparing for AE software/hardware requirements

- Hardware requirements will continue to increase (Smart-NICs/DPUs/IPUs)
- Authors should create a more detailed list of required hardware
 - · This year all hardware requirements were listed in pdf
 - · Requirements were not considered for matching reviewers to artifacts
- Reviewers should also list the hardware/software they can access, to ensure
 - · matching reviewers with artifacts that they can evaluate, and
 - avoiding NDA issues (e.g., Intel Tofino SDE requires a signed NDA).
- Proposal: Use the features that HotCRP already supports the topics of interests
 - AE chairs create new topics, e.g., Tofino-based evaluation, Nvidia GPU-based evaluation
 - · Authors and reviewers list their "topics"
 - · Better matching between artifacts and reviewers

🗈 😤 hofile	- CoNEXT 2023 Artifacts × +	~					×
\rightarrow G	A https://conext23artifacts.hotcrp.com/profile	Â	☆		0	£	=
ccount	Topic interests						
	Please indicate your interest in reviewing papers on these	confe	rence	e topi	cs. W	fe use	
w account	this information to help match papers to reviewers.						
ulk update		Low				High	
		ш	1	0	1	11	
ofile	Application (Web / Video / Social Network)	0	۲	0	0	0	
mographics	Caching / CDN	0	۲	0	0	0	
curity	Control / Management, SDN	0	0	0	۲	0	
iferences	Data Center / Cloud / OS / Virtualization	0	0	0	0	۲	
rveloper	Economics and Policy	0	۲	0	0	0	
ecap com	Energy-efficiency	0	0	۲	0	0	
	Experience of Large-scale Network	0	0	۲	0	0	
	In-network Computing / NFV	0	0	0	۲	0	
	Innovative Uses of Network Data beyond Communication	0	0	۲	0	0	
	ToT	0	0	۲	0	0	
	Machine Learning for Networking	0	0	۲	0	0	
	Network Architecture	0	0	۲	0	0	
	Network Measurement	0	0	0	0	۲	
	Reliability / Availability	0	0	۲	0	0	
	Reproducibility	0	0	0	0	۲	
	Routing and TE	0	0	۲	0	0	
	Security and Privacy	0	0	۲	0	0	
	Transport / Application-layer Protocols	0	0	۲	0	0	

ACM HotCRP Topics

Conclusion — A (Subjectively) Ideal AE Process

- Extended artifact submission timelines
 - Approx. 2–3 weeks between paper & artifact submission
 - Artifacts available badges at the conference
 - Further AE badging after the conference
- Better (automated!) matching between capabilities of reviewers and requirements of AE
- Conferences suggest and incentivize the use of testbeds:
 - · Authors and reviewers have a common reference environment provided by the testbeds to run experiments
 - · Testbeds will provide long-term availability of environment to run artifacts
- Testbeds can be easily accessed (e.g., through a day-pass access)

Panel discussion: "Future of AE"

• AE is a manual process (for authors and reviewers). Any ideas on standardizing or automating the process?

- [1] N. Zilberman, "An Artifact Evaluation of NDP," Comput. Commun. Rev., Jg. 50, Nr. 2, S. 32–36, 2020.
- [2] ACM, Artifact Review and Badging Ver. 1.1, 2020. Adresse: https://www.acm.org/publications/policies/artifact-review-and-badging-current.